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Abstract. The increasing penetration rate of photovoltaic

generation (PV) in distribution networks has led system operators 

to face several challenges such as overvoltage, voltage 

fluctuations, frequency fluctuations, and reverse power flow. This 

paper introduces a stochastic approach to determine the impact of 

Hosting Capacity (HC) on a real distribution network in terms of 

voltage profiles and power losses. The methodology uses 

historical data of temperature and irradiance over one year, which 

served as inputs for the stochastic allocation of PV units. Later, 

PV installation points and the generation capacities are randomly 

assigned based on historical data. HC is evaluated across various 

PV penetration rate, analyzing its effects on voltage problems 

(undervoltage and overvoltage) and power losses. The results 

demonstrate the effectiveness of PV placement in mitigating 

voltage issues and identifying the proper HC. 

Key words. Hosting Capacity, Monte Carlo simulation, 

stochastic method, photovoltaic systems, Power 

Distribution Systems, Power Losses, Voltage Profile, 

Charging. 

Nomenclature 
𝑖 : Index of a load. 

𝑘 : Index of a branch. 

𝑡 : Index of a hour. 

𝑃𝑒𝑛𝑃𝑉%
  : PV penetration rate.

𝑃𝑒𝑛𝑃𝑉   : Peak power of PV for a penetration rate.

𝑃𝑃𝑉𝑖
: Peak power of PV Installed in i. 

𝑃𝑚𝑎𝑥 : The maximum total active power of the system over 

the 24-hour period. 

𝑁 :Total number of loads in the network. 

𝑃𝑙𝑜𝑎𝑑𝑖,𝑡
  : Active power of 𝑖 at time 𝑡.

𝑃𝑙𝑜𝑠𝑠𝑡
: Total active power losses in the network at time 𝑡. 

𝑃𝐿𝑃𝑉𝑚𝑎𝑥
: Maximum Active power losses in the network during 

the PV work time. 

𝑀 : Total number of branches in the network. 

𝑅𝑘 : Resistance of 𝑘. 

𝐼𝑘,𝑡 : Current flowing through 𝑘 at time 𝑡. 

𝑃𝑃𝑉𝑡
: Total installed active power of all DG units in the 

network at time t. 

𝑁𝑃𝑉  : Total number of distributed generation (DG) units 

installed. 

1. Introduction

The rapid growth of renewable energy sources (RES) has 

significantly transformed the traditional power grid. 

Among the RES, photovoltaic (PV) systems have emerged 

as a key component in the global transition toward 

sustainable energy solutions [1]. Integrating PV systems 

into distribution networks offers numerous benefits, 

including reduced greenhouse gas emissions, enhanced 

energy efficiency, and decreased dependence on 

centralized power plants. However, high PV penetration 

levels introduce substantial operational challenges, such as 

voltage fluctuations, overvoltage, reverse power flow, and 

increased power losses, which can compromise the stability 

and reliability of the grid [2]-[4].  

One of the most critical aspects of PV integration is 

assessing the Hosting Capacity (HC) of distribution 

networks, which defines the maximum level of PV 

penetration a network can accommodate without violating 

operational limits [5]. HC analysis is crucial for grid 

planning and operation, as excessive PV penetration can 

lead to voltage instability, power quality issues, and 

transformer overloading [6]. To address these concerns, 

researchers have developed various methodologies to 

estimate HC, broadly categorized into deterministic and 

probabilistic approaches [7]. Deterministic methods rely on 

fixed input parameters and worst-case scenarios, often 

yielding conservative HC estimates. In contrast, 

probabilistic models incorporate stochastic variations in 

PV generation, load demand, and network conditions, 

providing a more realistic and flexible assessment of 

hosting capacity [8]. 

To enhance HC estimation and mitigate PV integration 

challenges, various techniques have been proposed. 

Optimization-based frameworks integrate voltage 

regulation mechanisms, demand response strategies, and 

adaptive control systems to maximize HC while 

maintaining operational constraints [9]. 
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The paper introduces a stochastic method based on Monte 

Carlo simulation to estimate the HC in a real Brazilian 

distribution system. Historical meteorological data 

(temperature and irradiance) are used to evaluate more 

realistic PV power-generated profiles. The location and the 

peak power for each PV system follow a distribution 

probability based on historical data of PV systems already 

installed in similar feeders. The proposed methodology 

enables a detailed analysis of voltage profiles, and power 

losses under different PV penetration rates. Moreover, the 

proposed analysis aims to evaluate the effectiveness of PV 

in mitigating undervoltage issues and reducing power 

losses, and to identify the potential overvoltage risks under 

different penetration rates.  

 

2. Data-Driven Hosting Capacity Assessment 

Methodology 

To accurately analyze the Hosting Capacity (HC) of the 

network, a thorough assessment of key influencing 

parameters is essential. An extensive data search was 

conducted to collect critical information, including 

temperature, irradiance, and PV system dimensions, 

ensuring realistic and statistically relevant results. By 

grouping irradiance and temperature profiles of the 

network region, a more comprehensive dataset was 

obtained, improving the reliability of PV system 

simulations. Additionally, the sizing of PV units was 

determined through a historical analysis of installations at 

the medium voltage level, allowing the model to 

incorporate real-world deployment trends. The data 

extraction and processing are structured into the following 

stages. 

 

A. Data Collection. 

 

Historical temperature and irradiance data in a year were 

analyzed, resulting in average hour profiles for each day of 

the year, which capture seasonal variations affecting PV 

generation. Meteorological patterns were examined to 

enhance regional accuracy and refine the stochastic model. 

Additionally, the Agência Nacional de Energia Elétrica 

(ANEEL), provides guidelines for the construction of the 

Base de Dados Geográfica da Distribuição (BDGD), a 

georeferenced database representing the real electrical 

distribution system [10]. For this study, BDGD data were 

extracted and converted into OpenDSS-compatible models 

using Python, ensuring accurate representation of the real 

distribution network for simulation and analysis.  

 

B. PV generation profile. 

 

Monthly average irradiance and temperature profiles were 

computed to create realistic PV generation profiles. A 

stochastic selection method was applied to introduce 

randomness in PV generation profiles, better reflecting 

real-world variability. These selected profiles were then 

used to generate load shapes in OpenDSS, allowing for a 

more precise simulation of daily PV energy production and 

its effects on the network.  

 

C. PV Size Determination. 

 

The installed PV system sizes at medium voltage level 

from the last five years were analyzed to establish 

probabilistic distributions for new installations, ensuring 

that the sizing of new PV systems aligns with historical 

trends. Higher probabilities were assigned to PV sizes that 

have been more commonly deployed, resulting in a realistic 

distribution of installed capacities. This probabilistic 

approach enhances the model’s accuracy by ensuring that 

PV size allocations reflect actual installation patterns and 

expected deployment scenarios. 

 

The proposed methodology creates a robust data-driven 

framework for PV hosting capacity analysis. This approach 

enhances HC estimation accuracy by combining real-world 

network conditions with statistical and probabilistic 

modeling. Additionally, this methodology enables the 

evaluation of various PV penetration scenarios, ensuring 

that network reliability and operational limits are 

maintained while maximizing renewable energy 

integration. 

 

3. Stochastic PV Allocation Model 

The probabilistic model for PV allocation follows a 

stochastic process, ensuring a realistic and unbiased 

distribution of PV systems within the network. This 

approach integrates historical meteorological data, real 

network topology and the statistical PV installation trends 

to create a comprehensive and data-driven methodology. 

The process ensures that PV generation is allocated 

dynamically while reflecting real-world variations in 

irradiance, temperature, and deployment patterns. This 

method ensures a realistic and unbiased distribution of PV 

systems. 

 

Fig. 1 shows the first step in the stochastic PV allocation 

model involves processing historical temperature and 

irradiance data. Additionally, the historical PV installation 

data are analyzed to define sizes and deployment trends. 

The real network topology is then imported into OpenDSS, 

ensuring that the electrical characteristics, load demands, 

and network constraints are accurately represented. This 

enables a baseline simulation that establishes the network's 

initial voltage profile, power losses, and load distribution 

before PV integration. The maximum network load over a 

24-hour period is determined by: 

 

𝑃𝑚𝑎𝑥 = max (∑ 𝑃𝑙𝑜𝑎𝑑𝑖,𝑡

𝑁

𝑖=1

) ,   𝑡 ∈  [0,24]  (1)    

Where i is index a load ∈ N and t is index of hour. 𝑃𝑚𝑎𝑥  is 

power value used as a reference for the definition of PV 

penetration rate. 𝑃𝑙𝑜𝑎𝑑𝑖,𝑡
 is the load in i at time t.   

The total PV capacity that will be integrated into the 

network for a penetration rate 𝑃𝑒𝑛𝑃𝑉 is determined in (2) 

based on the selected penetration rate, 𝑃𝑒𝑛𝑃𝑉%
, of 𝑃𝑚𝑎𝑥: 

 

𝑃𝑒𝑛𝑃𝑉 = 𝑃𝑚𝑎𝑥 ∗ 𝑃𝑒𝑛𝑃𝑉%
 (2)    
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The stochastic PV allocation process follows an iterative 

structure for different values of 𝑃𝑒𝑛𝑃𝑉%
. The irradiance and 

temperature profile are randomly chosen, ensuring 

variability in PV generation conditions. This methodology 

follows these steps: 

 

Step   1: Select a 𝑃𝑒𝑛𝑃𝑉%
 

Step 2: Random PV Size Determination: The 

historical probability distribution of installed PV 

capacities is used to determine the size of the new PV 

system. 

Step 3: Random Busbar Selection: A random mid-

voltage busbar is chosen for PV allocation. This 

process ensures a stochastic spatial distribution, 

preventing clustering and enabling a realistic 

representation of decentralized PV deployment. 

Step 4: Cumulative PV Capacity Check: The total 

allocated PV capacity is iteratively updated: 

 

𝑃𝑃𝑉𝑡,𝑠
=  ∑ 𝑃𝑃𝑉,𝑖  

𝑁𝑃𝑉(𝑠)

𝑖=1

 (3)    

 

Where 𝑃𝑃𝑉𝑡
 is the cumulative PV capacity at iteration s, 

and 𝑁𝑃𝑉 represents the total number of allocated PV 

units at s. If 𝑃𝑃𝑉𝑡,𝑠
< 𝑃𝑒𝑛𝑃𝑉 go to step 2. Otherwise, to 

stop the procedure.  

Once PV systems are allocated, the modified network is 

simulated in OpenDSS, analyzing the impact of PV 

penetration on voltage stability, power losses, and network 

performance. The bus voltage levels across the network are 

examined to identify potential issues related to overvoltage 

or undervoltage conditions due to PV penetration, 

according to: 

𝑉𝑚𝑖𝑛 > 0.95  (4)    

𝑉𝑚𝑎𝑥 < 1.05 (5)  

The active power losses in the system are calculated using: 

 

𝑃𝑙𝑜𝑠𝑠 =  ∑ 𝑅𝑘 ∗ 𝐼𝑘
2 

𝑀

𝑘=1

  (1)    

Then if another 𝑃𝑒𝑛𝑃𝑉%
 is set, another iteration is executed 

following the same steps. The results of the stochastic PV 

allocation simulation at different penetration rates are 

compared with the initial grid scenario (without new PV 

allocations), evaluating the network’s ability to host PV 

generation without exceeding operational limits. 

 

 

 
Fig. 1. Flowchart of Stochastic PV allocation Model. 
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4. Results 
 

The proposed methodology is applied to a real distribution 

shown in Fig. 2. This network is modeled in OpenDSS and 

represents a typical urban distribution feeder with medium-

voltage at 88 kV and 13.8 kV and low-voltage connections. 

The total system load consists of a combination of 

residential, commercial, and industrial users. The 

maximum active and reative power demand in the network 

are approximately 4339 kW and 2247 kvar, respectively 

Fig. 2. The network consists of 404 busbars, forming a 

radial structure typical of distribution systems. The 

protection system consists of one circuit breaker and one 

recloser for the main feeder, and multiple fuses distributed 

across lateral branches. 

 

 
Fig. 2. Real distribution network. 

The stochastic PV allocation method is modeled using an 

interface of Python-OpenDSS using the PVSystem 

component, that integrates both PV modules and inverters 

into a single representation. The expected PV generation 

profile is based on historical irradiance and temperature 

data over one year. This process resulted in 12 

representative monthly profiles for irradiance (see Fig. 3) 

and for temperature (see Fig. 4). These profiles serve as 

inputs for the stochastic PV allocation model, allowing for 

an accurate assessment of the network’s hosting capacity 

under varying seasonal conditions. 

 

The study considers various penetration rates, assessing 

their impact on voltage profile, power losses, and reverse 

power flow. This real-world feeder model provides a robust 

test system for evaluating the integration of distributed 

energy resources, offering valuable insights into grid 

operation under high PV penetration levels. 

 

 
Fig. 3. Average irradiance profile per month. 

 
Fig. 4. Temperature Profile per month 

A. Analysis without PV. 

 

An initial analysis was conducted before integrating 

photovoltaic (PV) systems into the network. This 

assessment includes the active power load profile, the 

minimum voltage profile, and the active power losses over 

a 24-hour period. These parameters serve as a reference for 

comparing the impact of PV integration on the system. 

𝑃𝑚𝑎𝑥  is obtained analyzing the active power load profile of 

24 hrs from Fig. 5. This figure shows a maximum value of 

4339 kW at 20h. 

 

 
Fig. 5. Power Demand Profile. 

Fig. 6 shows the lowest voltage magnitude across all 

busbars at each hour. At 20h, the grid presents the lowest 

value of 0.78 p.u.  

 

 
Fig. 6. ITQ feeder power losses and minimum voltage profiles 

without PVS. 

The active power losses were evaluated for the grid at its 

initial state (without new PV systems). The maximum 

power losses are obtained at hour 20 with 162.5 kW. 

 

B. Analysis of several PV penetration rates. 

 

A comprehensive analysis was conducted to evaluate the 

impact of different PV penetration rates on system 
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operation. This analysis is done only from 8h-17h, 

available period for PV generation. This assessment 

focused on voltage profile variations and active power 

losses. The analysis was designed to provide a realistic 

assessment of PV hosting capacity by simulating the effects 

of incremental PV penetration rates  from 0% (without new 

PV systems) to 150% of peak load, with increments of  5. 

For each penetration rate, fifty scenarios are obtained by 

Monte Carlo simulation. 

 

Fig. 7 shows a histogram with several PV penetration rates, 

number of busbars with undervoltage problems, and their 

respective probability. From figure, the network shows 12 

busbars with undervoltage problems during 8h-17h without 

presence of PV.  By increasing the penetration rate, the 

number of busbars with undervoltage conditions decreases, 

indicating that the increment of PV systems can improve 

voltage profiles in certain areas.  

 
Fig. 7. Histogram of busbars with undervoltage problems 

between 8h-17h. 

 
Fig. 8. Histogram of busbars with overvoltage problems between 

8h-17h. 

Fig. 8 illustrates the probability of busbars experiencing 

overvoltage as PV penetration rate increases. The initial 

analysis has no overvoltage problems in any busbar. With 

low penetration rates, overvoltage risks are minimal. For  

penetration rate more than 60%, the probability of voltage 

problem increases. Between 70% and 120%, overvoltage 

issues intensify, affecting more than 14 busbars due to 

excess power injection. Beyond 120% penetration, more 

than 14 busbars have a near value of 100% probability of 

exceeding voltage limits, indicating critical areas requiring 

mitigation. 

 

The Fig. 9 shows the probability of busbars experiencing 

both undervoltage and overvoltage issues as PV 

penetration rate increases. At low penetration rates, 

undervoltage is predominant, but as penetration surpasses 

60%, these issues decrease while overvoltage risks start 

emerging. Between 80% and 120%, voltage problems are 

more distributed, with some busbars still facing 

undervoltage while others experience overvoltage due to 

excess PV generation. Beyond 120% penetration, 

overvoltage becomes critical, with some busbars reaching 

100% probability of exceeding voltage limits. 

 
Fig. 9. Histogram of busbars with undervoltage and overvoltage 

problems between 8h-17h. 

 

 
Fig. 10. Boxplot of power losses between 8h-17h for different 

PV penetration rates. 

Fig. 10 illustrates  power losses for different PV penetration 

rates during the period from 8h to 17h. As expected, the 

increment of PV systems reduces the need for power 

transmission. Thus, lower power losses are achieved with 

minimal variation. However, beyond 80% penetration rate, 

power losses exhibit greater dispersion, indicating that 

reverse power flow effects significantly the network 

performance, thus proper control mechanisms have to be 

included.  

 

These results highlight the dual impact of PV integration 

on network voltage profile. At low penetration rates, PV 
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generation effectively mitigates undervoltage issues by 

supporting local loads. However, as penetration increases, 

the risk of overvoltage rises, particularly beyond 80%-

120%. 

 

This study shows the trade-off between reducing 

undervoltage and introducing overvoltage risks, 

emphasizing the importance of strategic PV placement to 

maximize the hosting capacity. Additionally, the nonlinear 

relationship between PV penetration rate and power losses 

reinforces the need for optimized PV allocation and the 

application of voltage regulation strategies, to prevent 

excessive network losses at high penetration rates. 

 

5. CONCLUSIONS 
 

This paper introduces a probabilistic approach to estimate 

the hosting capacity of a real distribution feeder. The 

findings indicate that moderate PV penetration enhances 

voltage profiles and reduces active power losses by 

supplying local demand. However, as PV penetration 

increases, overvoltage issues emerge, and excessive 

generation leads to reverse power flow and greater power 

loss variability. The analysis confirmed that while PV 

integration reduces losses at controlled PV penetration 

rates, excessive rates can result in higher losses due to 

surplus energy injection into the grid. The stochastic 

allocation model proved effective in capturing real-world 

uncertainties, highlighting the importance of strategic PV 

placement and controlled penetration rates to optimize 

network performance. These results provide valuable 

insights for grid operators and researchers, offering a data-

driven framework for improving PV hosting capacity. 

Future studies may be focused on optimal allocation 

strategies, voltage control mechanisms, and energy storage 

solutions to further enhance Hosting Capacity. 
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