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Abstract. The integration of renewable energy sources into

electrical grids introduces significant challenges, particularly in 

ensuring stability and reliability in dynamic, nonlinear 

environments. These sources create fluctuations, uncertainties, and 

voltage regulation issues that traditional control systems struggle 

to manage, compromising the grid’s ability to deliver a stable 

power supply. Addressing these challenges requires advanced, 

adaptive control solutions capable of responding to the variable 

nature of renewable energy. 

This article explores advanced techniques, focusing on 

reinforcement learning and Neuroevolution, to develop innovative 

control strategies for electrical systems. Neuroevolution, which 

combines neural networks with evolutionary algorithms, optimizes 

control without relying on gradient-based methods, making it 

suitable for complex, unpredictable scenarios. These approaches 

enhance grid stability, improve response times, and enable real-

time anomaly detection and corrective actions, offering a resilient 

and efficient solution to the limitations of traditional control 

methods. 
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1. Introduction

Conventional control systems face significant challenges 

due to the increasing integration of renewable energy 

sources, such as solar and wind, due to their intermittent and 

nonlinear nature. These traditional control systems, 

designed for more predictable power grids, struggle to 

manage voltage fluctuations and operate efficiently in high-

uncertainty scenarios. Therefore, it is necessary to explore 

new approaches that can enhance performance and ensure 

the stability of modern power grids[1]. 

Reinforcement learning offers a promising solution to these 

problems, as it allows the creation of agents that learn to 

make control decisions autonomously and adaptively. This 

approach can replace conventional control systems by 

training an agent that optimizes its performance by 

maximizing rewards through continuous interaction with 

the environment [2]. In the context of power systems, the 

agent can manage voltage fluctuations and disturbances 

more efficiently, quickly adapting to changing conditions 

and operating optimally without the need for an accurate 

model of the system. Additionally, these agents can 

control several system elements simultaneously, 

optimizing multiple critical variables such as frequency, 

voltage, and transmission capacity within a single learning 

process [3]. 

Fig. 1.  Flow diagram of reinforcement learning 

Among the reinforcement learning algorithms analysed in 

this study is Deep Q-Learning (DQL), which uses deep 

neural networks to train a control policy that optimizes the 

power system's performance. This algorithm iteratively 

adjusts the agent's policy through exploration and 

learning, enabling the control of key system variables [4]. 

However, this method may require extended training times 

due to the need for gradient calculations. 

As an alternative, a reinforcement learning algorithm 

based on Neuroevolution is proposed, which uses Genetic 

Algorithms (GA) [5] to train a neural network, directly 

adjusting the network's weights without calculating 

gradients. This approach emulates biological evolution 

principles, such as mutations and crossovers, to optimize 

the power system's performance. By avoiding gradient 

calculations, GAs significantly reduces training time 

compared to traditional methods like DQL. 

Similarly, an approach based on Particle Swarm 

Optimization (PSO) is analysed to train the neural 

network's weights. This algorithm is inspired by the 

collective behaviour of swarms, such as birds or fish, to 

search for optimal solutions [6]. Like GAs, PSO adjusts 

only the weights of the neural network without modifying 
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its structure. This method stands out for its rapid adaptation 

and shorter training times, making it an effective tool to 

enhance power system control in dynamic and high-

uncertainty environments [7]. 

 

This study explores reinforcement learning and 

Neuroevolution techniques to enhance electrical system 

control under high uncertainty and dynamic conditions from 

renewable energy integration. It assesses Deep Q-Learning 

(DQL), Genetic Algorithms (GA), and Particle Swarm 

Optimization (PSO) for optimizing stability, real-time 

response, and adaptability. These methods aim to 

outperform traditional controls by improving anomaly 

detection and robustness against voltage fluctuations. The 

research also compares these approaches with conventional 

methods to develop adaptive, efficient solutions for modern 

grids, providing a foundation for future real-world 

implementation. 

 

The document is structured into sections covering key 

aspects of advanced control techniques in electrical 

systems. The introduction outlines challenges in integrating 

renewable energy and the need for innovative solutions. The 

Theoretical Framework details reinforcement learning and 

Neuroevolution techniques. The Methodology section 

examines control strategies analytically. The Literature 

Review assesses Neuroevolution applications, 

advancements, and challenges. Future Perspectives explore 

potential real-world applications, and the Conclusion 

summarizes findings and their impact on future research and 

renewable energy integration. 

 

2. Theoretical Framework 

 
Currently, the integration of renewable energy sources into 

electrical grids is presenting new challenges in the stability 

and control of these systems. Traditional methods of 

electrical grid control, which rely on linear approaches and 

static predictive models, struggle to adapt to the variable 

and unpredictable nature of renewable energy sources such 

as solar and wind power. These sources are inherently 

intermittent and subject to changing weather and 

environmental conditions, making their behavior difficult to 

predict and control using conventional methods.  

 

As the proportion of renewable energy in the energy mix 

increases, the need for more flexible and adaptive solutions 

becomes more urgent. In this context, new control 

techniques based on deep learning, such as reinforcement 

learning and Neuroevolution, emerge as promising 

alternatives. These methodologies allow for the adaptive 

optimization of electrical system behavior, adjusting 

dynamically to real-time changes without relying on 

conventional methods, which often fail to effectively 

manage the uncertainty and variability inherent in 

renewable energy sources.  

 

Through the ability to learn from experience and adapt to 

changing scenarios, these techniques offer a significant 

advantage over traditional approaches. Throughout this 

theoretical framework, the main innovative techniques will 

be explored, including their fundamental principles, 

advantages over traditional methods, and the challenges 

that must be overcome for their effective implementation 

in dynamic electrical grids with high uncertainty. 

Additionally, the discussion will focus on how these 

methodologies could transform the control and 

management of electrical grids in the future, providing the 

necessary flexibility to more efficiently integrate 

renewable energy sources [1] [2] [3]. 

 

A. Reinforcement Learning  

Reinforcement learning is an unsupervised machine 

learning technique in which an agent learns to make 

decisions through interaction with its environment. Rather 

than relying on labelled data, the agent receives rewards or 

penalties based on its actions, enabling it to autonomously 

learn to maximize its performance over time. This 

methodology has proven effective in complex systems, 

such as electrical control systems, where conditions 

change dynamically and are not always predictable [8]. 

 

B. Deep Q-Learning 

Deep Q-Learning (DQL) is one of the most widely used 

techniques within reinforcement learning. Although it is 

an unsupervised approach, DQL utilizes deep neural 

networks to estimate the value function of an agent. 

Through this algorithm, the agent learns to select the best 

action in each state of the environment to maximize long-

term rewards. However, as it is a gradient-based 

algorithm, its training time may be slower compared to 

other approaches, especially when facing environments 

with high variability [4]. 

 

C. Neuroevolution 

Neuroevolution is a technique that combines neural 

networks with evolutionary algorithms to optimize both 

the structure and parameters of the network, without the 

need for gradient-based methods. In this approach, 

solutions are evolved iteratively, adapting to 

environmental changes, to improve system efficiency and 

performance. The primary advantage of Neuroevolution is 

that it can optimize neural networks more quickly and 

efficiently than gradient-based methods, and it is also 

parallelizable, which enhances training speed in complex 

scenarios. 

 

D. Neuroevolution with Genetic Algorithms 

In the context of Neuroevolution, genetic algorithms (GA) 

are used to adjust the parameters of neural networks, such 

as weights and biases. Genetic algorithms operate by 

simulating the process of natural selection, where the 

fittest solutions are preserved and combined through 

mutations and crossover. This allows for the discovery of 

optimal solutions without the need for gradient 

calculations. This approach is particularly useful for 

optimization tasks in electrical systems, where conditions 

change continuously, and a differentiable loss function 

may not always be available [6]. 

 

E. Neuroevolution with PSO 

Another variant of Neuroevolution employs the Particle 

Swarm Optimization (PSO) algorithm. Unlike genetic 

algorithms, PSO is based on the movement of particles in 
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a search space, with particles cooperating to find the optimal 

solution. 

 

 
Fig. 2.  Flow diagram of genetic algorithm 

 

This approach also enables the optimization of the neural 

network’s weights and biases without requiring gradient-

based methods. PSO excels in efficiently exploring complex 

search spaces and is faster compared to methods that rely on 

gradient calculations, making it an attractive option for 

optimization in dynamic electrical systems [7]. 

 

 
Fig. 3.  Flow diagram of PSO 

 

F. Challenges and Advantages of Neuroevolution 

Although Neuroevolution has shown promising results in 

controlling dynamic systems such as electrical systems, it 

presents certain challenges. One of the main drawbacks is 

that the convergence of evolutionary algorithms may be 

slower compared to other methods, especially in scenarios 

with large search spaces. However, evolutionary algorithms 

do not require gradient calculations, making them more 

effective in non-differentiable problems, such as those 

found in electrical systems where simulations may not 

always be continuous or smooth. Furthermore, the ability 

to parallelize the training process enhances response times 

in complex control systems. 

 

3. Methodology of the Analysis 

 
Based on the reviewed literature, we have selected the 

methodologies described below, which focus on the use of 

genetic algorithms (GA) and neural networks for 

controlling dynamic electrical systems. This selection was 

made considering not only the relevance and impact of 

these technologies in controlling key variables in electrical 

systems, but also their potential to address emerging 

challenges, particularly the integration of renewable 

energy sources and energy optimization. In a context 

where the variability and uncertainty of renewable energy 

sources (such as solar and wind energy) are key factors in 

the operation of electrical systems, these methodologies 

are presented as essential tools to maintain system stability 

and operational efficiency. Advances in processing power 

and computational capabilities, along with improvements 

in evolutionary optimization algorithms, open new 

prospects for implementing adaptive techniques that can 

more efficiently manage the changing and dynamic 

conditions of electrical systems [6] [7]. 

 

Analysis and Organization of the Methodology 

Once the relevant literature was collected and thoroughly 

reviewed, the studies were organized into thematic 

categories to provide a clear and understandable structure. 

The studies were grouped according to the main 

approaches and methodologies adopted, allowing for a 

more detailed analysis of their application in the field of 

electrical system control. These approaches were defined 

by the following research lines: 

 

• Application of Genetic Algorithms (GA) in 

Power Grids: Numerous studies were reviewed in which 

GAs were applied to optimize key aspects of energy 

distribution, improve operational efficiency, and manage 

generation in electrical systems. Special attention was 

given to studies that considered the presence of renewable 

energy sources, which introduce fluctuations and 

variability in energy production, making it essential to 

have flexible and adaptive methodologies. GAs were 

shown to be effective in finding optimal solutions for 

resource allocation and improving the operation of 

electrical grids, especially in contexts with high demand 

and production variability [9] [7]. 

 

• Use of Neural Networks in Electrical System 

Control: This category analyzed research that employs 

neural networks, particularly those aimed at predicting and 

modeling key variables such as voltage, frequency, and 

power flow in grids. Studies were highlighted in which 

neural networks were used to optimize system stability and 

performance in real-time, addressing both the prediction 

of future behaviors and adaptation to sudden changes in 

demand or energy supply. Furthermore, the benefits of the 

neural networks’ ability to handle large volumes of data 
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were discussed, making them ideal tools for controlling 

complex and dynamic electrical systems [6]. 

 

• Integration of Evolutionary Algorithms and Neural 

Networks: This hybrid approach, combining genetic 

algorithms with neural networks, has demonstrated 

significant potential in recent literature. It is an emerging 

trend that seeks to integrate the best of both worlds: the 

adaptability and optimization of GAs alongside the 

predictive and modeling capabilities of neural networks. In 

the studies reviewed, it was highlighted how 

Neuroevolution, by enabling the dynamic adaptation of 

controller parameters, facilitates continuous improvement 

in stability and efficiency in electrical systems. This 

approach allows for the management of the inherent 

complexity of next-generation electrical systems, 

optimizing their performance even under changing 

conditions and uncertainty. The combination of neural 

networks with evolutionary algorithms has also shown great 

potential in reducing the dependency on historical data and 

improving real-time adaptability [10]. 

 

4. Analysis of the Literature on 

Neuroevolution 

 
In the literature analysis related to Neuroevolution, it was 

determined that the multilayer perceptron (MLP) neural 

network architecture, densely connected with one or two 

hidden layers, seems to be the best option for controlling 

dynamic electrical systems [1] [2]. This architecture strikes 

a good balance between complexity and generalization 

capability, enabling effective optimization of key variables 

in electrical systems. 

 

A. Method for Assessing Study Quality 

A critical approach was adopted to assess the quality of the 

selected studies, identifying the strengths and limitations of 

each reviewed article. The following aspects were 

considered: 

 

• Clarity and Detail of the Methodology: The clarity 

with which the studies explained the methods used, 

especially the details of genetic algorithms and neural 

network structures, was evaluated. 

• Relevance of Results: The reported results were 

reviewed in terms of their practical applicability and the 

observed improvement in controlled variables (voltage, 

frequency, energy efficiency). 

• Comparison with Traditional Methods: Studies 

that included comparisons between the proposed methods 

and traditional approaches (such as PID controllers) were 

particularly relevant, as they provide evidence of the 

advantages and disadvantages of evolutionary approaches 

[4]. 

 

B. Analysis of Genetic Algorithms in Electrical Systems 

Regarding the use of genetic algorithms, it was found that 

the approach employing Boltzmann selection, in which the 

genetic algorithm hyperparameters vary as generations 

progress, is the most suitable for an environment like an 

electrical system. This approach allows for more precise 

adaptation to the variations in the electrical system and 

enhances the convergence in the optimization of solutions 

[9]. 

 

C. Limitations of the Study and Areas for Future 

Research 

While this review covers a broad range of relevant studies, 

several limitations are acknowledged. First, many of the 

reviewed studies primarily focused on simulations and 

controlled environments, so the implementation in real 

electrical systems remains an emerging research area. 

Additionally, some studies did not provide sufficient 

details on the practical implementation of algorithms in 

dynamic environments with uncertainty. 

Based on the findings of this review, key areas for future 

research are identified: 

 

• Real-Time Optimization: More research is 

needed on the implementation of genetic algorithms and 

neural networks in real-time control environments, 

especially in systems with high variability and intermittent 

renewable sources [6]. 

• Improvements in Computational Efficiency: The 

development of hybrid techniques combining genetic 

algorithms and neural networks with more efficient 

optimization methods could overcome the convergence 

speed limitations observed in some studies. 

• Experimental Validation: More experimental 

validation studies are necessary to demonstrate the 

effectiveness of evolutionary approaches in real electrical 

systems, with changing operational conditions [3]. 

 

Table 1 is a comparative table summarizing the main 

characteristics and outcomes of the analyzed 

methodologies, highlighting their applicability in the 

control of electrical systems with renewable energy 

sources. Specifically, it provides a comprehensive 

comparison of three methodologies—Deep Q-Learning 

(DQL), Neuroevolution with Genetic Algorithm (NE-

GA), and Neuroevolution with Particle Swarm 

Optimization (NE-PSO)—based on several critical 

characteristics relevant to their application in dynamic 

electrical system control. From the comparison, we can 

draw several key conclusions. Firstly, while all three 

methods exhibit high adaptability to network changes, 

both NE-GA and NE-PSO offer superior dynamic 

adjustment capabilities compared to DQL, which requires 

a more complex setup [7]. 

 

In terms of robustness, NE-GA and NE-PSO demonstrate 

very high performance in unexpected scenarios, benefiting 

from their evolutionary nature and ability to explore large 

solution spaces. However, this comes with increased 

computational costs, especially for NE-GA, which 

evaluates entire populations during its evolutionary 

process [2].  

 

On the other hand, DQL, while offering high robustness 

and the ability to learn dynamically, has the drawback of 

being computationally expensive due to the need for 

many iterations in Q-model updates [1]. 
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Table I. - Comprehensive Comparison of Advanced Control Methodologies for Electrical Systems 

 

Characteristics Deep Q-Learning (DQL) 
Neuroevolution with 

Genetic Algorithm (NE-GA) 
Neuroevolution with PSO 

(NE-PSO) 

Ease of Initial 
Implementation  

Requires a complex neural 
network and environment 
setup [4] 

Moderate, depends on initial 
population design [11] 

Moderate, requires particle 
parameter tuning [12] 

Adaptability to Network 
Changes 

High, learns dynamically 
Very high, evolves with the 
system 

Very high, fast dynamic 
adjustment 

Interpretability of Decisions 
Low, neural network is a 
"black box" 

Low, requires evolutionary 
analysis to interpret results 

Low, requires traceability in 
particles 

Robustness in Unexpected 
Scenarios 

High, if trained with adequate 
data [8] 

Very high, adapts 
evolutionary solutions 

Very high, particles explore 
large spaces 

Convergence Time 
High, may require many 
iterations 

Moderate, depends on 
population size [13] 

Moderate, depends on 
particle configuration 

Computational Cost 
High, due to Q-model 
iterations [4] 

Very high, due to evaluation 
of the entire population 

High, depends on the number 
of particles and cycles[14] 

Complexity for Dynamic 
Environments 

High, requires continuous 
simulation 

Highly adaptable but costly Highly adaptable, particles 
converge faster 

Simulation Requirements Mandatory for training 
Extensive simulations 
required 

Extensive simulations 
required 

Dependence on Historical 
Data 

High, depends on the quality 
of initial data 

Low, can evolve with real-
time data 

Low, adapts particles based 
on dynamic data 

Implementation Time High, training and initial 
setup are complex 

Moderate, requires defining 
functions and population 

Moderate, initial particle and 
function design needed 

 

 

Furthermore, the interpretability of decisions is a common 

challenge across all methods, as they rely on complex 

models that are difficult to interpret without advanced 

analysis. Overall, while each methodology has its own 

strengths and weaknesses, NE-GA and NE-PSO stand out 

in terms of their adaptability and ability to evolve in real-

time, making them promising alternatives for managing the 

complexity of renewable energy integration into electrical 

grids. 

 

5. The future of reinforcement learning and 

Neuroevolution in the control of electrical 

systems 

 
The future of reinforcement learning and Neuroevolution 

in the control of electrical systems appears promising, 

especially considering the increasing complexity of 

modern electrical grids and the widespread integration of 

renewable energy sources. As networks become more 

dynamic and adaptive, traditional control methods, which 

rely on predefined models and linear approaches, are 

increasingly insufficient to manage the variability and 

uncertainty inherent in renewable energy sources such as 

solar and wind.  

 

Reinforcement learning, through its ability to learn optimal 

control policies based on continuous interaction with the 

environment, promises to provide highly adaptive solutions 

that can adjust in real-time to unforeseen operational 

changes [1]. In parallel, Neuroevolution, by combining 

neural networks with evolutionary algorithms, offers a 

robust approach to optimizing both the parameters of 

control systems and their structure, enabling efficient 

exploration of complex, non-differentiable solution spaces, 

which is particularly valuable in scenarios where systems 

are subject to uncertainties and changing conditions [2].  

 

In the future, these techniques could transform electrical 

system control by providing autonomous solutions that not 

only enhance efficiency and stability but also enable more 

effective integration of renewable energy sources. 

However, for these methodologies to become a viable 

option for large-scale electrical system control, challenges 

related to computational capacity, convergence time, and 

the need for large amounts of historical data for training 

must be overcome [3]. Nevertheless, with continuous 

advancements in computing power, more efficient 

algorithms, and improved optimization techniques, both 

reinforcement learning and Neuroevolution are likely to 

play a central role in the design of future electrical grids 

that are more resilient, intelligent, and sustainable. 

 

6. Conclusion 

 
In conclusion, the efficient control of electrical systems, 

particularly in dynamic and nonlinear contexts, represents 

a crucial challenge for the stability and optimal operation 

of modern power grids. The integration of renewable 

energies, such as solar and wind power, has added 

complexity to this process, underscoring the need for more 

adaptive and precise approaches.  
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In this context, Neuroevolution emerges as a promising 

alternative, combining neural networks and evolutionary 

algorithms to optimize the control of critical variables such 

as voltage and frequency. Through genetic algorithms 

(GA) and  particle swarm optimization (PSO) techniques, 

it is possible to overcome the limitations of traditional 

methods and improve responsiveness to disturbances and 

changing system conditions. 

 

The study highlights how Neuroevolution can transform 

electrical system control, adapting to complex and dynamic 

scenarios without the need for differentiable gradients, 

which is a significant advantage in systems with high levels 

of uncertainty. Additionally, the ability of these algorithms 

to explore large search spaces and avoid local optima 

enhances their applicability in managing power grids with 

high penetration of renewable energy. 

 

Although the results obtained are promising, key areas for 

future research, such as real-time implementation of these 

controllers and improving their computational efficiency, 

are identified. The integration of these approaches into real 

electrical environments, which operate under conditions of 

high variability, will be crucial to establish Neuroevolution 

as a strategic tool for the autonomous and efficient control 

of future electrical systems. 
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