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Abstract. This work investigates the application of Federated

Learning techniques to reduce the training time of wind turbine 

power stabilization controllers on a wind farm. A Reinforcement 

Learning controller based on Q-learning is implemented and the 

results of the individual controller are compared with a system of 

4 wind turbines using Federated Learning. The simulation results 

show how this technique significantly improves the convergence 

time of the controller when compared to control strategies without 

federated learning. The preliminary results demonstrate how 

Federated Learning has great potential for improving the 

effectiveness of wind turbine controllers while maintaining the 

privacy and security of their operational data. 
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1. Introduction

Renewable energy is the bet of most countries to reduce 

their carbon footprint and decrease their impact on climate 

change. Among clean energy sources, wind energy stands 

out due to its great capacity to produce energy and the high 

development of its technology [1]. 

Nevertheless, the nonlinear dynamics and modeling 

uncertainties of wind turbines pose significant challenges 

when developing effective and robust control strategies, 

which are, on the other hand, essential for them to be 

efficient and profitable [2]. 

To improve the results obtained with classical control 

techniques, data-driven approaches have been proposed in 

recent years that allow the controller to learn optimal control 

laws without the need for an accurate representation of the 

plant [3]. Among these techniques, Reinforcement Learning 

(RL) has shown good control characteristics regarding 

reduction of structural loads and stabilization of the power 

output [4]. These results are mainly attributed to the ability 

of reinforcement learning controllers to optimize system 

performance by dynamically adapting to changing 

operational conditions [5].

Despite the promising results obtained when applying 

Reinforcement Learning control techniques to wind 

turbines, their adoption in the industry has been relatively 

limited due to the large amount of data required by these 

algorithms to learn the optimal control strategy. Although 

a possible solution to this problem would be to combine the 

data from multiple wind turbines to train a global model, 

decreasing in this way the training times, the sensitivity of 

operational data in wind turbines and the cybersecurity 

risks associated with transiting the data over a network 

make this solution impractical. 

In this context, Federated Learning (FL) techniques emerge 

as a possible solution to this problem. Federated learning is 

a decentralized machine learning approach where multiple 

devices or nodes collaboratively train a shared model 

without sharing raw data. Instead, each device trains the 

model locally using its own data, and only model updates 

(e.g., gradients) are sent to a central server for aggregation, 

preserving data privacy and reducing communication 

overhead [6]. 

Inspired by the work presented in [7], we propose to apply 

federated learning to train a global model using the 

individual data from each turbine without the need to share 

it outside its local system. This method preserves data 

privacy while also leveraging information from multiple 

wind turbines to increase controller performance. 

To do so, this paper explores the integration of Federated 

Learning (FL) into a system of wind turbines with 

individual Reinforcement Learning (RL) controllers, with 

the objective of overcoming some of the current limitations 

of data-driven controllers while preserving the privacy of 

the data involved in the process. 

Simulation results prove that the use of reinforcement 

learning enables a reduction in the training time of the Q-

learning algorithm applied to power control in wind 

turbines. 
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The structure of the paper is as follows. Section 2 

summarizes some contributions on related topics. In 

section 3, the Q-learning algorithm is presented, and the 

control architecture of a Federate Learning scheme is 

presented. Section 4 discusses the results obtained with 

federated learning-based model control and compares it 

with non-federated control. The paper ends with the 

conclusions and future work. 

 

2. Related Work 
 

Since its original introduction in 2016, Federated Learning 

(FL) has gained increasing popularity in multiple industries 

due to its ability to train machine learning models on a 

distributed system without the need to share sensitive data 

in the process, thereby preserving the privacy and security 

of the data involved [8]. However, despite its growing 

adoption in multiple fields [9], even in renewable energy 

[10], its application in the field of control is still relatively 

limited.  

 

In the very recent paper in [11], the authors detail the latest 

advances regarding the application of Federated Learning 

techniques in the field of control. This study highlights the 

potential benefits of this technique in terms of adaptability, 

scalability, generalization, and privacy preservation. While 

also making a comprehensive analysis of its current 

challenges such as communication overhead, non-IID (non-

independent and identically distributed) data, and the 

limitations of current aggregation techniques with regard to 

robustness. 

 

In the paper in [7], Federated Learning is used in 

combination with Reinforcement Learning to enhance 

performance in Autonomous Guided Vehicles (AGVs). The 

article demonstrates how Federated Learning techniques 

can be used to increase performance in Reinforcement 

Learning controllers without the need to share sensitive data 

in the process. Finally, the paper suggests possible 

applications of FL in other control domains, such as wind 

turbine control systems. 

 

Nevertheless, FL has been recently applied in the wind 

energy field for forecasting [12]. As an example, the paper 

by [13] shows a Federated Learning-based model for wind 

power prediction of different locations in Pakistan using 

wind speed and wind direction. It uses different machine 

learning techniques, such as Linear Regression (LR), 

Support Vector Regression (SVR), Random Forest 

Regression (RFR), Extreme Gradient Boosting Regression 

(XGBR), and Multilayer Perceptron Regression (MLPR) 

models. 

 

Finally, some investigation has been conducted into the use 

of Reinforcement Learning (RL) techniques for the power 

stabilization of wind turbines. To name a few, the work 

presented in [14] explores the use of reinforcement 

learning (RL) for optimizing wind turbine control to 

maximize energy capture and minimize structural loads. 

Specifically, the authors apply a double deep Q-learning as 

an agent to control wind turbine production using the rotor 

velocity, blade angle, and the yaw of the nacelle orientation 

as control variables. The paper by Xie et al. [4] addresses 

the torque and pitch control problems of wind 

energy converters. Their design applies in real-

time a reinforcement learning-based control that 

combines deep neural networks (DNNs) and 

model predictive control (MPC). 

 

 

While there are recent studies exploring the use of 

Federated Learning in control systems. As well as the use 

of Reinforcement Learning controllers for power 

stabilization and load reduction of wind turbines. The 

combination of these techniques in the domain of wind 

turbines remains largely unexplored. To the best of our 

knowledge, no prior work has applied Federated Learning 

techniques to Reinforcement Learning-based control of 

wind turbines. 

 

3. Federated Learning Control Proposal 
 

Wind turbines operate in different regions depending on 

wind speed, and each region requires specific control 

strategies to optimize performance and ensure safety. In 

this paper, we focus on the full load region (between rated 

and cut-out wind speed), where wind speeds are between 

the rated speed and the cut-out speed. In this mode, the 

turbine operates at its rated power output, that is, at its 

maximum capacity. Control in this region aims to maintain 

constant power by adjusting the angle of the blades, and the 

pitch angle, to shed excess aerodynamic load. 

 

Therefore, the control variable is the blade pitch angle of 

the wind turbine, and the control objective is to maintain 

the output power of the turbine as close as possible to the 

optimal value for which the wind turbine has been rated. 

This way energy efficiency is maximized while the control 

limits the power output to protect the wind turbine. 

 

To achieve this objective, an individual control system 

based on reinforcement learning is implemented [15].  

 

Fig.1. shows the general architecture of a reinforcement 

learning controller. In this approach, the optimal control 

strategy is learned from the interaction between the 

controller and his environment. The controller, represented 

by the agent, modifies the environment by performing an 

action 𝒂𝒕. The execution of this action will give as a result 

a change in the state of the environment 𝒔𝒕+𝟏 and a reward 

value 𝒓𝒕, representing how beneficial the action was with 

regards to the control objectives. Finally, the reinforcement 

learning algorithm uses this information to adapt its policy 

in order to promote future actions that maximize the reward 

over time. 

 

 
Fig.1. Architecture of Reinforcement Learning methods. 

Adapted from [16]. 
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Depending on the method used to update the policy, it is 

possible to distinguish between different types of 

reinforcement learning techniques. In this case, Q-learning 

is used. In this approach, an expected reward (Q-Value) is 

assigned to each possible combination of action and state, 

resulting in a table of Q-Values referred to as Q-Table. 

Which is updated based on the rewards obtained from the 

environment. Finally, the controller policy is obtained from 

the Q-Table by choosing the action with the maximum 

expected reward for the current state. 

 

Due to the discrete nature of this approach, the state and 

action spaces need to be discretized into a finite number of 

states. 

 

In the developed controller, the state of the system consists 

of the difference between the target power and the power 

output of the wind turbine 𝑷𝒆𝒓𝒓𝒐𝒓. And the current wind 

speed 𝒗𝒘𝒊𝒏𝒅.  

 

In order to decrease the number of states while allowing 

finer control when the output power is close to the reference 

power, the value of 𝑷𝒆𝒓𝒓𝒐𝒓 is discretized using the following 

geometric exponential function: 

 

𝑺 = 𝒔𝒊𝒈𝒏(𝒙)𝒆|
𝒙

𝟏.𝟓
| (𝟏) 

 

Where 𝐏𝐞𝐫𝐫𝐨𝐫 ∈  [-1097, 1097]. 

 

On the other hand, the value of 𝒗𝒘𝒊𝒏𝒅 is discretized in 

increments of 0.1 m/s for an expected wind interval between 

6 m/s and 15 m/s. 

 

{𝒙 ∈ 𝑹  | 𝟔 ≤ 𝒙 ≤ 𝟏𝟓,  𝒙 = 𝟔 + 𝟎. 𝟏𝒌, 𝒌 ∈ 𝒁}(𝟐) 

 

The reward function is used to incentivize the agent to learn 

optimal control strategies by encouraging behaviors that 

minimize the error between the power output 𝑷𝒐𝒖𝒕 and the 

desired power 𝑷𝒓𝒆𝒇. In this case, the reward function is 

defined as the absolute value of the error, that is: 

 

𝒓 = −|𝑷𝒆𝒓𝒓𝒐𝒓| (𝟑) 

 

Additionally, the action of the controller 𝒂𝒕, representing 

the pitch angle that will be applied to the wind turbine, is 

restricted to integer values within an interval of [0,20] 

degrees. This discretization of the action space is done to 

reduce the problem's complexity and decrease the time 

required to learn the optimal policy. 

 

Finally, the Q-Table is updated based on the reward signal 

received, as well as the previous and current action and state 

of the system. The update rule in Q-Learning is given by the 

following formula [17]: 

 

𝑸𝒕 ← 𝑸𝒕 + 𝛂[𝒓𝒕 + 𝛄𝑸max − 𝑸𝒕] (𝟒) 

 

Where 𝑸𝒕 = 𝑸(𝒔𝒕, 𝒂𝒕), 𝑸𝒎𝒂𝒙 = 𝒎𝒂𝒙𝒂𝑸(𝒔𝒕+𝟏, 𝒂), 𝜶 is the 

learning rate and 𝜸 is a discount factor used to balance the 

importance of future rewards with respect to immediate 

rewards. In this case, a learning rate of 𝛂 = 𝟎. 𝟎𝟏 and a 

discount factor of 𝛄 = 𝟎. 𝟗𝟓 are used. 

 

Finally, the next action is selected from the Q-Table based 

on the current state of the system. To explore the search 

space, an epsilon factor of 0.01 is used, giving a 1% chance 

to select a random actuation value from the search space 

during the training process. 

 

A. Federated learning 

 

With the objective of reducing training time and improving 

controller performance, a federated learning scheme is 

implemented. In this approach, each wind turbine 

represents an independent agent controlled by a 

Reinforcement Learning controller. When a wind turbine 

receives a new reward signal, it will update its local Q-

Table 𝑸(𝒔, 𝒂), while also storing the changes on a 

temporary table 𝚫𝑸(𝒔, 𝒂). After a given time, all the 

individual systems will send their temporary table 

𝚫𝑸(𝒔, 𝒂) to the federated server, which will aggregate the 

information and update the global model 𝑸𝒈𝒍𝒐𝒃𝒂𝒍(𝒔, 𝒂). 

Finally, the global model is distributed to all the individual 

wind turbines in order to update their local Q-Tables. 

 

 
Fig.2. Federated learning scheme applied to wind turbines. 

 

Each wind turbine sends its Q-Table updates to the 

Federated Server with a frequency of 𝒇𝒔𝒚𝒏𝒄 =
𝟏

𝒕𝒔
𝑯𝒛. On the 

other hand, the global model is distributed to the wind 

turbines with a frequency of 𝒇𝒖𝒑𝒅𝒂𝒕𝒆 =
𝟏

𝒕𝒖
𝑯𝒛. For our 

implementations, values of  𝒕𝒔 = 𝟏𝟎𝒔 and 𝒕𝒖 = 𝟓𝟎𝒔 are 

used. 

 

Due to the probabilistic information represented in the Q-

Table, the information from the wind turbines cannot be 

aggregated by averaging the values of each wind turbine. 

This is because, on a given iteration, the combination of a 

state and action may have been explored by a single wind 

turbine. Because of this, averaging the results of all the 

agents in the system would lead to incorrect probability 

values. As a result, the use of traditional reinforcement 

learning aggregation techniques like Federate Averaging 

[18] does not yield satisfactory results. Instead, the 

federated server aggregates the updates from all the 

turbines using the following aggregation function: 
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𝑸𝒈𝒍𝒐𝒃𝒂𝒍_𝒏𝒆𝒘(𝐬, 𝒂) =  𝑸𝒈𝒍𝒐𝒃𝒂𝒍(𝐬, 𝒂)  +  ∑𝒊=𝟎
𝒏 𝚫𝑸𝒊(𝒔, 𝒂)(𝟓) 

 

where n is the number of wind turbines in the system and 

𝚫𝑸𝒊(𝒔, 𝒂) represents the local updates of the i-th turbine. 

This aggregation method adds the individual knowledge 

gained by each of the wind turbines into a global model 

𝑸𝒈𝒍𝒐𝒃𝒂𝒍(𝒔, 𝒂) without the need to share raw operational 

data of the system. 

 

During the update process, the only data shared with the 

federated learning are the updates in the Q-table. As such, 

the privacy of sensitive data is preserved while leveraging 

the collective knowledge of all the systems. 

 

4. Results 
 

To test the hypothesis, the learning times of an individual 

wind turbine were compared with the results of a system of 

4 wind turbines using the Federated Learning architecture 

described earlier. 

 

The wind turbine dynamics were simulated using the 

1.5MW model introduced in [19]. In this model, the Tip 

Speed Ratio (TSR) is related to the rotor angular speed (𝐰) 

and the wind speed (𝐕) by the following expression: 

 

𝑻𝑺𝑹 =
𝑹𝒘

𝑽
(𝟔) 

 

, where 𝑹 is the rotor radius expressed in meters and 𝒘 is 

the rotor angular speed in 𝒓𝒂𝒅/𝒔. 

 

Based on the Tip Speed Ratio (TSR) and the blade angle 

𝛉𝒑𝒊𝒕𝒄𝒉 values, the power coefficient 𝑪𝒑 is calculated from a 

lookup table that defines the efficiency of the wind turbine 

for each operational point. 

 

Once the power coefficient 𝑪𝒑 of the wind turbine has been 

determined, the aerodynamic power is calculated using the 

following expression: 

 

𝑷𝒂𝒆𝒓𝒐 = 𝟎. 𝟓𝛒𝑨𝑽𝟑𝑪𝒑(𝑻𝑺𝑹, 𝛉𝒑𝒊𝒕𝒄𝒉) (𝟕) 

 

, where 𝛒 is the air density in 𝑲𝒈/𝒎𝟑 and 𝑨 = 𝛑𝑹𝟐is the 

rotor sweep area in 𝒎𝟐. 

 

The aerodynamic power 𝑷𝒂𝒆𝒓𝒐, together with the rotor 

speed 𝒘 can be used to calculate the aerodynamic torque 

𝑻𝒂. To do that, the following equation is used: 

 

𝑻𝒂 =
𝑷𝒂𝒆𝒓𝒐

𝒘
(𝟖) 

 

The generator reaction torque is related to the aerodynamic 

torque and the rotor speed by the following expression: 

 
𝑱�̇� = 𝑻𝒂 − 𝑻𝒈 (𝟗) 

 

Where 𝑱 is the rotor inertia in 𝒌𝒈 ⋅ 𝒎𝟐 and 𝑻𝒈is the reaction 

torque of the generator in 𝑵 ⋅ 𝒎. 

 

On the other hand, the generator torque 𝑻𝒈𝒆𝒏 is defined as 

the reaction torque scaled by the gear ratio 𝑵: 

 

𝑻𝒈 =
𝑻𝒈𝒆𝒏

𝑵
(𝟏𝟎) 

 

Finally, the output power generated by the turbine is 

calculated using the following expression: 

 
𝑷𝒈𝒆𝒏 = 𝛈𝒈 ⋅ 𝑷𝒎𝒆𝒄𝒉 (𝟏𝟏) 

 

Where 𝛈𝒈 is the generator efficiency and 𝑷𝒎𝒆𝒄𝒉 is the input 

mechanical power to the generator defined as: 

 
𝑷𝒎𝒆𝒄𝒉 = 𝑻𝒈𝒆𝒏𝒘 (𝟏𝟐) 

 

Additionally, a dynamic rate limiter of 𝟎. 𝟏𝟕 𝒓𝒂𝒅/𝒔 is 

added on the plant input to simulate some actuator delay in 

𝛉𝒑𝒊𝒕𝒄𝒉. 

 

The same model parameters and 𝑪𝒑 values presented in the 

base model are used [19]. The most relevant of these 

parameters are summarized in the following table: 

 
Table I. - Wind turbine model parameters. 

 

PARAMETER VALUE UNITS 

𝑹 35 𝒎 

𝑱 3410432 𝒌𝒈 ⋅ 𝒎𝟐 

𝑵 88 - 

𝝆 1.225 𝒌𝒈/𝒎𝟑 

𝜼𝒈 0.95 - 

 

Each wind turbine was simulated with a random wind 

model generated using a Weibull probability distribution 

with a scale parameter λ=11 and a shape parameter k=10. 

Based on this distribution, the wind model was created by 

taking a weighted average between the current wind value 

and the new value obtained from the distribution. 

 
𝒗𝒘𝒊𝒏𝒅 = 𝛂𝒗𝒘𝒊𝒏𝒅 + 𝛃𝒇(𝒙; 𝛌, 𝒌) (𝟏𝟒) 

 

Where 𝒇(𝒙; 𝝀, 𝒌) is the Weibull distribution and 𝜶 and 𝜷 

are weighting factors. 

 

 
Fig.3. Wind model simulation using a Weibull probability 

distribution with λ=12 and k=2. 

 

Additionally, the reference power output 𝑷𝒓𝒆𝒇 was set to 

800 GW/hour, being the maximum rated output power of 

the simulated wind turbine at 1.5 MW/hour. 
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Both federated and non-federated systems were trained for 

130 iterations, each iteration of 800 seconds, resulting in 

the following Mean Squared Error (MSE) per iteration: 

 

 
Fig.4. Mean squared error comparison between federated (blue 

line) and non-federated (red line) algorithms over 130 iterations 

 

Fig.4. shows how the Federated Learning-based control was 

able to learn a better control strategy in significantly fewer 

iterations when compared to the non-federated approach. 

The fluctuations in the MSE values between iterations after 

the algorithm has converged can be explained due to the 

epsilon value used by the controller to search the action 

space and changes in the transient response of the controller. 

 

 
Fig.5. Mean squared error comparison between federated (blue 

line) and non-federated (red line) algorithms over 130 iterations 

 

Fig.5. shows how the Federated Learning-based controller 

achieves the reference mean power output in significantly 

fewer iterations than the non-federated approach. 

 

The results show that the federated learning output was 

significantly better in all the iterations. Particularly, wind 

turbines using Federated Learning stabilized the power 

output around the reference power after 28 iterations. 

Meanwhile, the non-federated system required 95 iterations 

to achieve similar results consistently. 

 

 
Fig.6. Power output of federated (blue line) and non-federated (red 

line) wind turbines at iteration 81. 

 

Fig.6. compares the results obtained with and without 

Federated Learning after 81 iterations of training. As can 

be observed, the Federated Learning approach achieves 

significantly better performance, with output power 

values closer to the reference power than the non-

federated controller. 

 

The previous results compared the average power output 

of all the wind turbines using Federated Learning with a 

wind turbine implemented without Federated Learning. 

However, to have a better understanding of how the 

different agents on the Federated Learning system evolve, 

the results of each wind turbine used in the Federated 

Learning are shown. 

 

 
Fig.7. Power output of each wind turbine after 6 iterations of 

training. 

 

Fig.7. shows how the power output of all the wind 

turbines in the Federated Learning model evolves in a 

similar way. When one of the wind turbines finds a better 

control strategy, this knowledge is shared with the 

federated server and, after the global model is distributed, 

the rest of the agents incorporate these improvements in 

their control strategy.  

 

These results demonstrate the effectiveness of Federated 

Learning in improving performance and reducing training 

times in Reinforcement Learning controllers. Showing his 

potential use in optimizing power output in multi-turbine 

systems. 

 

5.  Conclusion and further works 
 

This paper demonstrates how Federated Learning 

techniques can be used to reduce training times of 

Reinforcement Learning controllers based on Q-learning 

when applied to the power output stabilization of wind 

turbines. A system of four wind turbines using federated 

learning was compared with a non-federated learning 

system, obtaining a significant reduction in the 

convergence time. The simulation showed how the 

federated learning approach learned an optimal control 

strategy in fewer iterations than the non-federated 

approach.  In particular, the mean output power of the 

federated learning approach converged to the reference 

power output after 28 iterations, compared to the 95 

iterations required by the non-federated approach.  
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This approach to reinforcement learning has the potential to 

reduce the training times of Q-Learning controllers used for 

the power stabilization of wind turbines while preserving the 

security and data privacy of the data involved during the 

training. 

 

However, while the proposed controller has been tested with 

a simulated model, its generalization to real systems remains 

unknown. Additionally, the application of federated learning 

to other reinforcement learning controllers and reward 

strategies remains largely unexplored, as well as a 

comprehensive analysis of the robustness of the proposed 

solution. 

 

Finally, future work that remains open is the exploration of 

different reward functions to reduce rotor vibrations while 

maximizing power output, a robustness analysis of the 

obtained controllers, and the use of more advanced 

reinforcement learning techniques such as Deep 

Deterministic Policy Gradient (DDPG). Additionally, the 

use of other federated learning techniques such as Clustered 

Federated Learning (CFL) remains an open area of 

exploration. 
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