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Abstract. Wind energy has experienced significant growth in

recent years; however, it still faces challenges in operation and 

maintenance, which impact energy efficiency and lead to high 

costs. This study proposes an anomaly detection model for wind 

turbines based on a support vector machine (SVM), optimized 

using Bayesian search. The model was trained using vibration data 

from the Gearbox Reliability Collaborative (GRC) project of the 

National Renewable Energy Laboratory (NREL), specifically 

from the High-Speed Shaft Upwind Bearing Radial and High-

Speed Shaft Downwind Bearing Radial sensors, with 40,000 

records evenly distributed between normal and anomalous 

conditions. The proposed model achieved an overall fault 

detection accuracy of 78.95% and 78.50% for the respective sensor 

data. Bayesian optimization facilitated the fine-tuning of the 

hyperparameters in the classification technique, enhancing the 

model's anomaly detection capability. Furthermore, the use of 

vibration data enabled the identification of critical fault patterns in 

turbine operation, contributing to the improvement of wind turbine 

efficiency and reliability. 
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1. Introduction

In recent years, the global adoption of renewable energy 

sources has increased significantly, driving major 

advancements in energy sustainability and playing a crucial 

role in reducing environmental impact [1]. Among these 

sources, wind energy has emerged as a promising 

alternative to fossil fuels due to its capacity to generate 

electricity efficiently, reliably, and with minimal 

environmental impact by harnessing wind power [2]. 

According to the Global Offshore Wind Report 2024 

published by the Global Wind Energy Council (GWEC), 

global wind power capacity reached a record high of 1 

terawatt (TW) in 2023, representing a 24% increase 

compared to 2022 [3]. 

Despite significant technological advancements, wind 

energy continues to face substantial challenges in its 

operation and maintenance (O&M) processes, leading to 

high maintenance costs and impacting power generation 

efficiency. These costs account for approximately 10% to 

15% of onshore wind farm revenues and 20% to 25% for 

offshore turbines over their 20-year operational lifespan 

[4]. Key O&M challenges include failures in electrical and 

control systems, blades, hydraulic systems, generators, 

and gearboxes [5], [6]. 

Several studies have investigated the detection of turbine 

anomalies, often utilizing measured vibration signals as a 

key diagnostic tool [7]. For instance, in [8], a method 

combining Long Short-Term Memory (LSTM) neural 

networks and Autoencoders is proposed for anomaly 

detection in a 3 MW wind turbine located on the south 

coast of Ireland. The results of this study achieved an 

accuracy of 92.95%. 

Similarly, in [9], a multi-channel convolutional neural 

network (MCNN) was employed to detect blade angle 

anomalies, surface damage, and fractures based on data 

from a triaxial transducer, which recorded vibration 

signals under normal conditions and three specific fault 

states, achieving an accuracy of 87.8%. 

Furthermore, the study presented in [10] introduced an 

anomaly detection model based on a deep convolutional 

autoencoder enhanced by fault instances (Triplet-

ConvDAE). This model was trained using SCADA data 

collected from a Mongolian wind farm, analyzing two 

wind turbines over the period November 2015 to January 

2016. The results demonstrated classification accuracies 

of 87.2% and 87.0% for the two turbines. 
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Given the significance of anomaly detection in generators 

and its potential to reduce maintenance costs while 

improving wind turbine operation, this study proposes an 

approach based on support vector machines (SVM) 

combined with a Bayesian optimizer for hyperparameter 

tuning. The dataset used in this study was obtained from the 

Gearbox Reliability Collaborative (GRC) project [3] of the 

National Renewable Energy Laboratory (NREL), which 

includes sensors installed at various locations within the 

wind turbine gearbox to collect operational data. The 

model's performance is evaluated using widely recognized 

metrics, including accuracy, F1-score, recall, and the 

confusion matrix. 

 

This document is structured as follows: Section 2 describes 

the materials used in this study. Section 3 outlines the 

proposed strategy for anomaly detection. Section 4 presents 

the obtained results and compares them with existing 

studies in the literature. Finally, Section 5 summarizes the 

conclusions drawn from this study and suggests potential 

directions for future research. 

 

2. Materials 
 

This study utilized a dataset from a wind turbine test rig, 

provided by the Gearbox Reliability Collaborative (GRC) 

project of the National Renewable Energy Laboratory 

(NREL) [3] The dataset was collected from accelerometers 

installed at various locations within the wind turbine drive 

system, including the ring gear and the bearings of the low-

, intermediate-, and high-speed shafts, among others. Each 

accelerometer was connected to a SCADA-based data 

acquisition system, operating at a sampling rate of 40 kHz 

per channel. 

 

This dataset comprises 10 subsets, each corresponding to a 

different wind turbine equipped with 9 sensors, recording 

approximately 2.4 million samples per sensor, classified as 

either “Healthy” or “Damaged”. For this study, 20,000 

records obtained from the High-Speed Shaft Upwind 

Bearing Radial Sensor were processed and analyzed, with 

10,000 classified as “Healthy” and the remaining 10,000 as 

“Damaged”. A similar procedure was followed for the data 

from the High-Speed Shaft Downwind Bearing Radial 

Sensor. 

 

Table I provides a summary of the dataset used in this study, 

organized according to turbine condition, sensor type, and 

data format. 

 

Table 1. High-Speed Shaft Sensor – Vibration Data 

 
Status Sensor 

Position 

Data type Example Unit 

Healthy Upwind   

 

Integer 2 

decimals 

1.65  

 

m/s2 Downwind  2.95 

Damaged Upwind  15.93 

Downwind  10.07 

 

 

 

Figure 1 illustrates the location of each sensor within the 

gearbox. The High-Speed Shaft Upwind Bearing Radial 

Sensor measures vibrations at the windward bearing of the 

high-speed shaft, while the High-Speed Shaft Downwind 

Bearing Radial Sensor monitors radial vibrations in the 

epicyclic gear train support. 

 

 
 

Fig.1. Location of vibration measurement sensors  [3]. 

 

Figure 2 presents an example of vibratory acceleration signals 

recorded by the High-Speed Shaft Upwind Bearing Sensor in 

the wind turbine gearbox. Figure 2a depicts normal operating 

conditions, with acceleration values ranging approximately 

between ±15 m/s², while Figure 2b illustrates anomalous 

conditions or faults, with a reduced acceleration range of 

approximately ±8 m/s². 

 

 
Fig.2. Sample records of the High-Speed Shaft upwind bearing 

sensor: a) normal and b) anomalous. 

 

Figure 3 presents vibratory acceleration signals recorded 

by the High-Speed Shaft Downwind Bearing Radial 

Sensor in the wind turbine gearbox. Figure 3a depicts 

normal operating conditions, with acceleration values 

ranging approximately between ±7 m/s², while Figure 3b 

illustrates anomalous conditions or faults, with an 

increased acceleration range of approximately ±23 m/s². 

 

 
Fig.3. Sample records of the High-Speed Shaft downwind 

bearing sensor: a) normal and b) anomalous. 

 

The sampling frequency was 40 kHz, where each High-Speed 

Shaft vibration sensor oscillated between ±7 m/s² under normal 

Econditions and up to ±23 m/s² under fault conditions, as shown 

in Figures 2 and 3. These changes between samples provide 

fundamental information for fault detection. 
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3. Anomaly detection algorithm 

 
The proposed wind turbine anomaly detection algorithm 

utilizes a support vector machine (SVM) model [11], 

optimized using the Bayesian Optuna algorithm [12]. The 

algorithm is structured into several phases: data acquisition 

and preprocessing, hyperparameter optimization, model 

training, and performance evaluation. 

 
A. Phase 1: Reading and preparation of the data 

 

In this phase, the dataset is imported from .csv files 

containing sensor measurements under both normal and 

abnormal conditions. Subsequently, labels are assigned to 

each sample according to Equation (1). 

 

         𝑦𝑖 = { 1 𝑠𝑖 𝑋𝑖 ∈ 𝑋𝑛𝑜𝑟𝑚𝑎𝑙
−1 𝑠𝑖 𝑋𝑖 ∈ 𝑋𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠

  }                       (1) 

 

Where 𝑋𝑛𝑜𝑟𝑚𝑎𝑙  represents the normal data, corresponding 

to the expected behavior of the turbine, and is assigned the 

label 𝑦 = 1. Conversely, 𝑋𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 represents faulty 

conditions and is assigned the label 𝑦 = −1. 

 

Once the data were labeled, the 𝑋𝑛𝑜𝑟𝑚𝑎𝑙  and 𝑋𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠  sets 

were concatenated for normalization. Z-score normalization 

was then applied using Equation (2) to enhance the 

distinction between normal and abnormal data. 

 

   𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝑋 − 𝜇

𝜎
                    (2) 

 

Where 𝑋 represents the original feature value, 𝜇 is the mean 

of the feature, and 𝜎 is the standard deviation. 

Finally, the dataset was divided into training and test sets, 

allocating 70% for training and 30% for testing. 

 

B. Phase 2: Hyperparameter optimization of the SVM 

 

In this phase, the hyperparameters of the SVM model are 

optimized using Optuna, a Bayesian optimization 

framework. The goal of this optimization is to identify the 

optimal combination of parameters that maximizes the 

model's performance metric or minimizes the associated 

error. 

 

The hyperparameters to be optimized are C, which controls 

the trade-off between margin maximization and 

classification error, and γ, which determines the influence 

of each data point on the classification process.  

The Bayesian optimization process is mathematically 

defined by Equation (3). 

                           (𝐶∗, 𝛾∗) =
arg max 𝑓(𝐶, 𝛾)

𝐶, 𝛾 
                   (3) 

Where C and γ are assigned following a uniform linear 

distribution, enabling the exploration of both small and 

large values with equal probability (Equation 4). 

                              
C ∈  [10−2, 102 ] 

γ ∈  [10−4, 10−1]
                 (4) 

 

In addition, the function f(C, γ) measures the model 

performance by a Gaussian process (equation 5).   

𝑓(𝐶, 𝛾) ∼ 𝐺𝑃(𝜇(𝐶, 𝛾), 𝑘((𝐶, 𝛾), (𝐶′, 𝛾′)))        (5) 

 

Where μ(C, γ) represents the predictive mean, and k((C, 

γ), (C′, γ′)) denotes the covariance (kernel), which 

quantifies the similarity between points in the search 

space. 

 

Equation (3) iteratively evaluates multiple hyperparameter 

combinations within these ranges (Equation 4) until the 

optimal configuration is determined. 

 

The obtained results are as follows: for the High-Speed 

Shaft Upwind Bearing Sensor data, C = 0.4651 and γ = 

0.0483; while for the High-Speed Shaft Downwind 

Bearing Sensor data, C = 0.4961 and γ = 0.0483. 

 

C. Phase 3: Support Vector Machines (SVM) model 

definition and model evaluation. 

 

Once the optimal values of C and γ for the model have 

been determined, the training process is conducted using 

Equation (5). 

 

           𝑓(x) =  ∑ αi𝑦iK(xi, x) +N
i=1  b                   (5) 

 

Where x represents the new point to be classified, xi are 

the support vectors, αi are the corresponding coefficients, 

and yi are the labels assigned to each support vector (+1 

for normal and -1 for anomalous). The function K(xi, x) 

denotes the kernel function, while b is the bias term that 

adjusts the class separation. In this process, the 

hyperparameter C influences the values of αi , while γ 

affects the kernel function K(xi, x). 

 

Therefore, if 𝑓(𝑥)  ≥  0, the data point is classified as 

normal. Conversely, if 𝑓(𝑥)  <  0, it is classified as an 

anomalous. 

 

In this phase, the trained model is evaluated using 

performance metrics such as accuracy, F1-score, recall, 

and the confusion matrix to assess its effectiveness in 

distinguishing between normal and abnormal conditions. 

 

 

4. Fault detection with optimized SVM 

 
For each sensor, 70% of the total dataset 14,000 records) 

was used for training, while the remaining 30% (6,000 

records) was assigned to the test set. This division is 

commonly used in artificial intelligence, as it aims to 

provide sufficient data for model training without 

compromising its generalization ability during evaluation 

[13]. 

 

In order to evaluate the repeatability and robustness of the 

proposed approach, the entire experimental process was 
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repeated 10 times for each sensor. Additionally, in the 

automatic hyperparameter optimization process (Bayesian 

algorithm), a limit of up to 1000 different hyperparameter 

combinations was set in order to find the best configuration. 

 

Figure 4 presents the confusion matrix illustrating the 

performance of the algorithm in classifying normal and 

anomalous data. 

 

 
Fig.4. Confusion matrix for data error detection of the High-

Speed Shaft Upwind Bearing Radial sensor. 

 

This confusion matrix reports a total of 240 true negatives 

(TN) and 210 true positives (TP), indicating that the model 

correctly classifies a significant proportion of normal and 

anomalous cases. However, the presence of 50 false 

positives (FP) and 70 false negatives (FN) suggests that 

classification errors still persist. 

 

Table 2 presents the results of the proposed algorithm using 

data from the High-Speed Shaft Upwind Bearing Radial 

Sensor, including accuracy, which represents the overall 

classification success rate; recall, which quantifies the 

proportion of correctly identified positive cases; and the F1-

score, which is the harmonic mean of precision and recall. 

 
Table 2. - Results obtained with data from the High-Speed Shaft 

Upwind Bearing Radial Sensor. 

Class Precision Recall   F1-score    

Normals 0.774 0.82 0.799 

Anomalous 0.8076 0.75 0.777 

 

The model achieved an overall accuracy of 78.95%, with an 

accuracy of 80.77% and a recall of 75.00% in anomaly 

detection, demonstrating a strong capability for correctly 

identifying anomalous events. Similarly, the normal class 

exhibited an accuracy of 77.42% and a recall of 82.76%, 

reflecting reliable performance in detecting fault-free states. 

Additionally, the execution time was 7.8 seconds, indicating 

that this approach provides a simpler and faster alternative, 

facilitating its application in large-scale data analysis. 

 

Similarly, for the High-Speed Shaft Downwind Bearing 

Radial Sensor, 70% of the total dataset (14,000 records) was 

used for training the model, while the remaining 30% (6,000 

records) was allocated to the test set. 

 

Figure 5 presents the confusion matrix, illustrating the 

performance of the proposed algorithm in classifying 

normal and anomalous data using measurements from the 

High-Speed Shaft Downwind Bearing Radial Sensor. 

 

 
Fig.5. Confusion matrix for data error detection of the High-

Speed Shaft downwind bearing radial sensor. 

 

This confusion matrix demonstrates a balanced 

performance of the model in detecting anomalies, with 238 

true negatives (TN) and 233 true positives (TP), indicating 

that the model correctly classifies a significant proportion 

of normal and anomalous cases. However, the presence of 

64 false positives (FP) and 65 false negatives (FN) 

suggests that classification errors persist. 

 

Table 3 presents the results of the algorithm using data 

from the High-Speed Shaft Downwind Bearing Radial 

Sensor. 
 

Table 3. - Results obtained with data from the High-Speed Shaft 

downwind Bearing Radial sensor. 

Class Precision Recall   F1-

score    

Normals 0.7855 0.7881 0.7868 

Anomalous 0.7845 0.7819 0.7832 

 

The model achieved an overall accuracy of 78.50% in 

classifying both categories. The similar values of 

precision, recall, and F1-score for both classes suggest that 

the dataset is of sufficient quality to train a reliable model. 

However, the presence of false negatives indicates 

challenges in correctly identifying certain anomalous 

instances. 

 

Furthermore, the execution time was 8.1 seconds, 

demonstrating that this approach provides a 

computationally efficient and scalable solution, 

facilitating its application in large-scale data analysis. 

 

Compared to previous studies, the proposed model 

demonstrates competitive performance in wind turbine 

anomaly detection. Hansi Chen [10] achieved an accuracy 

of 92.95% using LSTM and Autoencoders, Wang Meng-

Hui [11] obtained 87.8% with MCNN, and Jiarui Liu [12]  

reported accuracies of 87.2% and 87.0% with Triplet-

ConvDAE. In this study, accuracies of 78.95% and 

78.50% were obtained using the High-Speed Shaft 

Upwind and Downwind Bearing Radial Sensors.  

 

Although the accuracy values are lower than those 

reported in previous studies, this approach is distinguished 

by its computational efficiency and simplicity, as it 

operates directly with real data without requiring complex 

computational processes. Additionally, the processing 

time is short, averaging 7.94 seconds, further reinforcing 

its efficiency and making it a viable alternative for the 

analysis of large-scale datasets.  
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5. Conclusions and future work 
 

This study examined the effectiveness of a support vector 

machine (SVM)-based model, optimized using a Bayesian 

search algorithm, for wind turbine anomaly detection based 

on vibration data from two different sensors: the High-

Speed Shaft Upwind Bearing Radial Sensor and the High-

Speed Shaft Downwind Bearing Radial Sensor. 
 

The application of support vector machines (SVM) in this 

study demonstrated effective classification of wind turbine 

anomalies by identifying patterns in vibration data. The 

optimization of hyperparameters using a Bayesian 

algorithm improved the model's accuracy and enhanced the 

balance in fault classification, reducing the risk of 

overfitting. Collectively, these factors contribute to a robust 

and reliable approach for wind turbine fault detection. 

 

As future research directions, several improvements are 

proposed, including the application of advanced feature 

extraction techniques for vibration signals, such as wavelet 

transform, to enhance the identification of patterns 

associated with failures. Additionally, the integration of 

multiple data sources will enable a more comprehensive and 

accurate analysis of the operational status. Another potential 

enhancement involves extracting information to explain the 

factors that influenced the anomaly classification process 

[14]. 
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