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Abstract. This paper presents an application of deep
reinforcement learning (DRL) for controlling permanent 
magnet-assisted synchronous reluctance machines (PMA-
SynRMs). A model-free DRL agent is trained to control the 
power converter switching states, aiming to accurately track 
current references. The DRL-based control scheme is 
compared against a traditional finite control set model 
predictive control (FCS-MPC) strategy employing a simplified 
linear model of the PMA-SynRM. Simulation results 
demonstrate that the DRL controller achieves superior 
performance in terms of tracking accuracy and harmonic 
distortion reduction, effectively handling the machine's 
inherent nonlinearities. Furthermore, the DRL agent exhibits 
robustness against measurement errors. The findings 
highlight the potential of DRL as a viable alternative to 
conventional model-based control methods for high-
performance PMA-SynRM drives, offering improved 
adaptability, robustness, and operational flexibility. 
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1. Introduction

Electrical machines play an important role in numerous 
industrial and domestic applications, such as electric 
mobility, renewable energy production, industrial 
machinery, and HV-AC systems, among others. They 
constitute an important component of the electric power 
system that eases the integration of renewable energy 
sources and contributes to reducing the environmental 
impact. Among the various types of electrical machines, 
induction machines (IMs) and permanent magnet 
synchronous machines (PMSMs) have traditionally been 
the preferred choices due to their well-established control 
techniques and robust performance. However, synchronous 
reluctance machines (SynRMs), particularly in their 
permanent magnet-assisted version (PMA-SynRM), have 
recently gained attention as a viable alternative. These 
machines offer high efficiency, reliability, and a broad 
operational speed range while maintaining a lower cost due 

to the reduced dependence on expensive rare-earth 
magnets. As a result, PMA-SynRMs present an attractive 
solution for variable-speed applications [1]. 
To regulate the operation of these modern electrical drives, 
advanced control strategies are required. Finite control set 
model predictive control (FCS-MPC) has emerged as a 
strong competitor to conventional field-oriented control 
(FOC) techniques [2]. Unlike FOC, which relies on 
modulation strategies, FCS-MPC directly determines the 
optimal power converter state at each control interval by 
minimizing a predefined cost function that encapsulates 
the control objectives. To this end, the future state of the 
plant is predicted using a mathematical model of the 
system. This approach enables fast dynamic response and 
flexible control implementation. However, the 
effectiveness of FCS-MPC heavily depends on the 
accuracy of the system model employed for the 
predictions. In the case of PMA-SynRMs, the nonlinear 
flux-linkage to current characteristic introduce significant 
modeling challenges. Traditional control approaches often 
consider constant inductance models to reduce 
computational burden [3], which compromises control 
performance. Other proposals use high-dimensional 
current-flux maps derived from finite element analysis 
(FEA), where saturation and cross-magnetization effects 
are considered, or complex analytical models that partially 
reflect these nonlinearities [4], [5]. Those solutions 
improve the accuracy of the model at the expense of 
increased computational cost, making real-time 
implementation challenging. 
In this context, deep reinforcement learning (DRL) offers 
a paradigm shift by leveraging artificial neural networks 
to approximate the motor control policy. By mapping 
system states, such as motor speed and currents, to optimal 
control actions, DRL-based controllers can learn complex 
patterns and relationships from training data without 
requiring an explicit mathematical model of the machine. 
Although the training process demands extensive data and 
computational resources, the online deployment of a 
trained DRL agent is significantly more efficient in terms 
of computational cost compared to the previously 
mentioned FEA-based methods. 
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This data-driven approach has been recently applied to the 
control of electrical drives, where most research focus on 
the PMSM case [6]-[9]. The main advantages that this 
approach provides include improved adaptability to 
nonlinearities and uncertainties, and greater tolerance to 
external disturbances. Additionally, DRL allows greater 
operational flexibility, as the objective function (reward 
function) in the training phase can be tailored to meet 
specific performance criteria, such as energy efficiency, 
torque ripple minimization, or thermal constraints [10]. 
This study aims to provide insights into the potential of 
DRL-based controllers as an alternative to traditional FCS-
MPC approaches for high-performance PMA-SynRM 
applications. Thus, a model-free DRL-based control 
algorithm for PMA-SynRM constitutes the main 
contribution of the paper.  
Additional contributions of the paper are summarized in the 
following points: 
- Analysis of the influence of measurement errors in the 

overall performance of the implemented agent. 
- Comparative analysis of the proposed DRL-based 

control scheme against FCS-MPC, in terms of accuracy 
in the desired output, assuming nonlinearities in the 
machine model. 

The findings will contribute to the ongoing development of 
intelligent control strategies that enhance efficiency, 
robustness, and computational feasibility in next-generation 
electrical drive systems. 
The remainder of this paper is organized as follows: Section 
2 details the PMA-SynRM drive system model, highlighting 
the challenges associated with accurate modeling of 
magnetic nonlinearities. Section 3 describes the proposed 
DRL-based control scheme and the training process 
employed. Section 4 presents the simulation results, 
comparing the performance of the DRL controller against 
the benchmark FCS-MPC approach. A discussion on the 
impact of measurement errors is also included. Finally, 
Section 5 summarizes the key findings and concludes the 
paper, outlining potential future research directions. 
 

2. PMA-SynRM based drive model 
 
The system under study consists of a three-phase PMA-
SynRM powered by a standard two-level three-phase 
voltage source converter (VSC). Key parameters and 
specifications for the machine are detailed in Table I. 
The dynamic behavior of the PMA-SynRM is commonly 
modeled in the rotor dq reference frame. The stator voltage 
equations in this frame are: 

�� = ���� +
���

��
− �Ω�� (1) 

�� = ���� +
���

��
+ �Ω�� (2) 

where vd, vq, id, iq, λd, and λq are the stator voltages, currents, 
and flux linkages in the d- and q-axes, respectively. Rs is the 
stator resistance, p denotes the number of pole pairs, and � 
is the rotor mechanical speed. The electromagnetic torque 
(Tem) generated is expressed as: 

��� =
3

2
�(���� − ����) (3) 

As highlighted in the introduction, accurately modeling the 
relationship between flux linkages (λd, λq) and currents (id, 
iq) is a significant challenge for PMA-SynRMs. These 

machines exhibit pronounced nonlinear magnetic 
characteristics, including saturation and cross-saturation 
effects, which are inherent to their design and operation. 
Despite this known complexity, conventional control 
approaches like FCS-MPC often rely on simplified models 
to remain computationally tractable for real-time 
implementation. For the FCS-MPC controller 
implemented and evaluated in this comparative study, a 
simplified linear magnetic model is deliberately 
employed. This model assumes constant values for the d-
axis inductance (Ld) and q-axis inductance (Lq), relating 
flux linkages to currents as follows: 

�� = ���� + ��� (4) 
�� = ���� (5) 

where Ld and Lq are treated as fixed parameters, and λpm 
represents the constant flux linkage from the permanent 
magnets. 
While this simplification drastically reduces the modeling 
effort and computational requirements for the FCS-MPC 
predictions, it inherently neglects the significant magnetic 
nonlinearities present in the actual PMA-SynRM (see the 
flux-linkage maps in Fig. 1 obtained via FEA). This 
discrepancy between the simplified model used by the 
FCS-MPC and the real machine behavior is a primary 
source of suboptimal performance and potential 
inaccuracies in the conventional control scheme. The 
dependency on this simplified, and known-to-be-
inaccurate, model is a key limitation motivating the 
investigation of model-free DRL, which does not require 
prior knowledge or simplification of the machine's 
magnetic characteristics. The comparison presented in this 
paper aims to assess how well DRL can perform relative 
to an FCS-MPC operating with these common model 
simplifications. 
The mechanical dynamics of the PMA-SynRM are 
described by the equation: 

�
�Ω

��
= ��� − �� − �Ω (6) 

where J is the total inertia, B is the viscous friction 
coefficient, and TL is the applied load torque. 

Finally, the VCS equation completes the system model. 
The stator dq voltages can be computed from the dc-link 
voltage (Vdc), the VSC switching states (Si), and the 
transformation matrix (M) as follows: 
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Table I. – Parameters of the PMA-SynRM drive. 
 

Parameter  Value 
Pole pair p 2 
Stator resistance Rs (Ω) 0.197 
Nominal d inductance Ld,n (mH) 22.27 
Nominal q inductance Lq,n (mH) 3.24 
dc-link voltage Vdc (V) 310 
Nominal speed ωm,n (rpm) 2500 
Nominal current In (A) 22 
Maximum current Imax (A) 44 
Maximum Torque Tmax (N·m) 43 
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Fig. 1. Flux-linkage maps of the PMA-SynRM. 
 
where � is the rotor angle and � = 2�/3. Each component 
of the switching vector is a binary value that identifies the 
state of the VSC legs: Si = 1 if the upper leg is ON, and Si = 
0 if it is OFF. Consequently, a set of 23 = 8 possible 
switching states and voltage vectors appear.  
 

3. DRL-based control and training 
 
Deep reinforcement learning is a subset of machine learning 
that combines deep learning and reinforcement learning to 
enable an agent to make sequential decisions in complex 
environments. In DRL, an agent learns by interacting with 
its environment, receiving feedback in the form of rewards, 
and optimizing its actions to maximize long-term 
performance. Thus, the agent learns a policy �, which maps 
the best action given a state of the environment [11]. The 
optimal policy �∗ should provide actions that result in the 
highest expected cumulative reward �(�, �): 

�∗(�) = arg max
�

�(�, �), (9) 

where � represents the state of the environment, � the action 
taken by the agent and �(�, �) represents the action-value 
function that estimates the total reward the agent can expect 
to collect over time by following a specific policy. 
In this application, the Double Deep Q-Network (DDQN) 
algorithm is used to improve learning stability and decision-
making accuracy [12]. To achieve this, DDQN employs two 
neural networks: an online network, which selects actions, 
and a target network, which evaluates them. This separation 
improves the accuracy of value estimates and avoids 
instability during training. The training process involves 
repeated experiences and periodic updates of the target 
network, which ensures more reliable learning. In this 
context, an agent interacts with a model of the VSC-PMA-
SynRM system to achieve a specific goal: tracking a current 
reference. The agent follows a trial-and-error strategy, in 
which it selects control actions based on observations from 
the model. The effectiveness of each action is quantified by 
a reward signal, which provides information on whether the 
chosen action contributes to the tracking of the current 
reference. From this information, the neural network that 
defines the policy, that is, the one that estimates �(�, �), is 
updated, which improves future decision making and 
optimizes motor control. To stabilize the training, a 
duplicate ��(�, �) is employed, which estimates the reward 
obtained by performing the action selected by the other 
neural network. Thus, during the training of both networks, 
the Q-learning algorithm follows an iterative approach to 
refine Q-values by incorporating observed rewards and 
estimated future discounted rewards. Its objective is to 
minimize the discrepancy between the predicted values and 
the actual rewards received, ultimately converging to an 

optimal policy. This process involves updating Q-values 
in a way that progressively reduces the Bellman error: 

�(�, �) ← �(�, �) 

+� �� + � �� ���, arg max
a′

���′, �′�� − �(�, �)� , (10) 

where � is the learning rate, � is the immediate reward 
obtained for taking action � in state �, and � is the discount 
factor that weighs future rewards. 
In this case, the system control involves selecting the 
optimal switching state of the VSC driving the PMA-
SynRM every 50 microseconds. At each step, after the 
agent takes an action, it receives observations about the 
state of the motor, including rotor angle (�), currents in dq 
coordinates (���), and reference currents (���

∗ ). Finally, the 

reward function penalizes deviations between actual and 
reference currents, with logarithmic scaling to emphasize 
smaller errors and encourage precise tracking. During 
training, the agent decides between exploring new actions 
or using what it has learned. With a certain probability, it 
picks a random action to explore. Otherwise, it chooses the 
best action based on its current knowledge. In order to 
balance this exploration-exploitation of the network, a �-
greedy policy is employed. The agent has a probability � 
to perform random actions. With a probability of 1 − �, 
the agent selects the action that the Q-function suggests as 
optimal, prioritizing exploitation of learned knowledge. At 
the beginning of training, � is set to a high value to 
encourage exploration and collect a diverse range of 
experiences. As training advances, � is gradually 
decreased to favor the exploitation of learned knowledge 
from previous experiences. 
To approximate both Q-functions, i.e. �(�, �) and 
�� (�, �), a dense neural network with four layers is 
employed. The first three layers consist of 128, 64, and 64 
neurons, respectively, each using a ReLU activation 
function to extract and refine features from the input state 
�. The final layer has 8 neurons with a linear activation 
function, corresponding to the 8 possible actions in the 
motor control problem. The network outputs 8 Q-values, 
each representing the expected cumulative reward for a 
specific action in the given state. The agent selects the 
optimal action by choosing the one with the highest Q-
value. 
Fig. 2 shows a schematic representation of the proposed 
controller. A PI-based external control loop regulates the 
rotor speed (Ω) and generates the reference 
electromechanical torque (���

∗ ). Then, an optimal 
reference generator procures the dq-current references that 
are used as observations for the agent, together with the 
measured currents and rotor angle. This reference 
generator looks for the optimal dq-currents that provide 
the desired torque and minimizes the copper losses while 
respecting the maximum reachable peak values of currents 
and voltages of the system. The formulation of this 
optimization problem is: 

 
min �����

� + ��
�� 

 

(11) 
s.t. max(����) ≤ ���� 

max(����) ≤
���

2
 

��� = ���
∗  

Eqs. (1)-(3) 
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Fig. 2. Proposed DLR-based control scheme. 

 
This problem is solved off-line providing a look-up table 
(LUT) with the optimal dq-current references for each pair 
of speed and torque references values. That LUT is 
employed in the control process. Finally, the DRL agent 
computes the control actions to be released to the converter 
based on references and measured system variables. As can 
be seen, the DRL agent replaces the model-based inner 
current control loop in the conventional FCS-MPC 
algorithm. To train the agent, the switch of Fig. 2 is fixed 
in position “T” where it interacts with an emulated machine 
with a wide range of speed references.  
 

4. Results 
 
The effectiveness of the proposed approach has been 
validated through simulations in a Python-based testing 
platform. In order to simulate the differences between the 
electrical drive used in the training process and the real one, 
artificial error has been added to the current measurements. 
In the base case, 1 % Gaussian error is considered. 
As mentioned in the previous section, the training process 
encompasses a wide range of operating points, varying the 
load torque and the reference speed for the electrical drive. 
The results of a sample test scenario are included in Fig. 3, 
where �� currents and rotor speed are represented together 
with the corresponding reference values. The start-up 
period has not been included in the graph in order to 
exclusively evaluate the steady-state performance. 
Additionally, Fig. 4 depicts a 50-ms sample in the ��� 
domain. It can be noted the good performance of the DRL-
based control scheme, being the machine currents 
effectively regulated to their reference values. Similar 
conclusions are obtained when the operating point is 
changed. 
A comparative assessment between the proposed DRL 
implementation and a FCS-MPC approach, where a linear 
model is considered assuming constant values for the �� 
inductances of the machine, has been also conducted. The 
following representative metrics are considered for this 
analysis: 
- Root mean square error for the �� currents, ������, 

in order to assess the tracking performance.  
- Total harmonic disorder, ���, for the ��� currents. 

These results are summarized in Table 1 for different 
operating conditions, together with the previously 
mentioned errors. 

In light of the results presented in Table 2, it can be 
concluded that the proposed implementation of DRL-based 

control schemes outperforms the FCS-MPC approach in all 
the operating points considered. Regarding the tracking 
accuracy and the THD, these results can be explained given 
that the agent in the DRL algorithm has been trained using 
a nonlinear model of the electrical drive, whereas the MPC 
formulation assumes an average linear model for the 
machine.  
 

 
Fig. 3. Response of the DRL-based controller for the operating 

point Ω��� = 150 rad/s and �� = 30 N·m. 

 

 
Fig. 4. Sample of the machine currents in the ��� domain 
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Table 2. Performance metrics in the comparison of the DRL-
based control scheme and the FCS-MPC approach. 
 

 DRL-based control FCS-MPC 
Ω��� 

(rad/s) 

�� 
(N·m) 

����� 

(A) 

��� 
(%) 

����� 

(A) 

��� 
(%) 

100 
10 0.394 4.242 0.449 4.781 
30 0.558 2.661 0.685 2.933 

150 
10 0.364 3.962 0.425 4.490 
30 0.589 2.492 0.697 2.737 

200 
10 0.377 3.873 0.432 4.155 
30 0.579 2.543 0.729 2.648 

 
Table 3. Variation of the ������, in A, under different levels of 

measurement errors. 
 

 Measurement error 

Ω��� 

(rad/s) 

�� 
(N·m) 

0.5 % 1 % 2 % 3 % 

100 
10 0.386 0.394 0.426 0.804 
30 0.521 0.558 0.659 0.743 

150 
10 0.360 0.364 0.574 0.637 
30 0.551 0.589 0.689 0.790 

200 
10 0.375 0.377 0.407 0.672 
30 0.571 0.579 0.687 0.912 

 
Once the effectiveness of the DRL-based technique has 
been successfully assessed in the base case, Table 3 
includes how the performance of the control scheme 
deteriorates when higher measurement errors are 
considered. The metric ������ has been considered for 

this analysis. 
It can be noticed that even for higher measurements errors, 
the ������ does not increase excessively, giving evidence 

of the robustness of the DRL-based control under noisy 
observations. 
Finally, the dynamic performance of the DRL-based 
control is assessed under varying operating conditions. For 
this purpose, Figs. 5 and 6 show the control performance 
when the rotor speed varies from 100 to 200 rad/s under a 
constant load torque, and when the load torque changes 
from 10 to 20 N·m at a constant rotor speed, respectively. 
The controller effectively regulates both the rotor speed 
and the stator currents in the dq refence frame (id and iq) in 
both tests. The shadowed zone in Fig. 5 marks the system 
start-up period. 
 

 
Fig. 5. Dynamic response of the DRL-based controller when 
rotor speed is varied from 100 to 200 rad/s at a constant load. 

 
Fig. 6. Dynamic response of the DRL-based controller when 
load torque is varied from 10 to 20 N·m at a constant speed. 

 
It can be concluded from the presented results that the 
proposed implementation of the DRL-based technique has 
adequate performance with time-varying operating 
conditions. 
 

5. Conclusion 
 
The findings of this study demonstrate the potential of DRL 
as a high-performance control strategy for PMA-SynRMs. 
The DRL-based controller consistently outperformed the 
benchmark FCS-MPC strategy across various operating 
conditions, achieving superior tracking accuracy and lower 
harmonic distortion in the motor currents. This enhanced 
performance can be attributed to the DRL agent's ability to 
learn and adapt to the complex nonlinearities inherent in 
the magnetic characteristics of the PMA-SynRM, a feature 
that conventional model-based approaches like FCS-MPC, 
which often rely on simplified linear models, struggle to 
capture effectively. 
The robustness of the DRL controller was further validated 
under the presence of measurement errors. Even with 
artificially introduced noise in the current measurements, 
the DRL agent maintained an adequate level of 
performance, exhibiting only a moderate degradation in 
tracking accuracy. This robustness is crucial for real-world 
applications where sensor noise is inevitable. Furthermore, 
the dynamic performance evaluation demonstrated the 
controller ability to effectively track varying speed 
references while maintaining tight control over the stator 
currents. This adaptability to changing operating 
conditions highlights the potential of DRL for applications 
requiring agile and responsive motor control. 
While the training process for DRL agents is 
computationally intensive and requires significant data 
collection, the online deployment of the trained agent is 
computationally efficient. This characteristic makes DRL 
attractive for applications where online computational 
resources are limited. This research contributes to the 
ongoing exploration of intelligent control strategies for 
next-generation electrical drive systems, in the way for 
more efficient, robust, and adaptable motor control 
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solutions in various applications, including electric 
vehicles and industrial automation. Future research will 
focus on exploring different DRL algorithms and network 
architectures to further optimize performance and reduce 
training times. Furthermore, experimental validation on a 
physical PMA-SynRM drive system will be conducted to 
validate the simulation results and demonstrate the real-
world applicability of the proposed DRL-based control 
strategy. 
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