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Abstract. The paper deals with a simple procedure to 

design surface mounted permanent magnet synchronous 

machines, based on genetic algorithms scripted in Python 

library deap. The paper includes the formulas involved in 

the motor design, the operational constraints, the fitness 

functions (torque constant and motor weight), as well as the 

results obtained after running the algorithm in a case study. 
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1. Introduction

Permanent magnet synchronous machines (PMSMs) have 

brought a great interest in the last decades due to their high 

torque density, high efficiency and fast dynamic 

performance. Two main classes of PMSM are used today: 

surface-mounted (SPMSM) and interior magnet 

arrangements. The SPMSM are quite popular for their 

capability of reaching a wide constant power speed range 

with rather simple geometry. This paper will deal with this 

kind of PMSM (Fig.1). 

Fig. 1. Surface mounted permanent magnet machine. 

Numerous studies have focused on the optimization of 

SPMSMs. They can be classified into two types of 

optimization problems: those that design some 

performance indicator of the whole machine (torque, 

weight, efficiency, etc.) [1-5] and those that optimize a part 

of the machine (pole shape, core shape, tooth tips, etc.). We 

will focus on the whole machine optimization by reviewing 

previous research.  

In [1] a complex analytical model is introduced, composed 

of 17 free parameters. The objective functions are the 

torque density (ratio of torque per volume) and the ratio of 

torque per conduction losses. The torque value is 

commanded, not actual, so it is needed to introduce a 

constraint on the actual torque. In [2] a simple model, with 

just 6 free parameters, is applied. The objective function is 

a combination of efficiency and the inverse of the motor 

weight. In [3] another simple model, with just 5 free 

parameters, is used, being the objective functions the torque 

and the efficiency combined in a single-objective 

optimization problem. The analytical model is not included 

in the paper. 

In [4,5] an analytical model is applied to the optimization 

problem. It is a simple but accurate model validated both 

experimentally and by FEM in [4,5]. A new parametric 

design method for SPM motors with distributed windings 

is proposed. The novelty is the introduction of two 

parameters that clarify the analysis, the rotor-stator radius 

ratio (x) and the magnet-airgap length ratio (b). In addition, 

the PMs can have a straight shape (PMs have the same short 

length regardless of the point in the PM, Fig.1) or rounded 

shape in order to reduce the torque ripple.  

In this paper we rely on the formulation from [4,5] without 

considering rounded shape. The fitness functions of the 

optimization problem are the torque constant (ratio 

between the torque T and the current iq) and the motor mass. 

These fitness functions are optimized assuming that the 

torque the machine is developing is 66 Nm (commanded 
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torque), which allows to compare different solutions with 

the same torque.        

 

 

2. Reference machine 
 

We start with a machine whose initial parameter values are 

shown in Table I [4].  

 

The thermal loading is defined as 

 �� = �����	  . 
The copper filling factor kCu is the ratio between the section 

of all the conductors in a slot and the slot section. 

 
Table I. - Parameters of the reference machine. 

 

Parameter unit Value  

Number of pole pairs (p)  3 

Number of stator slots (q)  36  

Stator outer radius (Rsext) mm 87.5  

Stack length (L) mm 110  

Copper losses (PCu) W 550 

Thermal loading (kj) kW/m2 9.1  

Airgap length (g) mm 1 

Copper filling factor (kCu)  0.432 

Steel grade  M600-50A 

Steel loading (Bfe) T 1.5 

PM grade  NdFeB 32 MGOe 

Remanence (Br) T 1.16 

Current (I) A 27.66 

Number of turns/phase (Ns)  120  

Ph-to-ph resistance Ω 0.835 

Torque Nm 65.98 

x  0.6  

b  4.5 

Pole span angle (αm) rad 171·π/180 

winding factor (kw)  0.95 

magnet relative 

permeability (μr) 

 
1.04 

Cu resistivity (ρCu) Ωm 1.68e-8 

Stator/rotor density (ρs) kg/m3 7020 

PM density (ρp) kg/m3 7500 

Conductor density (ρc) kg/m3 8890 

 

x in Table I is defined as  � = �
�����������  , 
where Rrext is the rotor outer radius and lm the magnet radial 

length (Fig. 1). On the other hand, b is defined as � = ���  . 
 

3. Problem formulation 

 
The electromagnetic torque in a SPMSM is given by � = �� ����  ,   (1) 

being λm the magnet flux linkage considering the 

fundamental component of the airgap flux density and 

neglecting higher order harmonics: 

 �� = (2#$%&'()$�*+�,)/�,                  (2) 
 

with Rsint the stator inner radius: 

 #$%&' = #/01' + 3� + 4 = �#$01' + 4.      (3) 
 

Bg1 is the fundamental component amplitude of the 

analytical flux density distribution over one pole pair [4]: 

 +�, = 6� +�,78�9�: ;��                         (4) 
 

+�,78� = =�>=�> �?@A
 +/ = BB�?@A
 +/ ,   (5) 

 

with kc the Carter coefficient (see appendix).  

 

On the other hand, iq is given as in [4]: 

 

� = ,CD� E�� F?��G��
		�	�HI 4J#$01'K$�L'$M ,      (6) 
 

where Lend is the end-turn length: 

 (0&O = �(���PH��Q��)R·D$RR  ,  (7) 
being lt defined in Fig.2 and ly in Fig. 1: 

 3' = #$01' − 3V − #$%&' ,  (8) 
 

3V = �������6RXY� �+�,78� ,  (9) 
and Nspp is the number of slots per pole and phase: 

 )$RR =  CR  .  (10) 
 

On the other hand, Aslots is the total area of the q slots: 

 K$�L'$ = ]K$�L' ,      (11) 
 

where Aslot is the section of a single slot (Fig. 2): 

 K$�L' = *^�*_� `� ,          (12) 
 

being w1, w2 and H2 defined as (Fig. 2): 

 a, = 2J(#$%&' + `b + ,̀) , − a'  , (13) 
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a� = 2J ��PH���� − a'  ,  (14) 
`� = 3' − `b − ,̀  ,  (15) 
`b = 0.053' ,   (16) 

,̀ = 0.023'   (17) 
In the previous expressions the parameter wt is the width of 

a tooth (Fig.2). Assuming that all the airgap flux 

concentrates on the teeth results: 

 a' = ������� � X>,de>XY�
  .  (18) 

 

 

Fig.2. Geometrical magnitudes of the slot.  

 

Regarding the fitness functions, we have considered in our 

study two of them: torque constant (T/iq) and motor mass 

m. Taking into account (1) and (2) it is verified that 

 f%g = �� ��� = 3#$%&'()$�*+�, . (19) 
Therefore, optimizing the torque constant is equivalent to 

optimizing (19). 

 

As for the motor mass, it is given by 

 h = h$ + h/ + hi + hR ,      (20) 
being ms the stator mass, mr the rotor mass, mc the 

conductor mass and mp the permanent magnet mass. Each 

of these masses will be given by the product of volume and 

density:  

 h$ = j$ · k$      h/ = j/ · k$  hi = ji · ki   hR = jR · kR                (21) 
The volume of each part is given by 

 j$ = J#$01'� ( − J#$%&'� ( − K$�L'$( − a, + ab2 ,̀]( 
        −ab`b](                 (22) 
j/ = J#/01'� (                 (23) 
ji = ]K$�L'�lm(( + (0&O)               (24) 
jR = 2�3� ;�R #$%&'(                 (25) 
 

4. Proposed evolutionary approach 

 
The theory of evolution proposed by Darwin, which posits 

that individuals better adapted to their environment are 

more likely to survive and reproduce over successive 

generations, serves as the foundation for genetic algorithms 

[6]. At the core of genetic algorithms lies the iterative 

refinement of a population of candidate solutions, referred 

to as individuals. Each individual is represented in a 

chromosome-like structure, where each gene corresponds 

to a variable in the solution. A fitness score is assigned to 

each individual, reflecting how effectively it aligns with the 

objectives of the problem within the search space. Based on 

this fitness score, certain individuals are probabilistically 

chosen to act as parents for generating new offspring. 

Typically, fitter individuals have a higher likelihood of 

being selected for reproduction. 

 

New offspring are created using two primary operators: 

crossover and mutation. Crossover involves combining 

genetic material from two parent individuals, while 

mutation introduces random alterations to the genetic 

information of a single individual. By carefully adjusting 

the probabilities of these operators, genetic algorithms can 

achieve an effective balance between exploring new areas 

of the search space and exploiting known high-

performance regions. To ensure a good performance of the 

algorithm, proper calibration of both probabilities ensures 

that the algorithm effectively navigates the search 

landscape, identifying high-quality solutions efficiently. 
 

In this study, we implement a n+� genetic algorithm [7]. In 

each generation, an offspring population of size � is 

generated from a parent population of size n. The offspring 

are produced through stochastic applications of the 

crossover and mutation operators, meaning that new 

individuals in � may result from either crossing over or 

mutating the parent individuals in n. Once the combined 

population of size n + � is formed, a selection process is 

applied to choose the n individuals that will form the next 

generation. This selection is performed via a tournament 

mechanism, where the best individual is chosen from a 

randomly sampled subset of the combined population. 

Consequently, offspring must compete with their parent 

generation to secure a place in the subsequent iteration.  

 

4.1 Individual representation and generation 

 

In this work, each individual represents a possible motor 

configuration. It is proposed that the coding of individuals 

is based on a sequential enumeration of the motor 

parameters defined in Table II. Thus, for instance, the 

reference machine described in Table I can be codified in a 

chromosome-like structure as follows: o = [3, 36, 87.5, 110, 9.1, 120, 0.6, 4.5, 171 · J/180], 
where o represents an individual of the problem. 
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Table II.- Variables of the problem. 

 

Parameter Unit Feas. interval 

Number of pole pairs (p)  2, 3 

Number of stator slots (q)  24, 36 

Stator outer radius (Rsext) mm 75 ፥ 100 

Stack length (L) mm 95 ፥ 130 

Number of turns/phase (Ns)  90 ፥ 132 

x  0.5 ፥ 0.7 

b  3 ፥ 6 

Pole span angle (αm) rad 160·π/180 ፥ π 

 

In sight of the proposed formulation, it is clear that 

individuals can be generated purely from the random 

selection of the different motor parameters. In this context, 

each gene of the individual is obtained as a random number. 

The real numbers are generated following a uniform 

distribution bounded between the extreme values described 

in Table II. The discrete values are obtained with a random 

selection between all the possible configurations. 

 

4.2 Fitness function 

 

The fitness function weights the performance of the 

individuals given a specific objective. In this case, the main 

objective of the motor design will be to minimize the 

current required to provide the reference machine torque 

(65.98 Nm). Thus, when evaluating an individual, the set 

of equations defined in Section 3 will be solved considering 

the parameters listed in Table II (those defined by the 

individual o) as known. Once all the equations have been 

solved, the fitness function returns the value of iq, which 

must be minimized by the algorithm. 

 

4.3 Genetic operators 

 

To ensure a good performance of the proposed 

methodology, tailored algorithms are proposed for 

mutation and crossover operations. On the one hand, the 

mutation operator consists in randomly changing one of the 

parameters of the motor. This is done by analogy to the 

individual generation, that is, changing randomly the value 

of the gene within the permissible band defined in Table II. 

On the other hand, a two-point crossover operator is used. 

This operator randomly selects two points (two positions) 

to exchange between the genetic information of the 

individuals. Thus, the two individuals are modified in place 

and both retain their original length. 

 

5.  Simulation results 

 

In this section, two blocks of simulation results are 

presented. First, the performance of the proposed 

methodology for the motor design is tested with a single 

objective in consideration. In this context, it is attempted to 

design the motor by minimizing the current required to 

obtain the torque of the reference machine. On the other 

hand, the design of the machine is carried out taking into 

consideration two conflicting objectives such as the 

minimization of the current to obtain the reference torque 

as well as minimizing the weight of the system.  

 

The design of the motor has been addressed by means of a 

genetic algorithm, using the selection, crossover and 

mutation rules proposed in Section 4. Table III contains the 

main configuration parameters of the genetic algorithm 

implementation. It can be noticed that the proposed genetic 

algorithm is tested under different configuration parameters 

in terms of crossover and mutation probabilities in order to 

evaluate the best values for the hyperparameters used by 

the evolutionary approach. A set of 30 simulations have 

been carried out for each combination of mutation and 

crossover probabilities considered. 

 

To show the convergence of the proposed genetic 

algorithm, Fig. 3 depicts the evolution of the fitness of the 

individuals throughout the considered number of 

generations. It is shown that 100 generations sufficed to 

guarantee convergence. 
 

Table III. - Simulation parameters for both the single- and  

multi-objective cases. 

 

 Single-objective Multi-objective n 1000 1000 � 1000 1000 

Generations 100 100 

Selection Tournament (size=3) NSGA-II �i1 [0.5, 0.6, 0.7, 0.8] 0.5 

 ��m'  [0.5, 0.4, 0.3, 0.2] 0.5 

 

 

Fig.3. Evolution of the proposed genetic algorithm with 

hyperparameters pcx = pmut = 0.5.  
 

5.1 Single-objective simulations 

 

This section considers the design of the machine with the 

intention of minimizing the current required to generate a 

given torque. In this case, the torque has been set at 66 Nm, 

since it is the one that defines the reference machine (see 

Table I). The best solutions obtained using the genetic 

algorithm are listed in Table IV. 
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Table IV. - Results of the tests proposed to tune (pcx, pmut) for the 

single-objective case. 

 �i1 0.5 0.6 0.7 0.8 

��m' 0.5 0.4 0.3 0.2 

min 15.2038 15.2038 15.2038 15.2039 

avg 15.2100 15.2114 15.2131 15.2198 

r 0.0033 0.0054 0.0047 0.0098 

 

Observing Table IV, it can be seen that the proposed 

approach led to very similar solutions, reaching the best 

with pcx = 0.5 and pmut = 0.5. In particular, the best 

individual achieves a fitness of 15.2038 A and it is defined 

by the parameters presented in Table V.  

 

Observe the marked improvement in the current value from 

27.66 A (Table I) to almost half (15.20 A). As seen from 

Table V, all of the parameters are situated in their highest 

feasible value, leading to a weighty machine (close to 30 

kg). Regarding the rest of parameters, the main ones are 

shown in Table VI, together with the same parameters of 

the reference machine. We can see that the area of a slot is 

much lower with the single-objective machine than with the 

reference solution due to the relationship between slot area 

and current in (6). 

 
Table V. - Single-objective best solution. 

 

Table VI.- Rest of the parameters corresponding to the single-

objective best solution and the reference machine. 

 

Parameter (unit) Reference 

machine 

Single-objective 

best solution 

lt  (mm) 16.887 5.015 

ly  (mm) 17.113 23.985 

H2 (mm) 15.705 4.664 

Aslot  (mm2) 81.825  22.688 

 

 

5.2 Multi-objective simulations 

 

For the multi-objective case, the well-known NSGA-II 

algorithm is used [8]. In the NSGA-II, a µ + λ approach is 

employed to create an extended population through 

selection and genetic operators. Then, the extended 

population is sorted by Pareto dominance, placing at the 

first level those solutions that are dominant. The next step 

consists of selecting the µ best individuals according to the 

Pareto-based ranking. In the case that all individuals of the 

last level cannot pass to the next generation (µ size is the 

limit), a distance metric is employed to preserve diversity 

in the Pareto front. 

 

In this context, the design of the machine will be carried out 

with two objectives in mind. On the one hand, it is desired 

to minimize the current required to generate a given torque. 

On the other hand, it is important to minimize the weight of 

the motor. Note that the objectives are opposite, i.e., the 

lower the current the higher the weight and vice versa. The 

resulting Pareto front is shown in Fig. 4. Note that both ends 

of the line correspond to the optimal solution when 

evaluating a single-objective optimization design. All 

intermediate values achieve a balance between both 

objectives. 

 

Fig. 4. Pareto front of the proposed multi-objective 

problem.  

 

A compromise solution is presented in figure 4 by a point 

situated at a current of around 20 A and a weight of around 

16 kg. The parameter values corresponding to this point are 

in Table VII. It should be noted that the stator outer radius 

is at its lowest value (around 75 mm), leading to a long 

motor with a short diameter.  
 

Some other parameters of the intermediate point are shown 

in Table VIII, where it is seen that the slot area is even 

smaller than with the single-objective best solution. This 

leads us to think that area behaves in the same way with 

respect to mass and current, so that a reduction in area 

implies a reduction in current and mass. 
 

Table VII. - Pareto front intermediate solution. 

 

 

 

Parameter unit Value 

Number of pole pairs (p)  3 

Number of stator slots (q)  36 

Stator outer radius (Rsext) mm 100 

Stack length (L) mm 130 

Number of turns/phase (Ns)  132 

x  0.7 

b  6 

Pole span angle (αm) rad π 

Parameter Unit Value 

Number of pole pairs (p)  3 

Number of stator slots (q)  36 

Stator outer radius (Rsext) Mm 75.16 

Stack length (L) Mm 130 

Number of turns/phase (Ns)  132 

x  0.7 

b  5.96 

Pole span angle (αm) Rad 177·π/180 
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Table VIII.- Rest of the parameters corresponding to the Pareto 

front intermediate solution. 

Parameter Unit Value 

lt  (mm) mm 3.552 

ly  (mm) mm 18.030 

H2 (mm) mm 3.3033 

Aslot  (mm2) mm2  12.137 

 

6.  Conclusion 
 

In this paper a simple procedure to optimize the design of 

surface mounted permanent magnet synchronous motors 

has been presented. The optimization method has been the 

genetic algorithm. The fitness functions have been the 

torque constant (or equivalently the current for a constant 

torque) and the weight. It is observed that the optimization 

improves dramatically the fitness function, as can be seen 

from the Pareto front, where the current spans from 15 to 

around 30 A and the weight from around 11 to around 30 

kg. In a future version the model will be completed to take 

into account the heat transfer from inside the slots due to 

the copper losses. 
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Appendix. Carter’s coefficient 
 

In slotted electrical machines, the airgap is not uniform due 

to the slots. Instead of passing straight through the airgap, 

part of the magnetic flux spreads laterally around the slot 

openings, causing an increase in the effective airgap and 

hence in the permeance and the leakage reactance: 

 �i = 40ss0i'%804  

being g the airgap length and geffective the airgap length of a 

slotless machine with the same permeance than the real 

slotted machine. The expression of the Carter’s coefficient 

is the following [5]: 

�i = 11 − �$Ltu 
where kso has the following expressions: 

�$L = abab + a'7
 

being w0 and wta defined in Fig. 2. On the other hand, γ’ is 

given by 

tu = 2J vtanz, ab24 − 24ab ln |1 + }ab24~�� 
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