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Abstract. Energy Communities (ECs) drive decentralized 

energy production and consumption, fostering active citizen 

participation. Within this framework, battery systems play a 

crucial role in efficiency and optimization, requiring an 

effective Battery Management System (BMS) to optimize 

energy control. This paper presents a rule-based approach for 

effective battery energy management within an energy 

community. The proposed system integrates a set of predefined 

rules that determine battery operation by considering factors 

such as hourly energy prices, photovoltaic power generation, 

and user consumption patterns. This approach enables more 

efficient energy utilization, reduces dependence on the 

electrical grid, facilitates cost reduction, and ensures stability of 

the local energy network. 

Keywords. Energy Community, Battery Management

System, Rule-based System. 

Nomenclature 

PG power supplied by the grid (kW) 

PPV photovoltaic power generation (kW) by a 

single community member 

PPV,tot total photovoltaic power generation (kW) of 

the community. 

PB battery power (kW) 

PL power load (kW) 

ꞵ sharing coefficient (%) 

SoC State of Charge (%) 

C energy cost (€/kWh) 

Clow low cost of energy (€/kWh) 

Ib battery charging or discharging current (A) 

Isurplus surplus current (A) generated by the 

photovoltaic system that exceeds the local 

demand 

Q battery capacity (Ah) 

ΔT time interval between two measurements (h) 

Vb battery voltage (V) 

ɲchg charge efficiency (%) 

ɲdis discharge efficiency (%) 

Ib,max maximum current supported by the battery 

(A) 

Ib,min minimum current supported by the battery 

(A) 

1. Introduction

Efficient energy management is a key factor in the 

transition towards a more sustainable energy generation 

and consumption model. Energy Communities (ECs) are 

emerging as an innovative and essential model for 

driving this transition in Europe [1]. Comprising citizens, 

businesses, and local entities, aim to promote the 

sustainable and decentralized production, distribution, 

and consumption of energy. These communities align 

with goals to minimize energy consumption and 

encourage flexible energy use by active consumers, 

thereby reducing the high energy loads on the power grid 

[2]. A defining characteristic of energy communities is 

their ability to foster active citizen participation in energy 

management, contributing to the democratization of 

energy. 

Managing an Energy Community (EC) requires making 

decisions at multiple levels, including defining the 

renewable energy sharing quota among community 

members, dynamically managing demand, and 

overseeing the operation of the Battery Energy Storage 

(BES) system. A suitable control architecture to deal with 

these problems comprises a global manager 

(“scheduler”), which would optimize the sharing 

coefficients among the EC members, and design 

strategies to properly balance the demand curve; and a set 

of local managers (“controllers”), which would apply the 

global commands by interacting with the internal grid 

devices and the local BES [3]. 

The local Battery Management Systems (BMSs) can 

provide several grid services to the system, such as 

preventing voltage drops, providing frequency control or 

reducing grid congestion [4],[5], and can therefore help 

to reduce overall grid costs. By reducing the maximum 

grid usage [6], the user can save on capacity payments.  

Despite the benefits of integrating BES into energy 

communities, several challenges persist in energy 

management. One of the main issues is the 

unpredictability of renewable energy sources, such as 

photovoltaic (PV) generation, which depends on weather 

conditions and often leads to supply-demand imbalances. 

Additionally, energy pricing variability complicates 
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decision-making regarding when to store or consume 

energy. Another critical challenge is the lack of adaptive 

and efficient control strategies, as traditional energy 

management systems often rely on predefined schedules 

or static rules that do not account for real-time conditions 

[7],[8]. These limitations can lead to inefficient battery 

operation, increased costs, and suboptimal grid 

interaction. 

To address these challenges, this paper proposes a rule-

based system for energy management aimed at 

optimizing battery operation within an energy 

community. The proposed system, developed in 

MATLAB, is modular and scalable, allowing for flexible 

adaptation to different community configurations and 

member profiles. By leveraging data on energy 

consumption, photovoltaic (PV) generation, and hourly 

electricity prices, the system dynamically determines the 

optimal charging or discharging behavior of the battery. 

The rule set has been designed to operate with minimal 

computational complexity while ensuring responsiveness 

to changing energy conditions. This approach enables 

more efficient use of available resources, reduces 

dependency on the external grid, and contributes to 

minimizing overall energy costs. In doing so, it also 

enhances the reliability and stability of the local energy 

network, especially in contexts with high renewable 

energy penetration. 

The interaction between the various actors within an 

energy community necessitates the implementation of a 

sophisticated Energy Management System (EMS) 

capable of supporting informed decision-making. At the 

heart of such a system lies a deep understanding and 

analysis of the key components that constitute the 

community—namely, the generation, consumption, and 

storage systems. Accurate characterization and 

modelling of these elements are essential for optimizing 

energy flows and ensuring efficient operation. 

This article is structured as follows: Section 2 presents an 

overview of the applied methodology, detailing the 

developed energy community model and the 

implemented control algorithm. Section 3 discusses the 

results, analyzing the performance of the rule-based 

system. Finally, Section 4 concludes the paper and 

outlines potential directions for future work. 

 

2. Methodology 
 

The foundation of the proposed approach is a modular 

and scalable simulation model developed in MATLAB. 

The proposed system adopts a multi-level control 

strategy [3],[9] to manage energy flows within the energy 

community. At the tactical level, a global scheduler 

oversees the overall coordination among members, while 

at the operational level, individual local controllers 

manage the behavior of each community member in real 

time. This study concentrates specifically on the Battery 

Management System (BMS), focusing on the 

operational-level control of a single prosumer. The BMS 

operates based on a set of predefined rules that consider 

local generation, consumption, and storage conditions to 

determine the optimal charging or discharging actions. 

The following figure illustrates the architecture of the 

multi-level control system, highlighting the interaction 

between the local and global controllers. 

 

 

Fig. 1.  Architecture of the multi-level control system. 

 

2.1. Energy Community Model 

 

The model includes a detailed representation of an 

Energy Community (EC), aimed at simulating the 

distribution and management of energy within the 

community. A modular, object-oriented approach was 

adopted in MATLAB, featuring five key interconnected 

classes: Site, Battery, PV, Load, and Controller. Each of 

these classes plays a specific role in the overall energy 

management system, creating a comprehensive 

framework for simulating community energy dynamics. 

The Site class represents an individual community 

member, which can be either a prosumer (simultaneously 

generating and consuming energy), a consumer, or a 

generator. This flexibility allows for modelling various 

configurations of energy producers and users within the 

community. The Site class receives data about its battery 

and, in cases where applicable, consumption or 

generation profiles, enabling it to operate in different 

modes. 

The Battery class is responsible for modelling the energy 

storage system associated with each site. It tracks key 

parameters such as the State of Charge (SoC), battery 

capacity, and current limits, while implementing the 

necessary logic for controlling charging and discharging 

processes.  

The PV and Load classes store data related to energy 

generation and consumption. The PV class contains the 

photovoltaic generation profile of a community member, 
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representing the available solar power based on historical 

or measured data. The Load class, in turn, stores the 

building’s energy consumption profile, incorporating an 

uncertainty margin of ±5% to account for potential 

fluctuations in demand and measurement variability. 

A key component of the system is the Controller class, 

which implements a rule-based system for managing 

energy flows within the community. The controller 

returns the optimal charging intensity for each site, 

ensuring that energy is utilized efficiently. By integrating 

these various classes, the model allows for the dynamic 

interaction of components, enabling effective energy 

management and decision-making at both the individual 

and community levels. 

The interaction and organization of the developed classes 

can be better understood through the following 

schematic. This figure provides an overview of the 

architecture of the simulated energy community, 

highlighting the relationship between each component. 

The Site class serves as the central element representing 

an individual member, which can integrate photovoltaic 

generation (PV), consumption data (Load), a storage unit 

(Battery), and a local decision-making unit (Controller). 

These modules interact to enable localized energy 

management. The architecture also reflects the modular 

and scalable design adopted for simulating larger 

communities. Figure 2 illustrates the overall structure of 

the developed energy community model. 

 

 

Fig. 2. Schematic Representation of the Energy Community 

Framework. 

 

2.2. Community Member Rule-Based Controller 

 

The BMS used in this model is defined as a rule-based 

system. This system requires the current hourly energy 

cost, the photovoltaic generation and building 

consumption values as inputs.  The rule-based system 

estimates the optimal charging or discharging intensity to 

be applied in the next time step, trying to minimise the 

dependence on the grid. Equation 1 defines the net power 

exchanged with the grid for the user i at each time step: 

 

𝑃𝐺,𝑖 = 𝑃𝐿,𝑖 − 𝛽𝑖 ⋅ 𝑃𝑃𝑉,𝑡𝑜𝑡 − 𝑃𝐵,𝑖                  (1) 

 

Where if the battery is charging: 

 

𝑃𝐵,𝑖 = 𝐼𝑏,𝑖 ⋅ 𝑉𝑏,𝑖 / ɳ𝑐ℎ𝑔                   (2) 

 

And if the battery is discharging: 

                           𝑃𝐵,𝑖 = 𝐼𝑏,𝑖 ⋅ 𝑉𝑏,𝑖 ⋅  ɳ𝑑𝑖𝑠                   (3)  
                                

Figure 3 illustrates the structure of the BMS together with 

the EC model. 

 

Fig. 3.  Structure of the BES control approach. 

 

The rule-based system relies on a series of equations that 

defines the relationship among the variables of interest. 

Equation 2 defines the state of charge (SoC). 

 

𝑆𝑜𝐶𝑘+1 = 𝑆𝑜𝐶𝑘 +
𝐼𝑏𝑘⋅𝛥𝑇

𝑄
⋅ 100             (2) 

 

Furthermore, we know that the battery current must be 

limited between two values specified in the battery's 

datasheet. 

 

𝐼𝑏,𝑚𝑖𝑛  ≤  𝐼𝑏  ≤  𝐼𝑏,𝑚𝑎𝑥
                  (3) 

 

Based on Equation 2, the charging and discharging 

equations of the battery are defined as follows: 

 

𝐼𝑐ℎ𝑎𝑟𝑔𝑒 =
(𝑆𝑜𝐶𝑚𝑎𝑥−𝑆𝑜𝐶𝑘) ⋅ 𝑄

100⋅𝛥𝑇

                     (4) 

 

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = −
(𝑆𝑜𝐶𝑚𝑖𝑛−𝑆𝑜𝐶𝑘) ⋅ 𝑄

100⋅𝛥𝑇

                  (5) 

 

Additionally, it is important to consider the available or 

required current (Isurplus), which results from the 

difference between the generated power and consumed. 

 

𝐼𝑠𝑢𝑟𝑝𝑙𝑢𝑠 =
𝛽𝑖⋅𝑃𝑃𝑉,𝑇𝑜𝑡−𝑃𝐿,𝑖

𝑉𝑏

                     (6) 

 

The algorithm regulates battery charging and discharging 

by evaluating power consumption (PL), photovoltaic 

generation (PPV), battery state of charge (SoC), and 

energy cost (C) compared to a low-cost threshold (Clow).  

Additionally, the battery current must comply with the 

constraint imposed in Equation 3, ensuring that its 

charging and discharging intensity remains within the 

allowable limits. Furthermore, the battery capacity must 

not exceed its maximum or fall below its minimum 

permissible values, preventing overcharging or deep 

discharging, which could affect its performance and 

lifespan. 

Based on these factors, different conditions dictate the 

battery’s operation. 
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Fig. 4. Flowchart of the Rule-Based Energy Management System (EMS) Implemented. 

Case 1: Generation is greater than or equal to 

consumption. 

When photovoltaic generation meets or exceeds 

consumption, the algorithm first checks if the battery is 

below its maximum charge. If the energy cost is low, the 

battery would charge from the grid at its maximum. If 

costs are high, the battery only charges using available 

surplus energy. If the battery is already full, no charging 

occurs. 

Case 2: Consumption exceeds generation. 

If consumption is higher than generation, the battery’s 

state determines the next step. If the battery is within its 

operational range SoCmin < SoC < SoCmax, and costs are 

low, it charges from the grid. When the battery is nearly 

full, it stops charging, but if costs are high, it may 

discharge to the grid. If the battery is at its minimum 

charge, it can only charge if energy costs are low; 

otherwise, it remains inactive. 

Figure 4 shows the implementation of the rules for the 

BMS. 
 

2.3. Experiment Setup 

 

To evaluate the performance of the proposed rule-based 

Battery Management System (RBS+), a set of simulation 

scenarios was designed. These scenarios reflect 

variations in photovoltaic (PV) generation and electricity 

pricing, aiming to replicate realistic operational 

conditions and assess the robustness of the control 

strategy. The simulation was conducted over a one-week 

period with data points distributed at 15-minute intervals, 

providing a high-resolution temporal analysis of the 

system's performance. The system's effectiveness was 

assessed based on three main performance indicators: 

cost reduction, grid dependency, and energy loss. For 

benchmarking purposes, the proposed system was 

compared against two reference cases: a baseline 

scenario without battery storage, and a rule-based control 

strategy that does not consider energy pricing (RBS0). In 

addition, the Clow threshold, used to identify periods of 

low-cost energy, was dynamically adjusted daily to adapt 

the control strategy to changing price conditions. 

 

Scenario I: Fluctuating Energy Prices and Stable 

Photovoltaic Generation 

In this first scenario, the energy price profile is designed 

to fluctuate over time, with higher electricity prices 

coinciding with periods of higher photovoltaic 

generation, and lower prices during periods of reduced 

generation. This setup emulates a market-driven pricing 

model where renewable energy abundance affects energy 

cost. 

Figure 5 illustrates the temporal distribution of electricity 

prices across one week. Complementarily, Figure 6 

shows a typical PV generation profile assumed to remain 

constant over the seven-day simulation period, alongside 

a representative consumption profile. 

 

 

Fig. 5. Energy cost profile. 
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Fig. 6. Photovoltaic generation and consumption profiles for 

Scenario I. 

 

Scenario II: Fluctuating Energy Prices and Variable 

Photovoltaic Generation 

In the second scenario, the electricity price profile 

remains unchanged from Scenario I (see Figure 5), 

maintaining the same temporal variability over the week. 

However, the photovoltaic generation profile is now 

subject to variation, introducing more realistic dynamics 

into the simulation. Specifically, some days exhibit 

significantly higher consumption than generation, while 

on others, generation clearly exceeds demand. 

Additionally, there are periods where generation and 

consumption are closely aligned. See Figure 7. 

This configuration allows for a more in-depth evaluation 

of the system’s ability to optimize battery usage under 

diverse energy balances, particularly when guided by 

dynamic pricing signals. By introducing these 

fluctuations, the influence of considering energy prices in 

the control strategy becomes more evident, showcasing 

how the proposed BMS adapts to maximize efficiency 

and reduce costs even when generation and demand 

patterns are highly variable. 

 

 

Fig. 7. Photovoltaic generation and consumption profiles for 

Scenario II. 

For all scenarios, the values presented in Table I were 

applied. 

 

 

 

 

 

 

 

Table I. - Parameter used during the simulations.  

 

Variable Unit Value 

𝛽 % 90 

ΔT h 0.25 

SoC0 % 44 

SoCmax % 90 

SoCmin % 10 

Q Ah 100 

Ib,max A 79 

Ib,min A -79 

Vb V 230 

ɲchg % 90 

ɲdis % 95 

 

3. Results 
 

This section presents the results obtained from the 

simulation of the proposed rule-based Battery 

Management System (RBS+) under the two scenarios 

described in the previous section. 

In both scenarios, the proposed system is compared 

against two baseline cases: (i) a reference rule-based 

system that does not consider electricity prices and a (ii) 

operation without battery storage.  

 

Scenario I: Fluctuating energy cost and stable 

photovoltaic generation.  

Table II summarizes the results obtained for Scenario I, 

where the energy price profile varies throughout the day 

while the photovoltaic (PV) generation remains stable. 

 

Table II. - Results for Scenario I.  

 

Metrics RBS+ RBS0 No BMS 

Total energy cost (€) 144.92 147 159.81 

Grid Consumption 

(kWh) 
724.13 696.03 792.32 

Energy loss (kWh) 1308.9 1314.35 178.09 

 

As shown in Table II, the proposed RBS achieves the 

lowest total energy cost, reducing electricity expenses 

compared to both the reference controller and the no-

battery case. Although grid consumption is slightly 

higher than RBS0, the inclusion of dynamic pricing in the 

control strategy allows for more cost-effective decisions. 

The energy loss associated with the battery operation is 

similar between both RBS configurations, reflecting the 

trade-off between energy efficiency and cost savings. 

Figures 7, 8, and 9 illustrate the system's behavior over 

the simulation period. Specifically: 

• Figure 7 shows the power profile of the battery, 

indicating charging and discharging patterns. 

• Figure 8 presents the evolution of the State of 

Charge (SoC). 

• Figure 9 displays the energy balance, including 

PV generation, load consumption and grid 

interaction. 
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Fig. 8. Battery power profile over time in Scenario I. 

 

 

Fig. 9. State of Charge (SoC) evolution in Scenario I. 

 

 

Fig. 10. Energy balance of the system in Scenario I. 

Scenario II: Fluctuating Energy Prices and Variable 

Photovoltaic Generation 

Scenario II introduces variability in the photovoltaic 

(PV) generation profile, while maintaining the same 

dynamic pricing scheme from Scenario I. Table III 

presents the performance metrics of the proposed rule-

based system (RBS) compared to the reference RBS 

(RBS0) and the scenario without battery storage. 

 

Table III. - Results for Scenario II.  

 

Metrics RBS+ RBS0 No BMS 

Total energy cost (€) 204.97 209.15 214.4 

Grid Consumption 

(kWh) 
1060.48 1009.24 1062.97 

Energy loss (kWh) 651.43 613.84 952.43 

 

As observed in Table III, the proposed RBS again 

outperforms the other configurations in terms of total 

energy cost, achieving a reduction of approximately 4% 

compared to RBS0 and nearly 10€ compared to the case 

without battery. Although the grid consumption is 

slightly higher than in RBS0, the cost-aware control 

strategy prioritizes economic efficiency over strict 

minimization of grid usage. Additionally, energy loss is 

significantly lower than in the no-battery scenario and 

remains within an acceptable range compared to RBS0. 

Figures 10, 11, and 12 illustrate the system’s behavior for 

one week. The results confirm the capability of the 

proposed system to adapt to changing generation 

conditions while maintaining efficient and cost-effective 

energy management. 

 

 

Fig. 11. Battery power profile over time in Scenario II. 

 

 

Fig. 12. State of Charge (SoC) evolution in Scenario II. 

 

 

Fig. 13. Energy balance of the system in Scenario II. 

 

These figures demonstrate how the battery operation 

dynamically adjusts to both pricing signals and 

generation-consumption mismatches, further validating 

the benefits of including economic considerations in the 

battery control logic. 

 

4. Conclusions and Future Works 
 

4.1. Conclusions 

 

This work presents the development and evaluation of a 

rule-based Battery Management System (BMS) 

specifically designed to operate within the context of an 

Energy Community (EC). The proposed system bases its 

battery charging and discharging decisions on a set of 

predefined rules that integrate crucial real-time 

information: hourly electricity prices, instantaneous 

photovoltaic (PV) energy production, and the user's 

115



consumption profile. The primary objectives of this BMS 

are to maximize the efficiency in the use of local energy 

resources, reduce dependence on the general power grid, 

achieve a reduction in final energy costs for community 

members, and, secondarily, contribute to local grid 

stability. 

The methodology used to evaluate the proposed BMS 

was based on a modular and scalable simulation model 

implemented in MATLAB, representing an individual 

member (prosumer) of the Energy Community. The 

analysis specifically focused on operational-level control 

of a single prosumer. To establish a solid comparative 

basis, the performance of the proposed rule-based system 

(called RBS) was contrasted with two reference 

scenarios: a similar rule-based control system that does 

not consider energy price variations (called RBS0), and 

the prosumer's operation without any battery storage 

system. 

The results obtained through simulations, conducted 

under two different scenarios, consistently demonstrated 

the economic superiority of the proposed BMS (RBS). In 

both configurations, the RBS achieved the lowest total 

energy costs compared to both the RBS0 system and 

operation without battery. It is important to highlight that, 

although the proposed RBS system showed slightly 

higher net energy consumption from the grid compared 

to the RBS0 system (which does not consider prices), its 

approach oriented toward economic optimization proved 

more advantageous in terms of total cost. The results 

validate the system's ability to adapt effectively to the 

dynamic and variable conditions of both renewable 

generation and energy prices. 

4.2. Future works 

 

For future work, we propose exploring more 

sophisticated control algorithms, such as Model 

Predictive Control (MPC) optimization or Machine 

Learning techniques (especially Reinforcement 

Learning), to exceed the performance of the current rule-

based system and achieve greater cost reduction and 

operational efficiency. Another key direction is the 

integration of predictive capabilities. Developing and 

incorporating accurate models to forecast photovoltaic 

generation and energy demand will allow the 

management system to anticipate future conditions and 

make more proactive and informed battery 

charging/discharging decisions. 

Additionally, it is essential to expand the study approach 

from analyzing a single member to simulating and 

optimizing the complete Energy Community. This 

includes modeling user interactions, optimizing energy 

sharing, and considering the role of the global 

coordinator. In parallel, the impact of battery degradation 

should be incorporated into control strategies for more 

realistic economic and lifecycle analysis. Finally, to 

ensure the viability and robustness of the proposed 

solutions, it will be crucial to conduct experimental 

validation, either in a controlled real environment or 

through Hardware-in-the-Loop (HIL) simulations, which 

would allow comparing simulation results with behavior 

under conditions closer to real operation. 

 

Acknowledgement 
 

This work is supported by the project Sustainable 

Atlantic Communities (SAtComm) EAPA 0019/2022 co-

funded by the European Union through the Interreg 

Atlantic Area call. We acknowledge their support for our 

research. 

 

References 
 
[1] Ahmed, S., Ali, A., & D’Angola, A. (2024). A Review of 

Renewable Energy Communities: Concepts, Scope, Progress, 

Challenges, and Recommendations. In Sustainability 

(Switzerland) (Vol. 16, Issue 5). Multidisciplinary Digital 

Publishing Institute (MDPI). 

https://doi.org/10.3390/su16051749 

[2] Kyriakopoulos, G. L. (2022). Energy Communities 

Overview: Managerial Policies, Economic Aspects, 

Technologies, and Models. In Journal of Risk and Financial 

Management (Vol. 15, Issue 11). MDPI. 

https://doi.org/10.3390/jrfm15110521 

[3] Marín, L. G., Sumner, M., Muñoz-Carpintero, D., Köbrich, 

D., Pholboon, S., Sáez, D., & Núñez, A. (2019). Hierarchical 

energy management system for microgrid operation based on 

robust model predictive control. Energies, 12(23). 

https://doi.org/10.3390/en12234453 

[4] Chen, H., Cong, T. N., Yang, W., Tan, C., Li, Y., & Ding, 

Y. (2009). Progress in electrical energy storage system: A 

critical review. In Progress in Natural Science (Vol. 19, Issue 

3, pp. 291–312). Science Press. 

https://doi.org/10.1016/j.pnsc.2008.07.014 

[5] Amir, M., Deshmukh, R. G., Khalid, H. M., Said, Z., Raza, 

A., Muyeen, S. M., Nizami, A. S., Elavarasan, R. M., Saidur, 

R., & Sopian, K. (2023). Energy storage technologies: An 

integrated survey of developments, global 

economical/environmental effects, optimal scheduling model, 

and sustainable adaption policies. In Journal of Energy Storage 

(Vol. 72). Elsevier Ltd. 

https://doi.org/10.1016/j.est.2023.108694 

[6] Beaudin, M., & Zareipour, H. (2017). Home energy 

management systems: A review of modelling and complexity. 

Lecture Notes in Energy, 33, 753–793. 

https://doi.org/10.1007/978-3-319-26950-4_35 

[7] Balasingam, B., Ahmed, M., & Pattipati, K. (2020). Battery 

management systems-challenges and some solutions. Energies, 

13(11). https://doi.org/10.3390/en13112825 

[8] N. Voigt, T. Wawer, and T. Albert. (2019). “Optimizing 

prosumers’ battery energy storage management using machine 

learning,” University of Applied Sciences Osnabrueck, Lingen. 

[9] Elkazaz, M., Sumner, M., & Thomas, D. (2019). Real-Time 

Energy Management for a Small Scale PV-Battery Microgrid: 

Modeling, Design, and Experimental Verification. Energies, 

12(14), 2712. https://doi.org/10.3390/en12142712 

 

 

 

 

 

116

https://doi.org/10.3390/su16051749
https://doi.org/10.3390/jrfm15110521
https://doi.org/10.3390/en12234453
https://doi.org/10.1016/j.pnsc.2008.07.014
https://doi.org/10.1016/j.est.2023.108694
https://doi.org/10.1007/978-3-319-26950-4_35
https://doi.org/10.3390/en13112825
https://doi.org/10.3390/en12142712

