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Abstract. The short measurement periods of local solar

resource measurement campaigns limit the representativeness of 

these measurements in long-term energy production estimates for 

solar projects. This study aimed to characterize the main long-

term solar resource databases and correlate them with data 
provided by meteorological stations, with the purpose of 

identifying the database that best predicts solar radiation at 

specific locations. Seven long-term databases were used (PVGIS, 

SOLARGIS, SOLCAST, NASA POWER, NSRDB, 
HELIOCLIM, ERA5). Measured data from meteorological 

stations at various locations in Portugal, Saudi Arabia, and Brazil 

were correlated with the long-term databases available for each 

location. Different methodologies for evaluating these 

correlations were tested, including R², MSE, MBE, and MAPE. 

The analyses revealed that the SOLCAST and SOLARGIS 

databases highlighted in predicting global horizontal irradiance 

(GHI) in the Arabia region. In Portugal, the NSRDB was the 
most accurate in predicting GHI, while in Brazil, SOLCAST 

showed the highest accuracy in forecasting GHI. 

Key words. Solar resource, local measurements, long-

term databases, error metrics 

1. Introduction

The search for alternative energy sources has been driven 

by the environmental risks associated with fossil fuels and 

the potential for their depletion. On the other hand, the 

costs of renewable energies have decreased significantly, 

with notable reductions in the costs of photovoltaic and 

wind energy [1]. Due to the variable nature of the solar 

resource, the planning and implementation of solar energy 

projects require detailed knowledge of the spatial and 

temporal variability of solar irradiance [2]. The detailed 

design of the project, as well as the assessment of its 

economic feasibility, are directly related to the magnitude 

and variability of the local solar resource, making its 

characterization in different temporal resolutions 

imperative [3]. Therefore, the temporal resolution of 

solar radiation data can have a significant impact on the 

feasibility analysis of a solar energy project [4]. 

The characterization of long-term solar resource data is a 

crucial step in the design of a solar power plant. The pace 

at which these projects have been developed over the past 

decade has limited the duration of local solar resource 

measurement campaigns, which rarely exceed two years. 

This fact restricts the representativeness of these 

measurements in long-term energy production estimates 

for the project. The use of time-series radiation data with 

greater temporal coverage and its correlation with 

radiation measurement data from local stations presents a 

methodology for identifying the long-term database that 

best predicts solar radiation at the location under 

analysis, serving as a tool that can improve risk 

management associated with solar energy projects. 

2. Methodology

For this study, five measurement stations in Portugal (P1 

to P5), nine in Saudi Arabia (A1 to A9), and eleven in 

Brazil (B1 to B11) were selected, aiming to cover a broad 

range of orographic characteristics and available solar 

resource (Table I). One-year measurement campaign 

periods were chosen for each station. Additionally, seven 

long-term databases (LTD), both free and paid, were 

selected: NASA POWER, ERA5, and SOLCAST, which 

are available for all three countries under study; NSRDB 

for Portugal and Brazil; PVGIS and HELIOCLIM for 

Brazil; and SOLARGIS for Saudi Arabia and Brazil.  

For each geographic location under study, the measured 

Global Horizontal Irradiance (GHI) data from local 

meteorological stations were correlated with data from 

the different available LTDs, using linear regression 

between the simultaneous data periods. Various error 
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metrics were employed to assess the quality of the linear 

prediction model fits [5-7.: 

Coefficient of Determination (R²), which represents the 

percentage of data variance that is explained by the model; 

Mean Bias Error (MBE), which measures the average 

bias of forecasts compared to observed values; 

Mean Squared Error (MSE), which gives greater weight 

to larger errors, making it sensitive to outliers; 

Mean Absolute Percentage Error (MAPE), which 

shows the percentage of error relative to the actual values. 

 

Two main tests were used to verify these metrics:  

Levene's test, which verifies the equality of variances, and 

the Kolmogorov-Smirnov test, which verifies the normal 

distribution of the data [8, 9]. 

When the Levene test showed unequal variances and the 

Kolmogorov-Smirnov test showed a non-normal 

distribution, the Kruskal-Wallis test was used to check for 

differences in group medians. If the Kruskal-Wallis test 

showed no significant differences, the analysis ended. If 

significant differences were found, Dunn's test was used 

to find out which groups had different medians [10]. 

 
Table I. – Generic information for each measurement station. 

 

Country
Met 

Mast
Characteristics of the surroundings

Measurement 

period

A1 Arid desert area jun22-may23

A2 Arid desert area jun22-may23

A3 Arid desert area jun22-may23

A4 Arid desert area jun22-may23

A5 Arid desert area jun22-may23

A6 Arid desert area nov22-oct23

A7 Arid desert area nov22-oct23

A8
Arid desert area with some dispersed 

ground vegetation
nov22-oct23

A9 Arid desert area nov22-oct23

P1
Low vegetation and some medium-

sized shrubs
jun22-mar23

P2
Agricultural land on an island in the 

Azores
mai-22-apr23

P3 Rural area on an island in the Azores sep22-aug23

P4
Agricultural land with some buildings 

on an island in the Azores
aug22-jul23

P5
Coastal agricultural land on an island 

in the Azores
dec22-nov23

B1
Low vegetation and some medium-

sized shrubs
jun15-may16

B2
Low vegetation and some medium-

sized shrubs
oct19-sep20

B3
Agricultural land with some dispersed 

vegetation
aug15-jul16

B4
Area with some large vegetation and 

buildings
aug15.jul16

B5 Densely wooded area jan18-dec18

B6
Low vegetation and some medium-

sized shrubs
jan16-dec16

B7 Area with ground vegetation aug17-jul18

B8 Area with ground vegetation aug18-jul19

B9 Area with medium-sized vegetation sep16-aug17

B10 Agricultural land dec19-nov20

B11 Area with some large vegetation sep19-aug20
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3. Results 
 

Correlations between GHI data measured at local 

meteorological stations and data from different LTDs 

available for each study site were obtained. In Table II 

the obtained results for R2 of each linear model obtained 

for Saudi Arabia, Portugal and Brazil were presented. 

The best values are shaded in green and the worst in 

orange. 

For Arabia, all databases generally showed high R² 

values above 90%. SOLCAST and SOLARGIS had the 

best R² values, with very small differences between them, 

except at station A5. ERA5 had the lowest R² values, 

except at station A7. NASA POWER, although not 

having the highest correlations, showed R² values close 

to those of SOLCAST and SOLARGIS, which are paid 

services. 

 
Table II. – Coefficient of Determination for GHI in Arabia (A), 

Portugal (P) and Brazil (B) 

 

Stations
NASA 

POWER
PVGIS ERA5 NSRDB HELIOCLIM SOLARGIS SOLCAST

A1 0.9812 - 0.9712 - - 0.9870 0.9858

A2 0.9845 - 0.9746 - - 0.9866 0.9866

A3 0.9762 - 0.9611 - - 0.9849 0.9830

A4 0.9911 - 0.9854 - - 0.9932 0.9942

A5 0.9856 - 0.9734 - - 0.9884 0.9916

A6 0.9824 - 0.9640 - - 0.9886 0.9885

A7 0.9072 - 0.9793 - - 0.9903 0.9906

A8 0.9795 - 0.9623 - - 0.9832 0.9856

A9 0.9683 - 0.9489 - - 0.9839 0.9850

P1 0.9579 - 0.9420 0.9668 - - 0.9755

P2 0.9029 - 0.8683 0.9170 - - 0.8781

P3 0.8180 - 0.7806 0.8653 - - 0.7821

P4 0.7786 - 0.7441 0.8338 - - 0.7457

P5 0.8932 - 0.8519 0.8916 - - 0.8545

B1 0.9442 0.9380 0.9340 0.9537 0.9421 - 0.9736

B2 0.9311 0.9350 0.8957 0.9169 0.9694 - 0.9800

B3 0.9683 0.9506 0.9374 0.9544 - 0.9741 0.9780

B4 0.9558 0.9426 0.9239 0.9674 0.9778 - 0.9796

B5 0.9506 0.9438 0.9142 0.9753 - 0.9715 0.9756

B6 0.9615 0.9276 0.9174 0.9591 0.9678 - 0.9701

B7 0.9352 0.9133 0.9011 0.9568 - 0.9598 0.9521

B8 0.9536 0.9379 0.9270 0.9649 - 0.9681 0.9656

B9 0.9441 0.9455 0.9080 0.9294 0.9686 - 0.9573

B10 0.9542 0.9306 0.9197 0.9771 0.9709 - 0.9799

B11 0.9484 0.9385 0.9100 0.9617 0.9636 - 0.9760  
 

For Portugal, it was found that the LTDs used have 

difficulty in predicting GHI data at stations P2 to P5, 

which are located on the islands, with R² values lower 

than 90% in most stations. Despite the unsatisfactory 

results, NSRDB had the highest R² values while ERA5 

had the lowest correlations across all stations. In Brazil, 

SOLCAST had the best correlations, while ERA5 had the 

lowest across all stations. NSRDB performed well among 

the free databases, with R² values above 95% in most 

stations. 

The results for the MSE, MBE and MAPE were 

presented in Table III to V. 

For Arabia, SOLCAST and SOLARGIS showed the least 

bias, with SOLCAST slightly higher at station A7. 

NASA POWER exhibited the largest overestimations, 

while ERA5 had the smallest variation in MBE values. 

SOLARGIS and SOLCAST presented lower MSE and 

MAPE values, indicating more accurate predictions. 

The results obtained for Portugal, showed negative MBE 

values for most LTDs indicating GHI underestimation, 
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with NSRDB showing the least bias. ERA5 and 

SOLCAST had higher MSE values, while NSRDB had the 

lowest, suggesting better accuracy. Regarding MAPE, in 

general the values are high, above 10%, in all LTDs. 

For Brazil, the results for those error metrics showed that 

SOLCAST had the lowest MSE and MAPE values, 

providing the most accurate predictions across most 

stations, while ERA5 had the highest MAPE and MSE 

values. 

 

 
Table III. - Mean Bias Error, Mean Squared Error and Mean Absolute Percentage Error for GHI in Saudi Arabia 

 
Error      

metrics
LTD A1 A2 A3 A4 A5 A6 A7 A8 A9

NASA POWER 3747.34 2926.26 4243.24 2804.48 2123.08 3620.68 13107.11 2484.44 3522.03

ERA5 4430.96 3672.93 5517.47 4061.47 3693.11 4916.70 4510.44 4382.26 5741.81

SOLARGIS 2263.46 2263.46 2359.07 1796.49 1647.07 2277.33 1612.77 2123.22 1916.53

SOLCAST 2473.70 2473.70 2881.68 1544.31 1080.68 1933.41 2347.33 2030.40 2039.90

NASA POWER 22.24 19.81 21.72 12.11 10.71 25.72 34.34 7.82 0.39

ERA5 15.65 12.87 13.21 10.33 12.44 14.01 19.74 7.94 8.01

SOLARGIS 14.48 14.55 12.87 2.14 9.43 19.53 13.83 10.44 7.80
SOLCAST 14.83 7.61 16.55 2.47 2.64 15.24 23.04 13.37 13.26

NASA POWER 10.00 8.68 9.16 7.67 6.19 11.00 18.81 7.38 8.90

ERA5 9.00 8.42 8.51 8.18 7.97 9.00 9.00 9.22 10.09

SOLARGIS 7.00 7.09 7.00 5.25 5.42 8.00 6.44 6.74 6.47
SOLCAST 7.00 6.10 8.00 5.24 4.23 7.00 8.82 7.57 7.54

MSE 

(Wh
2
/m

4
)

MBE  

(Wh/m
2
)

MAPE (%)

 
 

Table IV. - Mean Bias Error, Mean Squared Error and Mean Absolute Percentage Error for GHI in Portugal 

 
Error       

metrics
LTD P1 P2 P3 P4 P5

NASA POWER 6599.84 7543.64 12730.22 15431.37 7666.46

ERA5 7511.88 9467.42 14158.35 17195.60 9584.71

NSRDB 4430.02 6657.21 8177.17 10808.51 8044.26

SOLCAST 3799.44 8858.19 14329.85 17626.08 9533.86

NASA POWER 24.79 -19.47 -37.10 -45.71 -28.91

ERA5 22.33 -10.30 -32.71 -44.34 -23.92

NSRDB 18.95 -13.93 -21.10 -32.78 -24.04
SOLCAST 17.44 -12.80 -34.81 -47.22 -25.41

NASA POWER 16.31 12.56 14.31 15.74 10.97

ERA5 15.99 16.22 17.24 17.92 14.71

NSRDB 12.57 12.74 13.58 14.61 14.68
SOLCAST 12.44 15.36 16.77 17.75 14.25

MSE  

(Wh
2
/m

4
)

MBE  

(Wh/m
2
)

MAPE (%)

 
 

Table V. - Mean Bias Error, Mean Squared Error and Mean Absolute Percentage Error for GHI in Brazil 

 
Error 

Metrics
BD B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

NASA POWER 5932.41 6504.24 3577.00 4762.73 4947.84 4538.22 7050.90 5541.59 6087.57 4934.50 5354.21

ERA5 6938.22 9772.70 7146.34 8219.02 8686.87 9354.90 10749.60 8742.12 10087.81 8595.91 9300.64

NSRDB 6055.80 8826.53 5779.49 4003.69 3024.18 4846.89 4789.24 4628.41 8382.34 2532.51 4452.40

PVGIS 7328.33 6614.46 6065.76 6878.51 6228.91 8176.15 9821.95 7465.33 6015.05 7762.35 6927.18

HELIOCLIM 6032.76 2848.33 - 2464.52 - 3565.91 - - 3451.09 3150.18 3874.68

SOLARGIS - - 3001.28 - 2838.49 - 4393.41 3866.59 - - -
SOLCAST 2779.40 1862.74 2479.37 2187.57 2435.75 3306.68 5254.05 4145.68 4741.75 2146.72 2602.70

NASA POWER -7.97 -7.15 -4.03 1.38 -5.28 7.80 1.17 2.14 -3.32 3.95 -6.48

ERA5 -3.04 -4.15 10.98 7.11 -5.98 12.19 3.42 10.55 0.82 6.03 -0.51

NSRDB -18.88 -14.16 -12.63 -11.28 -14.82 -10.33 -5.59 -14.06 -13.59 -5.60 -12.96

PVGIS -13.78 -10.75 -8.65 4.07 -9.79 -0.92 -3.69 -6.67 2.06 -0.77 -9.99

HELIOCLIM -0.43 0.46 - 7.76 - 2.94 - - 5.50 4.02 -4.51

SOLARGIS - - 7.95 - -0.74 - 3.78 8.03 - - -
SOLCAST -4.10 -3.88 3.13 2.33 -1.37 0.11 5.29 8.41 -6.30 -2.15 -8.16

NASA POWER 11.93 11.00 8.81 10.49 9.69 9.74 11.09 11.30 11.24 9.23 9.70

ERA5 13.01 15.00 13.39 14.26 12.33 13.86 13.59 14.58 14.96 12.15 12.70

NSRDB 12.19 15.00 10.90 9.33 8.15 8.00 8.35 9.20 12.94 5.56 8.96

PVGIS 13.86 12.00 11.98 12.29 12.62 12.03 14.12 13.10 12.35 12.18 11.47

HELIOCLIM 10.94 8.00 - 7.93 - 7.07 - - 9.33 6.84 8.53

SOLARGIS - - 8.58 - 8.40 - 9.24 9.55 - - -
SOLCAST 8.45 6.00 7.93 7.27 7.46 7.12 10.62 9.91 10.00 5.78 7.48

MSE  

(Wh
2
/m

4
)

MBE  

(Wh/m
2
)

MAPE (%)

 
 

 

After verifying the non-normality of the data, the Kruskal-

Wallis test for GHI errors (MBE, MSE, MAPE) applied 

across nine Saudi Arabia stations revealed statistically 

significant differences in most groups (Table VI). Chi-

squared test results further indicate that larger values 

provide stronger evidence of significant differences 

between group medians. The Dunn's post-hoc test further 

demonstrated that, in most Saudi Arabia stations, these 

differences were statistically significant, with the 

exception of specific cases such as ERA5–NASA 

POWER and SOLARGIS–SOLCAST at station A4. In 
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Portugal, the Kruskal-Wallis test for GHI errors also 

indicated significant differences in the majority of groups, 

with the exception of station P3, where MSE and MAPE 

did not show statistical significance (Table VII). Dunn's 

test further corroborated these discrepancies, with 

SOLCAST yielding estimates analogous to those of other 

methodologies, thereby suggesting stability. In Brazil, 

Kruskal-Wallis results demonstrated statistically 

significant GHI discrepancies across methodologies, 

particularly at stations B6 and B10 (Table VIII). Dunn's 

test further substantiated these discrepancies, with 

SOLCAST frequently exhibiting no substantial differences 

from other methodologies, signifying consistent 

performance with models like SOLARGIS in specific 

regions. 

 
Table VI. - Kruskal-Wallis test for GHI in Saudi Arabia 

 

Chi-square Sig. Chi-square Sig. Chi-square Sig.

A1 260.43 <0.01 274.72 <0.01 292.92 <0.01

A2 546.10 <0.01 400.62 <0.01 379.28 <0.01

A3 256.62 <0.01 231.67 <0.01 225.96 <0.01

A4 875.13 <0.01 619.42 <0.01 612.95 <0.01

A5 1093.10 <0.01 964.19 <0.01 887.97 <0.01

A6 399.30 <0.01 371.08 <0.01 385.00 <0.01

A7 746.89 <0.01 1580.61 <0.01 1424.60 <0.01

A8 91.27 <0.01 175.31 <0.01 169.74 <0.01

A9 149.95 <0.01 175.94 <0.01 3411.70 <0.01

 Kruskal-Wallis Test

Stations
MBE_GHI MSE_GHI MAPE_GHI

 
 

Table VII. - Kruskal-Wallis test for GHI in Portugal 

 

Chi-Square Sig. Chi-Square Sig. Chi-Square Sig.

P1 174.68 <0.01 152.90 <0.01 222.37 <0.01

P2 298.40 <0.01 5075.70 <0.01 132.23 <0.01

P3 16.11 <0.01 8.76 0.067 7.18 0.127

P4 49.56 <0.01 60.40 <0.01 50.43 <0.01

P5 233.42 <0.01 85.66 <0.01 60.54 <0.01

Kruskal-Wallis Test

Stations
MBE_GHI MSE_GHI MAPE_GHI

 
 

Table VIII. - Kruskal-Wallis test for GHI in Brazil 

 

Chi-Square Sig. Chi-Square Sig. Chi-Square Sig.

B1 506.11 <0.01 420.22 <0.01 386.54 <0.01

B2 371.97 <0.01 1065.3 <0.01 986.94 <0.01

B3 803.27 <0.01 385.52 <0.01 355.10 <0.01

B4 769.31 <0.01 671.56 <0.01 628.19 <0.01

B5 545.32 <0.01 471.92 <0.01 447.07 <0.01

B6 1135.10 <0.01 865.56 <0.01 861.96 <0.01

B7 484.63 <0.01 666.95 <0.01 669.25 <0.01

B8 799.42 <0.01 541.54 <0.01 509.84 <0.01

B9 424.45 <0.01 145.58 <0.01 130.26 <0.01

B10 912.25 <0.01 1423.20 <0.01 1413.30 <0.01

B11 548.09 <0.01 306.03 <0.01 297.76 <0.01

Stations
MBE_GHI MSE_GHI MAPE_GHI

Kruskal-Wallis Test

 
 

 

4. Conclusion 
 

This study evaluated long-term solar databases (LTDs) and 

their correlation with measured solar irradiance in multiple 

regions, including Portugal, Saudi Arabia, and Brazil. In 

Saudi Arabia, SOLCAST and SOLARGIS outperformed, 

with R² values exceeding 90%, while ERA5 showed the 

poorest correlation, NASA POWER was competitive, 

albeit slightly below the top databases. Selecting 

premium databases like SOLCAST and SOLARGIS 

enhances solar resource estimation accuracy in Saudi 

Arabia. 

In Portugal, GHI was less accurately predicted by LTDs, 

particularly at island-based stations (P2 to P5), where R² 

values were below 90%. NSRDB was the most reliable 

database, outperforming other datasets in terms of 

correlation and error metrics. ERA5 consistently 

underperformed.  

For Brazil, SOLCAST was found to be the most accurate 

LTD, yielding the lowest MBE, MSE and MAPE across 

most stations. NSRDB also exhibited strong correlations, 

particularly among the free databases, while ERA5 

consistently delivered the least accurate predictions. This 

suggests that SOLCAST can be a robust tool for energy 

planning and risk assessment in the region. 

Statistical analyses confirmed significant differences 

between the LTDs' predictive capabilities. SOLCAST 

and SOLARGIS provided more consistent and 

statistically significant results compared to other 

databases in most cases, particularly in Saudi Arabia and 

Brazil. This further validates the reliability and 

usefulness of these databases for solar energy 

assessments. LTDs have some limitations, such as the 

availability and representativeness of local stations, 

variations in atmospheric conditions, topography and 

climate patterns, which may influence database 

performance. Future research should explore hybrid 

models using additional datasets and machine learning to 

enhance accuracy. Adaptive correction methods may help 

in areas where deviations are more pronounced, and the 

implications of this study are relevant for solar energy 

forecasting and photovoltaic system design and yield 

predictions. This research identifies the most reliable 

LTDs for different regions and can contribute to 

developing consistent solar resource assessments 

worldwide.  
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