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Abstract. To effectively deal with the urgent climate crisis,
clean resources and energy efficiency are becoming essential. As 
a result, renewable energy technologies (e.g., solar PV and wind 
power), HVDC links, and multi-energy systems have been 
widely integrated into traditional electrical power systems in 
recent decades. These technologies and HVDC links provide 
numerous benefits in driving the energy transition, and multi-
energy systems are a promising energy storage/management 
solution to handle the variable and unpredictable nature of 
renewable energy technologies. However, despite the many 
benefits of the above new sustainable energy infrastructures, they 
also pose new technological challenges, such as small-signal 
stability problems due to poorly damped resonances caused by 
the interaction between power electronics and traditional grid 
elements. Current tools are not fully effective in studying these 
issues yet. Given this scenario, this paper presents an Innovative 
Software for Stability Analysis, a novel tool designed for small-
signal stability assessment in multi-energy grids. This software 
enables accurate stability predictions and provides actionable 
solutions to mitigate instabilities, regardless of system size. Its 
capabilities are demonstrated through comprehensive 
MATLAB/Simulink simulations on various systems, including a 
IEEE 3−bus test system, an AC/DC multi-energy grid with 
hydrogen vector, and a 70k−bus synthetic test system. 

Keywords. Damping solutions, multi-energy grids, positive-
mode-damping, resonance mode analysis, stability assessment.

1. Introduction
The increase in worldwide greenhouse gas emissions 

and the high price of fossil fuels have accelerated the 
global transition towards eco-friendly energy technologies 
[1]. To reduce environmental pollution and address the 
climate emergency, the traditional concept of the Electric 
Power System (EPS) must evolve into a more sustainable 
paradigm. In this transformation, Renewable Energy 
Technologies (RETs) must prevail over others, as they 
offer clean alternatives that enhance energy efficiency and 
reduce dependency on hydrocarbons. 

In this context, Multi-Energy Grids (MEGs) have 
gained significant attention [2]. MEGs integrate multiple 
energy vectors (e.g., electricity, hydrogen, natural gas, and 
thermal energy), enabling higher efficiency compared to 

single-source systems. Their inherent resource 
complementarity allows for seamless integration of 
RETs, reduced energy costs, and enhanced reliability. For 
instance, green hydrogen can be produced using RETs 
within MEGs, stored for later use, and applied in 
transportation or grid support via fuel cells [3]. 
Furthermore, MEGs facilitate the adoption of Energy 
Storage Systems (ESSs) and novel energy conversion 
processes, such as power-to-gas and gas-to-power 
technologies, fostering resilience and operational 
flexibility [4]. However, alongside these benefits, the 
proliferation of power electronics in RETs, ESSs, and 
energy conversion units creates complex interactions that 
can compromise stability, often manifesting as oscillatory 
phenomena from interactions between the transmission 
grid, converter controls, and energy vectors, potentially 
resulting in poorly damped resonances [5], [6], [7], [8]. 

Traditional methods and tools are insufficient to 
address these problems in MEGs. On one hand, 
resonances are traditionally identified through frequency 
scan analysis, limited in scope as it identifies resonance 
frequencies without offering actionable solutions [9]. 
Resonance Mode Analysis (RMA) improves by 
providing detailed insights into grid component 
contributions to resonances and the best locations to 
damp them [10]. However, RMA’s computational 
complexity makes it impractical for large-scale systems, 
such as MEGs with many buses [11], [12]. An alternative 
RMA-based methodology in the literature reduces this 
computational effort and time [12]. On the other hand, 
the transformation of EPSs necessitates up-to-date 
methods for dynamic stability assessment. In systems 
dominated by power electronics, oscillatory phenomena 
are classified as small-signal converter-driven stability 
[6], characterised by fast-dynamic interactions (typically 
tens to hundreds of Hz, and potentially up to kHz) caused 
by small disturbances. These phenomena are best studied 
through linearised models around the system’s operating 
point, using approaches classified into time-domain 
eigenvalue analysis and impedance-based frequency-
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domain methods [5], [13], [14], [15]. 
Time-domain eigenvalue techniques are widely used 

state-space tools that provide a complete overview of 
system dynamics and allow the influence of grid and 
power electronics control parameters on stability to be 
assessed using Participation Factors (PFs) [5]. 
Nevertheless, stability of multi-terminal power electronics-
based systems with energy vector integration is difficult to 
analyse, as detailed information about all elements of the 
system (not provided by manufacturer black-box models) 
and high-order dynamic models are required [16]. 
Frequency-domain methods have become established in 
the last decade as an alternative tool for assessing stability 
with less computational effort and detailed system 
information (e.g., black-box models can be used). While 
early approaches, such as the Nyquist, Bode, and positive-
net-damping criteria, focused on local stability in single-
input single-output systems [13], more recent methods 
extend these principles to multi-terminal grids, 
accommodating multiple-input multiple-output dynamics 
[15], [17]. Among these advanced methodologies, the 
Generalised Nyquist Criterion (GNC) and the Positive-
Mode-Damping (PMD) stability criterion have emerged as 
promising tools for frequency-domain analysis [15], [17]. 
GNC evaluates system stability using eigenvalues of the 
open-loop transfer function but is hindered by limitations 
such as dependency on subsystem partitioning and lack of 
intuitive results analysis [15], [16], [17]. Conversely, the 
PMD stability criterion has been proposed to address 
GNC’s drawbacks [15], offering a practical and intuitive 
method based on RMA [10], [11], enabling practical 
stability assessment and offering insights into resonance 
damping solutions [15], [18], [19]. 

Building on these developments, this paper introduces 
an Innovative Software for Stability Analysis, a novel tool 
designed to enhance small-signal converter-driven stability 
studies in MEGs. This software 
• Overcomes computational challenges of existing 

methods while maintaining accuracy. 
• Simplifies stability assessment with a user-friendly 

interface. 
• Integrates black-box models, enabling analysis 

without detailed system (i.e., white-box) models. 

• Uses PF-based sensitivity analyses to identify 
critical grid components and their impact. 

• Provides a quantitative stability measure using a 
Damping Margin (DM) indicator [19]. 

• Facilitates the design of damping solutions. 
• Supports the study of extremely large MEGs. 
The above features make the software a robust tool for 

addressing stability concerns in multi-terminal systems 
dominated by power electronics. To demonstrate and 
evaluate the capabilities of the software, comprehensive 
studies are conducted using MATLAB/Simulink 
(MATSIM) simulations on three different systems: (i) the 
IEEE 3−bus test power system [20], (ii) an AC/DC MEG 
incorporating hydrogen vector, and (iii) the Eastern USA 
70k−bus synthetic test power system [21]. 

2. Innovative Software for Stability Analysis 

A high-performance software-based tool is presented 
for conducting small-signal converter-driven stability [6] 
studies of MEGs in a simple, efficient, and reliable 
manner using the PMD stability criterion, a frequency-
domain approach. The software comprises five main 
blocks, leveraging n−bus MEG data provided by either 
white- or black-box models (see Fig. 1): 

1. Nodal admittance matrix construction (Section 2.A). 
2. RMA methodology application (Section 2.B). 
3. PMD stability criterion assessment (Section 2.C). 
4. Damping margin analysis (Section 2.D). 
5. Damping compensator design (Section 2.E). 

B. Nodal Admittance Matrix 

Fig. 2 illustrates the schematic diagram of a multi-
terminal transmission MEG comprising a transmission 
grid characterised by its nodal admittance matrix YG(s), 
external components connected to the grid buses 
(including power electronics-based converters), and 
energy vectors. The external components and energy 
vectors are represented by the equivalent admittance 
matrix YC(s) = diag(YC, 1(s) … YC, n(s)) and the bus 
current injection vector IB(s) = [IB, 1(s) … IB, n(s)]T, 
respectively. The relationship between the bus voltages 
and currents at the multi-terminal transmission MEG is 

 
 

Nodal 
Admittance 

Matrix 

Resonance Mode 
Analysis 

Methodology 

Damping 
margin 
analysis 

 

Damping 
compensators 

Positive-Mode-
Damping Stability 

Criterion 
  

n-bus 
multi-energy 

grid data 
 

1. 2. 3. 4. 5. 
Construction of the 

grid’s nodal 
admittance matrix for 
each frequency over 
the frequency range. 

Resonance 
characterisation of 
the grid using RMA 
eigendecomposition 

of the nodal 
admittance matrix for 

each frequency. 

Stability study using 
the PMD stability 
criterion by simply 
evaluating the real 

and imaginary parts 
of the resonance 

impedances. 

Damping margin 
evaluation of the 

system with 
admittance terms by 
analysing the results 
of the PMD stability 

criterion to determine 
how far the system is 

from stability or 
instability. 

Damping solutions 
through active or 
passive bandpass 

filter-based 
compensator 

admittances to 
enhance system’s 

stability. 

Compilation of the 
white-box and/or 

black-box models of 
the grid elements. 

Software methodology 
 

Traditional elements 

Power electronics-based 
 

Energy vectors 

YB,f ∀ f 
Critical resonance modes (Zcm,fr)  

Participation factors (PFbc,fr)  

Resonance frequencies (fr) 
System 
stability 

assessment  

Damping 
conductance 

margin (DCM) 
Band-pass 

filter design 

 
Fig. 1. Flowchart of the software methodology. 

73



expressed using the voltage node method as follows: 
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where I is the identity matrix, ZG(s) = YG−1(s) is the grid 
impedance matrix, VB(s) is the bus voltage vector, and 
YB(s) is the nodal admittance matrix of the multi-terminal 
transmission MEG. 

The nodal admittance matrix YB(s) is a square, 
symmetric (except in cases involving non-reciprocal 
branches), and non-Hermitian matrix. It characterises 
MEGs with n buses and establishes the relationship 
between the current injection vector IB(s) and the nodal 
voltage vector VB(s) at the respective buses (see (1)).  

Modern transmission grids are characterised by their 
large-scale and sparse topologies, resulting in extensive yet 
sparse nodal admittance matrices [12]. These properties 
play a critical role in the functionality of the software tool, 
as the nodal admittance matrix is the foundational 
mathematical entity in grid characterisation. Its simplicity, 
versatility, and widespread acceptance within the scientific 
community make it invaluable for numerous applications. 
Thus, a key goal of the software tool is to incorporate all 
grid elements present in the MEG—ranging from 
traditional components to power electronics-based devices 
and energy vectors—into the nodal admittance matrix. 
This integration ensures accurate system modelling and 
facilitates the analysis of stability and resonance 
phenomena. 

In many cases, detailed white-box models for specific 
grid components, such as power electronics-based devices, 
are unavailable. Instead, manufacturers typically provide 
their impedance or admittance frequency profiles as black-
box models, which can also be obtained through direct 
measurements. In such scenarios, these black-box models 
can be integrated into the calculation of the nodal 
admittance matrix YB(s) (1) (see [12], [18] for details). 

C. Resonance Mode Analysis Methodology 

RMA is based on the eigenvalue decomposition of the 
nodal admittance matrix YB(s) over a frequency scan range 
[10]. For a given n−bus grid, the eigenvalue decomposition 
at a particular frequency f yields the modal voltage vector 
Uf, the modal current vector Jf, and the diagonal 
eigenvalue matrix ΛY, f. The corresponding right Rf and left 

Lf = Rf
−1 eigenvector matrices link these modes. I.e., 
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At resonance frequencies fr, singularities in YB(s) are 
characterised by critical eigenvalues of ΛY, f, known as 
critical resonance modes Zcm,fr. These singularities 
manifest as peaks in the modal impedance magnitudes, 
Zmj, f = 1/λYj, f, where Zmj, f represents the modal impedance 
of the j-th mode [10]. RMA also evaluates the excitability 
and observability of critical resonance modes at specific 
grid buses using PFs, defined as PFbj = Rbj·Ljb, where b is 
the bus index and j the mode number [10]. Thus, 
determining the largest modulus eigenvalue of the 
impedance matrix at each frequency is sufficient for 
resonance studies (i.e., the critical modes Zcm,f) [11]. 
Accordingly, an RMA-based methodology is presented in 
[12], which only calculates the largest modulus 
eigenvalue of YB, f (s) and its corresponding right and left 
unit eigenvectors. Fig. 3 illustrates how this methodology 
incorporates two paths: 

1. Faster RMA (f_RMA): Suited for small grids. 
2. Lanczos-based RMA (L_RMA): Optimised for grids 

with large and sparse nodal admittance matrices. 
The choice between f_RMA and L_RMA is 

determined by the sparsity ratio sp of YB(s). The sp of the 
n x n nodal admittance matrix YB(s) can be calculated as, 

2(%) 100 ,zsp n n=  (3) 

where nz is the total number of zero elements within 
YB(s). If sp > δsp_Lim (with recommended δsp_Lim limit 
[12]: 98%) L_RMA is used; otherwise, f_RMA is 
preferred. Both methodologies provide critical mode c 
curves (|Zcm|) and PFs (PFbc) across the frequency range, 
enabling effective resonance and stability analysis in 
MEGs. See [12] for further details on the methodology. 

D. Positive-Mode-Damping Stability Criterion 

The PMD stability criterion [15], [18] based on the 
RMA eigenvalue decomposition is used in the software 
for easy and practical stability assessment of multi-
terminal MEGs in the frequency-domain. The grid’s 
stability assessment is performed through the study of 
critical resonance modes Zcm,fr (largest modulus modal 
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Fig. 2. Schematic diagram of a multi-terminal transmission MEG. 
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impedance) at resonance frequencies fr applying the 
following criterion: the grid is stable iff 

,
, ,
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r r r
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where −σfr represents the damping of the system oscillatory 
mode at fr, Rcm,fr and Xcm,fr are the real and imaginary parts 
of the critical resonance modes Zcm,fr, respectively, and mx,fr 
is the slope of Xcm,fr. 

E. Damping Margin Analysis 

To determine the DM of the system, the margin 
associated with the impedance critical modes must be 
determined for each resonance frequency (local DM) [19]. 
This will yield the damping stability margins at the given 
resonance frequencies, either to stabilise the system or to 
enhance stability. 

According to [19], the DM indicator, obtained from 
PMD stability criterion results, is: 

( ){ }, , ,Re 1 ,
r r rh f hc f cm fDCM PF Z≈  (5) 

where DCMh,fr corresponds with the damping conductance 
margin at fr and PFhc,fr is the PF of the most affected bus b 
by the critical mode Zcm,fr (b = h and j = c). 

All local DMs are required to assess the system’s 
stability degree through a global DM, DCM, of the system. 
Two definitions for this global DM are possible: i) given 
an unstable system, the global DM is defined by the 
greatest absolute value of the local DMs characterising 
instability; ii) given a stable system, the global DM is 
defined by the smallest value of the local DMs of the 
system. See [19] for further details on the DM indicator. 

F. Damping Compensators 

Different approaches exist to mitigate resonance 
instabilities, and this tool proposes two possible methods: 
active and passive damping compensators. According to 
Section 2.D and [19], the aim is to improve all the local 
DM that characterise instability by adding a compensation 
admittance Ycp(s) at bus h. This admittance should satisfy 
the condition |Gcp,fr| ≥ |DMh,fr| and be of opposite sign [19], 
where Gcp,fr is the real part of Ycp(s) at fr. 

The modelling of both compensators is based on a 
bandpass filter-based compensation admittance, with a 
gain equal to Gcp,fr and a centre frequency at fr. Fig. 4 
illustrates the characteristic curve of the compensator 
admittance transfer function, which is defined as: 
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where Q is a Q−factor (reciprocal of the filter bandwidth) 
whose value depends on the stability issue [19]. According 
to Fig. 4, by matching the frequency to be compensated 
with the resonance frequency of the compensator, the 
necessary damping is added to the system to stabilise it. 

Active damping compensator is addressed by modifying 

the equivalent admittance of the VSC with a feed-
forward filter in the current control loop, while passive 
damping compensator by connecting a compensation 
admittance of a shunt Rcp − Lcp − Ccp filter to the bus 
terminals [19]. 

3. Computational Techniques 

The software can be developed in any programming 
environment; however, in this work, it is implemented in 
MATLAB due to its extensive library of functions and 
toolboxes, including sparse matrix techniques and the 
Parallel Computing Toolbox, which significantly enhance 
computational efficiency. Transmission grids often 
produce sparse nodal admittance matrices, as the limited 
node-to-node connections result in many zero elements. 
This sparsity increases with grid size, making dense 
matrix representations inefficient due to high memory 
requirements to store surplus zeros. By adopting sparse 
matrix techniques, the software optimises memory usage 
and accelerates calculations in large-scale systems. 
Additionally, parallel computation, enabled by 
MATLAB’s Parallel Computing Toolbox, leverages 
multi-core processors to efficiently handle data-intensive 
tasks. This approach significantly reduces computation 
time for repetitive operations such as RMA calculations 
across wide frequency ranges, ensuring the software is 
both efficient and scalable. 

4. Application and Tests 
This section evaluates the software through three case 

studies: a small grid, where the results are compared with 
MATSIM time-domain simulations to verify correctness, 
and two additional grids—a MEG with hydrogen vector 
as black-box models and a 70k−bus supergrid—
demonstrating its scalability, suitability, and 
computational efficiency for complex scenarios, 
impractical for MATSIM approaches. 

A. Comparison of the Software vs. MATLAB/Simulink 

The modified IEEE 3−bus test power system, which 
includes an additional fourth bus connected to bus 2 via a 
transformer (see Fig. 2(a) in [19]) is studied. A VSC with 
parameters from [11] and a shunt capacitor are connected 
to this fourth bus [19]. The software is applied to an 
unstable case of this system, with results summarised in 
Fig. 5(a). A critical resonance mode at 1.25 kHz is 
detected using the PMD stability criterion (4), with 
Rcm,1.25·mx,1.25 > 0. The highest PF is PF4c,1.25, indicating 
bus 4 as the most affected node. The local DM for this 
mode is DCM4,1.25 ≈ −0.0163 pu, whose absolute value 

 
Fig. 4. Bandpass filter-based frequency response. 
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matches the global DM, DCM = |DCM4,1.25|, because is the 
only local DM characterising system instability. MATSIM 
time-domain simulations verify the instability, showing 
voltage oscillations at 1.25 kHz at bus 4 after the VSC 
connection at 4 s (see Fig. 5(b)). Active and passive 
damping compensators, designed using the fifth step of the 
software in Fig. 1, ensure stability as the critical resonance 
mode at 1.25 kHz satisfies the stability criterion (4) 
(results not shown for brevity). The design values, with 
Q = 10, are (see Section 2.E): i) Active compensator: 
Gcp,fr = 0.0326 pu; ii) Passive compensator: Rcp = 30 pu, 
Lcp = 3.83e−2 pu, and Ccp = 4.25e−7 pu. Simulations in Fig. 
5(c) confirm that voltage stabilises at 4.1 s after 
compensator connection, thanks to their damping effect. 

Additionally, the following aspects highlight the 
differences in efficiency and practicality between the 
software and MATSIM: 
• Execution Time: The software analyses stability in 

0.47 s, while MATSIM requires approx. 28 s due to 
the time-domain simulation overhead. 

• Ease of Setup: The software uses simple input data, 
while MATSIM requires full manual circuit 
construction, becoming impractical for larger grids. 

• Scalability: The software is scalable to large grids 
due to its reliance on the nodal admittance matrix, 
whereas MATSIM simulations are limited by 
computational resources as grid size increases. 

• Black-Box Models: The software can integrate 
black-box impedance/admittance profiles directly. 

B. Stability Tests with the Software 

The computational efficiency of the software is 
evaluated in two additional cases that are impractical for 
MATSIM time-domain simulations due to the inclusion 
of black-box models and the large grid size. 

1) Test #1 – AC/DC Multi-Energy Grid with 
Hydrogen Vector 

Fig. 6(a) illustrates an AC/DC IEEE 3−bus power 
system-based MEG incorporating hydrogen vector. The 
AC/DC link uses the dq-complex three-port VSC 
analytical model from [14], while the hydrogen vector is 
studied using their black-box model. The software is 
applied to an unstable case of this system, with results 
summarised in Fig. 6(b). A critical resonance mode at 
0.16 kHz is identified using the PMD stability criterion 
(4), with Rcm,0.16·mx,0.16 > 0. The highest PF is PF5c,0.16, 
indicating bus 5 as the only affected node. This confirms 
that the resonance is only caused by the hydrogen vector 
connected to bus 5 at the DC side. The local DM for this 
mode is DCM5,0.16 ≈ −0.0385 pu, whose absolute value 
matches the global DM, DCM = |DCM5,0.16|, as it is the 
only local DM characterising instability. Since no VSCs 
are connected to bus 5, only a passive damping 
compensator can be designed to ensure stability. The 
design values are: Q = 1, Rcp = 12 pu, Lcp = 1.12e−2 pu, 
and Ccp = 9.27e−5 pu. This compensator allows to satisfy 
the stability criterion (4) for the critical resonance mode 
at 0.16 kHz (results not shown for brevity). 

2) Test #2 – Multi-Terminal HVDC Hybrid AC/DC 
Supergrid 

Fig. 7(a) depicts the modified Eastern USA 70k−bus 
synthetic test power system [21], a supergrid test case. It 
includes seven additional VSC-connected systems (with 

a)  

b)  

c)  
Fig. 5. IEEE 3−bus power system [20] stability assessment: a) PMD 

stability criterion and DCM analysis results. b) Time-domain simulation 
of bus 4 voltage. c) Time-domain simulations of bus 4 voltage with 

active (left) and passive (right) compensator. 
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30 units of 690 V 1 MVA VSCs) at buses 1, 804, 805, 
11904, 18247, 34601, and 43907, with parameters from 
[11]. Two HVDC links (440 kVdc, 500 MW) using the 
three-port VSC analytical model from [14] connect 
Philadelphia (bus 13337) with Chicago (bus 43323) 
(~1200 km) and Iowa (bus 54262) with Orlando (bus 
62453) (~2300 km). The software is applied to an unstable 
case, with results summarised in Fig. 7(b). Two critical 
resonance modes at 1.04 kHz and 1.07 kHz fail to meet the 
PMD stability criterion (4), as Rcm,fr·mx,fr > 0 for both. The 
highest PFs are PF18247c,1.04 = 0.1238 pu ∠ 0º and PF1c,1.07 
= 0.0844 pu ∠ 0º, indicating that buses 18247 and 1 as 
having the most significant participation in the respective 
resonances. The local DMs for these modes are 
DCM18247,1.04 ≈ −0.0029 pu and DCM1,1.07 ≈ −0.0148 pu. 
The absolute value of DCM1,1.07 matches the global DM, 
DCM = |DCM1,1.07|, as it is the largest absolute value 
among the local DMs characterising instability. Active 
damping compensators are designed for buses 18247 and 1 
to stabilise both resonances, with Q = 10, and Gcp,fr = 0.01 
pu and 0.03 pu, respectively. These compensators ensure 
stability by satisfying the PMD stability criterion (4) for 
the modes at 1.04 kHz and 1.07 kHz (results not shown for 
brevity). Finally, the computational efficiency of the 
software is noteworthy, solving the 70k−bus supergrid in 
approximately 9 minutes (~553 s). By comparison, other 
methods could require tens of hours or even days [12]. 

5. Conclusion 
This paper introduces an Innovative Software for 

Stability Analysis, a novel tool designed for small-signal 
stability assessment in MEGs. By addressing the 
limitations of existing methods, the software supports 
accurate stability evaluation across systems of varying 
complexity and scale (i.e., from small to large grids). Its 
features include computational efficiency, a user-friendly 
operation, and the ability to integrate black-box models 
(thus avoiding detailed internal system representations). 
Furthermore, the software incorporates advanced 
functionalities such as PF-based sensitivity analysis and 
the DM indicator to identify the most influential buses on 
critical resonance modes, assess how far the system is 
from stability/instability, and propose effective damping 
solutions. The software’s capabilities were demonstrated 
through comprehensive MATSIM simulations across 
three distinct case studies: an IEEE 3−bus power system, 
an AC/DC MEG with an integrated hydrogen vector, and 
a 70k−bus synthetic test system. These studies showcase 
its efficiency in handling exceedingly complex systems 
and highlight its potential as a benchmark tool for 
stability analysis in MEGs. Future research will focus on 
extending the software to support real-time interaction 
with Hardware-In-the-Loop (HIL) platforms, enabling 
direct interfacing for stability analysis. While it can 
already integrate black-box models extracted from HIL 
systems, real-time interconnection between both 
environments is not yet supported. 
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