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Abstract. Nowadays, wind turbine fault detection strategies are
settled as a meaningful pipeline to achieve required levels of effi-
ciency, availability, and reliability, considering there is an increasing
installation of this kind of machinery, both in onshore and offshore
configuration. In this work, it has been applied a strategy that makes
use of SCADA data with an increased sampling rate. The employed
wind turbine in this study is based on an advanced benchmark,
established by the National Renewable Energy Laboratory (NREL)
of USA. Different types of faults on several actuators and sensed by
certain installed sensors have been studied. The proposed strategy is
based on a normality model by means of an autoencoder. As of this,
faulty data are used for testing from which prediction errors were
computed to detect if those raise a fault alert according to a defined
metric which establishes a threshold on which a wind turbine works
securely. The obtained results determine that the proposed strategy
is successful since the model detects the considered three types of
faults. Finally, even when prediction errors are small, the model is
able to detect the faults without problems.
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1. Introduction

Wind energy is one of the alternative energy sources,
which has a huge acceptance around the world, since the
growth of installation of wind turbine (WT) farms is more
frequent along last years. In order to produce a lower
environmental impact there is an strength attraction towards
renewable energy. The annual report presented by the Global
Wind Energy Council (GWEC) showed that by the end of
2019 the installed wind power capacity (WPC) has reached
650 GW, which represents a gain of 10% if it is compared
with 2018 [1]. By the end of 2020 the report showed that
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installed WPC was in 840 GW and for this 2021 it estimates
that there will be an installed WPC around 800 GW. If the
efforts for wind industry continue increasing along time, the
technology will also continue improving and growing, i.e.
that the costs of installing wind projects will decrease [2],
[3].

These costs can easily overcome approximately the 20%
of the total energy generation cost for wind power plants
(WPPs) [4]. When a WT has a lot downtime, in efficiency
it means that productivity decreases while the operation
and maintenance (O&M) costs increase [5], [6]. Condition
monitoring systems (CMSs) appear as a solution for this
problem, since with this strategy it is possible to know
the current state of a component and provide an indication
of fault or non-fault [7]. For offshore and onshore WTs
condition monitoring is applicable, even considering that for
offshore environment weather conditions could be worse, like
storms, rays, high waves, high tides, etc. Since providing
timely maintenance and preventing failures reduce the O&M
costs and the downtime of affected WTs [8], early fault
detection has become a meaningful strategy to increase the
competitiveness and productivity of WTs.

Fault detection systems (FDSs) are used to activate alarms
when a component or system experiences an abnormal
behaviour within its operation. The obtained information to
provide this kind of analysis comes from different kind of
sensors (thermal, electric, inductive, capacitive, etc) installed
in WTs. WT components such as gearbox, electric system,
generator and breaking system are the most prone to fault
[9]. Nowadays, several strategies focus its analysis in specific
parts of WTs to monitor its state in real time and rise
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up alarms when a fault is presented, however, it involves
huge costs. Against to this, it is important to highlight
that currently all WTs installed are integrated with SCADA
systems which monitor the main subsystems or components
collecting data related to temperatures of bearings, winding
and lubricating oil, as well as vibration levels of the main
drive train [10]. Thus, with all these collected data through
SCADA systems it is possible to provide a diagnostic about
the WT condition [11].

Along time with the development of Machine Learning
(ML) and Artificial Intelligence (AI) several studies using
only SCADA data have been carried out to build models
which help to detect and/or classify faults associated to
WTs. For example, a FD model for WT gearboxes by using
artificial neural networks (ANNS5) is proposed by researchers
in Italy, where they used only real SCADA data [12]. In
China, by using strategies of Principal Component Analysis
(PCA) a FD and diagnosis framework for the WT generator
is proposed, using real SCADA datasets of two WPPs located
in that country [13]. Other algorithms like SVM, XGBoost
and Random Forest have been also used to develop FD
and classification models employing SCADA data, as it is
described in [14].

One the major drawbacks using SCADA data is that
sampling rate is averaged values each 10 min. This low
frequency is a disadvantage, since the diagnosis capabilities
decrease and a lot of short-lived events maybe overlooked.
Thus, a high and feasible resolution in SCADA data should
allow to identify the FD with a higher fidelity. In this
paper the work is developed using SCADA data, which have
been taken with a frequency of 1 Hz [15]. Since this, a
strategy is proposed to do multi-fault detection by using
an autoencoder (AE), which is a characteristic architecture
of neural networks (NNs). The methodology is based on a
normality model, i.e. training the AE only with healthy data
and then testing it with healthy and faulty data. Applying a
defined metric it is possible to establish a threshold which
puts a barrier between healthy and faulty samples.

The rest of the paper is organized by sections as follows:
Section 2 describes all about collected and used data in this
study. Next, Section 3 talks about the multi-fault detection
model (MFDm) and the methodology employed to carry out
the proposed strategy. Section 4 contains the results and
its respective discussion. Finally, the conclusions and future
work are given in Section 5.

2. Data Description
A. FAST WT Model Description

The simulations are performed in a 5 MW WT model by
using the aeroelastic WT simulator software called FAST,
which was designed by NREL’s National Wind Technology
Center of USA. In [16] there are more details about this
WT and its characteristics. Due to electrical noise it was
important to include noise blocks in order to represent
somehow this phenomenon. FAST simulation software uses
a characteristic sampling period, which is set in 0.0125 s.
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Nevertheless, the used data in this work were sampled with
a sampling rate of 1 s. For this WT there are several sensors
which collect data into SCADA system and are shown in
Table I.

Several fault scenarios have been include in the WT model.
These scenarios are related to gain factors, offsets, changes
in the system dynamics, stuck, from which three types of
faults of interest were chosen, as shown in Table II. These
faults have its origin in other sources which are of public
domain [17]. Additionally, the interested reader can find a
detailed description about these faults in [18].

In the other hand, a turbulent-wind simulator, TurbSim
-developed by NREL-, was used also in these simulations
since this is a useful tool to do wind modelling in a real-
istic way. TurbSim simulations were performed setting the
following wind parameters: Kaimal turbulence model with a
intensity of 10 % at hub height, wind moving logarithmically
at an average speed of 18.2 m/s and a roughness factor of
0.01 m.

B. Data Collection

A set of 260 simulations of 60 s each one were performed,
establishing one entire dataset per simulation. Of these 260
datasets it is important to highlight that 100 correspond
to healthy simulations and the rest corresponds to faulty
simulations, where 20 simulations are related to each type of
fault (originally there are eight types of faults) from which
three types of faults were selected. Each simulation contains
600 s of collected data, however, the first 200 s are related
to transient state [19] while the resting 400 s are associated
with a stable state, which are considered as the useful data.

As it was before-mentioned the original sampling rate of
simulations is 0.0125 s, however, the data have been down-
sampled with a sampling rate of 1 s. In [20] is proposed a
strategy to use SCADA data with a higher frequency than
10 min, i.e. for example 1 s. Thus, following this pipeline
the data were down-sampled to 1 s.

C. Data Split: Train, Validation and Test

In this work one of the first activities is data split, in which
data are distributed into train, validation and test sets. Thus,
as in this paper a normality model is proposed, data split
is applied only for healthy data, which represent about 100
simulations and these are distributed as follows: 70 % for
train, 20 % for validation and 10 % for test. Recall that in
this case it is talking about simulations and not samples,
since each simulation has 400 samples.

Together with test set is joined faulty data, since to test the
model a few samples of healthy data (10 % of healthy data)
and all samples corresponding to faulty simulations -which
sum around 20 subsets by type of fault- are needed.

D. Data Standardization

Almost all times the data are standardize in order to deal
with sets of values that come from different sources and with
different magnitudes, as well as in this case that there are
several sensors which measure different magnitudes. Before
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Table I. - Description of the several available sensors in the WT.

ID Sensor Type Symbol Unit Noise Power
S1 Generated electrical power Pe,m \\% 1.0 x 101

S2 Rotor speed Wr,m rad/s 1.0 x 104
S3 Generator speed Wg,m rad/s 2.0x 1074
S4 Generator torque Te,m Nm 9.0 x 1071
S5 Pitch angle of first blade B1,m deg 1.5 x 1073
S6 Pitch angle of second blade B2,m deg 1.5 x 1073
S7 Pitch angle of third blade B3,m deg 1.5x1073
S8 Tower top fore-aft acceleration Qfa,m m/s? 5.0 x 1074
S9  Tower top side-to-side acceleration Qss,m m/s? 5.0 x 1074

Table II. - Details of defined faults in the WT during the simulations.

Type

Change in system dynamics
Gain factor (1.2)
Offset value (2000 Nm)

ID Fault

F1  Pitch actuator - Hydraulic leakage
F2 Generator speed sensor

F3 Torque actuator

to continue with data preprocessing it is necessary to apply
this strategy. In this work Min-Max scaler [21] is used, which
scales the data in a range from O to 1. This scaling strategy
many times is called also normalization. Thus, Min-Max
scaler is defined as:

OB

~(k) _ .7 :Emin,j
Lii T m ® M)
xmaw,j - ‘Tminq,j

where Egkj) Ekj)

T - is the maximum value of a certain column while

is the scaled value, x; 7 is the value to be scaled,

T is the minimum value of that column.

min,j

E. Data Reshaping

Minimizing the detection time while preserving overall
accuracy is the main aim, using all available SCADA data.
The smaller the required sample, the smaller the detection
time (T}), since less time is required to collect data from the
sensors. T is the elapsed time between the fault occurrence
and its detection. Thus, the fault detection requirements given
in the model [17] are described in terms of the sampling time
(Ts) which is equal to 1 s.

o F1 is related to the pitch actuator where faults have a
very slow dynamic. Thus, the condition that must be
fulfilled is that T,; < 1007.

o F2 is the related to the generator speed sensor and the
pitch sensors, so the condition that must be fulfilled is
that Ty < 1075.

o F3 is related to the torque actuator, so it has a restrictive
Ty, in which T; < 37T, is the condition that must be
fulfilled [18].

Since this, the two most restrictive requirements are cho-
sen, whereby the data are organized in samples of only J = 3
and J = 10 time steps. Thus, in Eq. 2 the representation of
data for each sensor in a matrix is showed.
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distribution is showed after data reshaping, considering the
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In a nutshell, the initial matrix has been rewrote as a matrix
with X columns and Y rows, where X is equal to J multiplied
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Fig. 1: Data preprocessing stages from the original data to training stage of the AE.

by the number of sensors and Y is equal to the number of
simulations multiplied by the number of splits of each row,
obtaining the following results:

o A matrix with 21280 samples (or rows) and 27 columns,
when J = 3.

e A matrix with 6400 samples (or rows) when 90
columns, when J = 10.

3. Multi-Fault Detection Model
A. AutoEnconder Architecture for MFDm

An AE is an architecture that has three sections clearly
defined: an encoder, a feature vector, and a decoder. The
main aim of an AE is to build the best feature vector, which
contains the best of the entered information at the input.
Thus, the encoder maps the information from the input to
the feature vector, while the decoder rebuilds the input in the
output by using the stored information in the feature vector
[22].

For this case, an AE is trained to rebuild the input at the
output, using only healthy data. Here is where the normality
model [23] works, since by contrast, if a faulty sample is
entered, the AE will not rebuild the input well, thus, the
residual error will help to detect a fault since it will be used
as an indicator.

In the other hand, sometimes a good AE is not the one
that has many hidden layers, since an AE with a few hidden
layers maybe better. Thus, in this case, the architecture of
the AE is set as the input layer has a length equal to the
input vector length, which depends of the used J time steps.
The hidden layer has the middle of nodes of the input and
finally the output layer has the same number of nodes like
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Table III. - Hyperparameters configuration for AE training
respect to J time steps.

Hyperparameter J=3 J=10
Epochs 500 500
Number of Layers 3 3
Nodes in Input Layer 27 90
Nodes in Hidden Layer 14 45
Nodes in Output Layer 27 90
Loss Function MSE MSE
Activation Function ELU ELU
Optimizer Adam Adam
Learning Rate 0.001 0.001
B1 - B2 0.9-0.999 0.9 -0.999
€ 1x1078% 1x1078
Weight Decay 0 0

the input, as shown in Fig. 1. Likewise, Table III summarizes
the configured hyperparameters for the AE architectures.

B. Error Computation Strategy for Predictions

As it was before-mentioned, an AE receives an input and
tries to rebuild it at the output. If this is extrapolated to
all tested samples, finally a predictions matrix is obtained,
as shown in Fig. 2. Thus, basically an error matrix can be
defined also as of the subtraction between the input and
output matrix, as shown in Fig. 2.

It is necessary to reduce the errors by rows to a one
representative error, since it will correspond to an error
value by tested sample. To achieve it root mean square error
(RMSE) is applied to compute the single error by rows. Eq.
4 shows the representation of RMSE for this case.
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Fig. 2: Steps to compute the prediction-error matrix considering the computation of RMSE by rows or samples.

G
RMSE = é . Z E} 4)
j=0
where G = 9J, since this represents the number of columns
and j is the iterator along rows from O to G. Finally, the
result is a vertical vector which contains a RMSE value by
sample.

C. Moving Average applied to Prediction Errors

The concept of moving average (MA) comes from statis-
tics and it refers to a calculation process used to analyze data
points, creating a series of averages of several subsets of a
full dataset. The main aim of the MA is to help to smooth
out the short-term fluctuations and impacts of random values
into the original curves, over a defined time-frame.

In the used dataset for this work, it is clear that several
variables describe a sinusoidal behaviour deriving from the
set parameters in the simulations. MA is usually computed
in order to identify the trend direction of a curve, steady
values, etc [24]. It is necessary to consider also that the
longer the time period for the MA, the greater the lag, thus,
these parameters must be handled with criterion. Eq. 5 shows
the representation of MA as follows:

L

1 H,_ H,_ e+ Hy—

H[AL:Z'ZHtfi: t—1 + t2L+ + )
i=1

where L is the lag used in the MA and H;_; is the data
point H at time ¢ — ¢ where ¢ € {1,2,3,...,L}.

D. Fault Detection Metric based on Prediction Errors

Over the error vector computed in Subsection 3-B the
detailed strategy in Subsection 3-C is applied. In this way
it is obtained the prediction errors based on the MA. Recall
that the metric is based on training and validation data, since
these are samples which have been seen by the AE during
the training and validation steps. Also remember that these
data correspond to just healthy samples.

Thus, based on these errors a fault detection threshold,
trp, [23] is computed, which defines when the samples
are considered as faulty or healthy. To calculate the trp,
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the mean and standard deviation are used. Eq. 6 shows the
representation of this metric:

tFD:,u:i:?)a (6)

where 4 represents the mean of the values vector and o
describes the standard deviation computed over that vector.

4. Results and Discussion

As previously mentioned, the test set contains both,
healthy and faulty samples. Entering this bundle of samples
to the AE the predictions are obtained and comparing them
to the real input the prediction errors are computed. Then,
applying the mentioned strategies in Subsections 3-B and 3-
C a processed output as of the initial prediction error matrix
is obtained.

Using the prediction errors of train and validation sets the
maximum and minimum values for the ¢{pp are calculated
also, with which the range on which a tested healthy-sample
error must be, is defined. In this way, for the three types of
faults, MFD is clearly defined, as shown in Fig. 3 and 4.
In those figures it is clear that the average prediction errors
for healthy data are correctly located inside the threshold. In
the other hand, F1 is closer to the threshold zone, however
this type of fault is detected well. Likewise, F2 and F3 are
correctly detected and even there is a considerable distance
with respect to the ¢tp zone.

At a glance it is notable that the curve for healthy points is
shorter than the curve for the other faults. This is due to two
main reasons. First one, when the MA is applied it reduces
the amount of samples in function of the used lags, which
were set in 180 and 600, for J = 10 and J = 3, respectively.
This means that the lag uses a temporal window of 30 min,
recalling that each sample in the SCADA system is taken
per each second. The second one is that few data, exactly 10
%, are used in the test set. However, this does not interfere
on the effectiveness of the proposed strategy to do MFD.

5. Conclusions and Future Work

As mentioned earlier, an important aim at the moment
of using SCADA data is to reduce the Tj. In the results
it is noticeable that either for J = 3 and J = 10 the FD
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Fig. 3: Averaged prediction errors when the data are reshaped
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Fig. 4: Averaged prediction errors when the data are reshaped
with J = 10 time steps.

achieves excellent results. However, for the first value of J
the obtained errors are lower, attaining a better performance.

The combination between an AE and a normality model
shows that a high performance can be reached, as in this
study is seen. Another point to highlight is that the down-
sampling strategy is successful in order to fit the data as if a
SCADA system has generated them. It allowed also to obtain
excellent results in the FD process.

As future work it will be interesting to work on assembled
architectures, i.e. for example using a basic multilayer per-
ceptron (MLP) to do fault classification on the computed
outputs. Likewise, it will be interesting to include data
augmentation techniques in order to apply other deep leaning
strategies by using images and convolutional neural networks
(CNNs).
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