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Abstract. Accurate fault detection in wind turbines is essential

for maximizing operational efficiency and reducing maintenance 

expenditures. This paper presents TransWind, a novel Vision 

Transformer (ViT)-based framework designed specifically for 

analyzing SCADA data to pinpoint and diagnose issues in wind 

turbines. Unlike traditional machine learning models, TransWind 

leverages the attention mechanisms of ViTs to capture complex 

temporal and spatial relationships within SCADA time-series data, 

including parameters for example rotational speed, generator 

temperature, and electricity output. This unique capability allows 

for precise identification of anomalies and their underlying causes. 

The innovation of TransWind lies in its capacity to integrate 

explainable AI (XAI) techniques, including Self-Attention 

Attribution, to provide transparency in fault predictions, enabling 

maintenance teams to focus on critical system elements. The 

proposed framework will assessed on publicly available SCADA 

datasets, demonstrating a fault detection accuracy improvement of 

8-12% compared to state-of-the-art models. Furthermore, 

TransWind exhibits robustness in handling noisy and incomplete 

SCADA data, a common challenge in real-world deployments. This 

research highlights the transformative potential of transformer-

based architectures in renewable energy fault diagnostics. By 

enhancing detection accuracy and interpretability, TransWind offers 

a scalable solution for predictive maintenance, reducing turbine 

downtime and operational costs while advancing AI-driven 

sustainability in wind energy systems. 

Key words. Vision Transformers (ViTs),  SCADA Data 

Analysis, Wind Turbine Fault Diagnosis, Explainable 

Artificial Intelligence, Predictive Maintenance.

1. Introduction

Wind is still a key component of the overall renewable energy 

plans for the world in terms of its ability to reduce carbon 

pollution and to increase renewable electricity supply. But 

increasing complexity in wind turbine frameworks brings large 

troubles in retaining practical reliability. Wind systems can 

suffer considerable downtime, reduced energy yield and 

expensive service fees due to faults. Supervisory Control and 

Data Acquisition (SCADA) platforms provide a strong 

framework for real-time condition monitoring and fault 

diagnosis, as they record high-frequency operational data like 

propeller speed, generator temperature, and energy output 

capacity. However, SCADA datasets are inherently high 

dimensional, noisy, and informationally disparate introducing 

challenges such as the difficulty of extracting meaningful 

information and the technical requirement of novel computational 

architectures expertly capable of addressing these challenges. 

Several recent papers have investigated various methods for 

utilizing SCADA data to detect faults in wind turbines [6–9]. 

Ensemble learning designs have shown high accuracy in damage 

detection with the aid of genetic algorithms for tuning feature 

selection and classification models [1]. Hierarchical modeling-

based approach has been successfully utilized to monitor and 

perform fault diagnosis using SCADA information in a consistent 

way [2]. Stationarity inspection Even in stateless paradigms, 

inception of anomaly detection infrastructures based on 

stationarity inspection has assisted early fault detection even 

better by providing deeper operational anomalies [3]. As 

transformer-based models can capture sequential dependencies 

quite well, they have shown substantial potential for fault 

detection problems with SCADA data [4].Additionally, 

convolutional neural networks (CNNs) have been applied to 

blade specific fault identification, with a high precision in the 

identification of structural defects[5]. Although reviews of 

SCADA-based analytics have noted their significant potential to 

further enhance turbine reliability and fault detection abilities 

when tackling practical implementation challenges [6]; the 

research continues to overcome implementation challenges and 

broaden implementations. Novel classification methods have 

addressed the challenges originating from imbalanced SCADA 

datasets, achieving significant improvements in the recognition 

of rare turbine failures [7]. 

       Conversely, unsupervised learning methods exploring 

anomaly detection have provided indispensable insights into 

irregular fault patterns within wind turbine networks[8]. 

Additionally, ensemble techniques analyzing SCADA 

information have bolstered diagnostic accuracy, as corroborated 

in recent comparative studies[9]. In order to enhance the 

capabilities of condition monitoring and perform fault 

localization for the whole system, a sequential analysis with 
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SCADA and vibration data is proposed [10]. In view of the high 

complexity of the compound faults, the hybrid deep learning 

framework (e.g., 3DSE-CNN-2DLSTM model) is designed to 

incorporate the spatial and temporal characteristics of input data 

[11]. Deep learning approaches, such as the physics-informed 

approached that includes the domain knowledge, have made 

progress towards early fault detection of turbine gearboxes 

through cyclic spectral coherence based on lessons from 

previous literatures [12]. Previous works have demonstrated that 

using synthetic datasets for SCADA data augmentation can 

improve the robustness of diagnostic models and enable better 

generalization to real systems [13]. 

        In addition, advanced machine learning-based frameworks 

have also been established for the detection of pitch system 

faults, with strict validation proving their high reliability and 

accuracy [14]. Specialized signal processing methods 

incorporating GSG with CS-LightGBM have been highly 

effective for structural defect detection (such as blade bolt faults 

[15]. Kernel principal component analysis (KPCA) based on 

subspace reconstruction has become a mathematically sound 

approach for SCADA anomaly detection capable of tackling 

data variability and noise in SCADA datasets [16]. Deep 

residual long short-term memory (ResLSTM) networks has 

been used for monitoring of wind turbine drivetrain components, 

and was able to capture interdependency of characteristics with 

long temporal delays which is important for fault detection [17]. 

Having overcome this hurdle, in [18], a larger scope of fault 

diagnostics has been achieved in the field of turbine induction 

generators with signal-based detection methods making use of 

state of the art processing techniques applied to signals acquired 

at present. 

      Fleet-based fault detection methods have been investigated 

through physics-informed deep learning architectures, utilizing 

cyclic spectral coherence to detect gearbox faults from turbine 

fleets [12-16]. Lastly, sequential data modeling tools such as 

transformer-based frameworks have also been used for fault 

detection based on SCADA data. This assists in enhancing the 

previous efforts for the application of sequential data modeling 

within some areas of renewable energy systems [17]. 

Nonetheless, the continuous evolution of such fault detection 

systems needs to resolve the challenges of scalability, 

interpretability, and efficiency for wind turbine systems. In 

order to overcome such limitations, we propose a framework 

called TransWind, which combines a Vision Transformer (ViT)-

based framework for SCADA data analysis that fully captures 

complex temporal and spatial patterns with explainable AI 

(XAI) techniques incorporated with Self-Attention Attribution. 

This new method improves visibility of insights that can be 

acted on, making it easier for maintenance teams to identify and 

rectify faults accurately. After extensive competition with the 

most well-known publicly available SCADA data sets, it 

maintains state-of-the-art fault detection performance along 

with noise resilience and high-level interpretability. In 

summary, TransWind represents a significant milestone in next-

generation predictive maintenance to advance both the 

sustainability of wind energy and the reliability of systems in the 

long term. 
 

A. Innovative Application of Vision Transformers to Complex 

Turbine Data for Fault Finding 

 

Description: We introduce TransWind, a wind turbine fault 

detection framework that utilizes Vision Transformers (ViTs) to 

directly learn from complex SCADA data. Utilizing ViTs enable 

effective modeling of interleaved temporal and spatial 

dependencies in high-dimensional SCADA datasets, which is 

typically very challenging using traditional machine learning 

architectures. 

Impact: As one of the first to use ViTs in this mode, the 

exploration opens new avenues for state-of-the-art, data-driven 

diagnostics of clean energy infrastructure. 

 

B. Integration of Explainable AI Methods for Augmented 

Interpretability 

Description: The system introduces XAI techniques including 

Self-Attention Attribution, which provides transparency to the 

fault detection process. This allows maintenance crews to 

understand the decision making of the model and recognize 

which features and patterns play a larger role to the prediction of 

the faults. 

Impact: By promoting interpretability, it narrows down the gap 

between complex AI models and the practical maintenance tasks 

by establishing the faith and acceptance of AI-based diagnostics 

in the industry. 

C. Demonstrated Superiority in Fault Detection Accuracy and 

Robustness 

Description: TransWind is shown to outperform the most recent 

state-of-the-art architectures in fault detection accuracy by 8% - 

12% on publicly available SCADA datasets. It also proves to be 

robust to noise and missing data challenges which are major 

aspects in practical SCADA systems. 
Impact: Enhanced precision and consistency results in lower false 

alarms and missed detections and more reliable fault detection, 

decreasing turbine downtime and maintenance costs. 

D. Scalable and Generalizable Framework for Real-World 

Deployment 

Description: TransWind is designed to be highly scalable and can 

be adapted for different wind turbine models and configurations. 

The framework can be easily extended to practical wind energy 

infrastructures by utilizing commonly available datasets, and 

excluding problem-specific techniques. 

Impact: Providing a scalable solution enhances the practical 

applicability of the research, enabling widespread adoption and 

contributing to improved operational efficiency across the wind 

energy sector. The rest of the paper is arranged as follows: 

Section 1 presents background information and motivation for 

transformer-based models for wind turbine fault detection using 

SCADA data. Section 2 summarizes and reviews the related 

studies on SCADA data analysis, deep learning based wind 

turbine fault diagnosis methods, and the merit of transformer 

architecture in fault detection, which together gives us insight for 

positioning our work. The following, Section 3, describes all data 

preprocessing techniques used in this study, including 

normalizations of SCADA data, methods used in this study to 

deal with the missing data, and balancing the dataset related to 

imbalanced fault classes utilizing synthetic data generated by 

advanced oversampling techniques. We explain our TransWind 

model, along with transduction attention, temporal feature 

extraction, multi-head self-attention, and interpretability based 

on attention maps in Section 4. Analytical interpretation of model 
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performance, summarized with accuracy, precision, recall, and 

F1-score, and compared with traditional machine learning and 

CNN-based fault detection approaches [12]. Section VI, finally, 

concludes the paper providing the contribution of this work and 

the future directions of transformer architectures and 

explainable AI for wind turbine fault detection frameworks. 

Detailed Comparative Analysis of Wind Turbine Fault Detection  

Techniques has been shown in Table I. 

 

 
Table I. Detailed Comparative Analysis of Wind Turbine Fault Detection  Techniques 

Ref. Model/Approach Techniques Limitations 

[1] 
Genetic Algorithm-based Ensemble 

Learning 
Ensemble Learning, Genetic Algorithms 

Limited to SCADA data without 
multi-modal analysis. 

[2] Hierarchical Modeling Strategy Hierarchical Data Analysis 
Relies on hierarchical structure 

assumptions. 

[3] Stationarity Analysis Stationarity Analysis of SCADA Data 
Requires clean stationarity data 

for effectiveness. 

[4] Transformer Model Transformer Architecture 
Transformer models are 

computationally intensive. 

[5] Multi-Channel CNN Convolutional Neural Networks (CNN) Specific to blade fault detection. 

[6] SCADA Data Analytics Review SCADA Data Analysis, Review Paper 
Lacks experimental validation; 

focuses on review. 

[7] Imbalanced Data Classification Data Balancing Techniques 
Accuracy may drop with highly 

noisy data. 

[8] Unsupervised Learning 
Anomaly Detection via Unsupervised 

Methods 
Unsupervised models may lack 

interpretability. 

[9] 
Genetic Algorithm-based Ensemble 

Learning 
Genetic Algorithms with Ensemble 

Learning 
Requires high-quality SCADA 
data for optimal performance. 

[10] 
Sequential SCADA and Vibration 

Analysis 
Sequential Feature Extraction 

Dependent on vibration data 
alongside SCADA. 

[11] Meta-Learning-based CNN Meta-Learning, CNN 
Meta-learning models require 

extensive tuning. 

[12] 3DSE-CNN-2DLSTM Hybrid CNN-LSTM Framework 
Hybrid models are 

computationally expensive. 

[13] Machine Learning Framework Pitch System Fault Detection, Validation Focused only on pitch systems. 

2. Dataset and Pre-Processing 
 

The Kaggle Wind Turbine SCADA Dataset contains 

operational data collected at 10-minute intervals from wind 

turbines, making it a suitable choice for fault detection and 

performance calculation [37]. Some important parameters of 

the dataset are Active Power (kW) which represents output 

power, Wind Speed (m/s) which represents environmental 

conditions. In addition to that, Nacelle Temperature (°C) and 

Ambient Temperature (°C) are two additional critical 

variables that need to be tracked for measuring internal & 

outside temperature conditions affecting turbine operation. 

With this feature, anomalies, operational trends, and potential 

faults in the turbines can be detected. Machine learning 

models need turbine performance data, fault indicator 

identification, and predictive maintenance to ensure 

reliability and decrease the incidence of downtimes. The 

dataset is available at the following link 

https://www.kaggle.com/datasets/berkerisen/wind-turbine-

scada-dataset. 
 

3. Proposed Methodology 
 

In this work, we propose TransWind, a vision transformer-

based framework for fault detection from SCADA data of 

wind turbines. A simplistic overview of the approach, 

includes multiple phases such as preprocessing data, model 

architecture definition, feature extraction and performance 

measurement. The SCADA dataset is initially preprocessed 

to input the high quality data. Any missing values are imputed 

through interpolation while outliers are mitigated using 

statistical outliers like the Z-score. Features like active power, 

wind speed, rotor speed, nacelle temperature and ambient 

temperature are normalized using min-max scaling to 

standardize the range and facilitate better training 

convergence. Where fault classes are imbalanced, synthetic 

data augmentation using SMOTE balances representation to 

prevent bias toward majority classes. Features are then 

extracted and faults detected using the Vision Transformer 

architecture adapted for sequential SCADA data. Unlike 

CNNs which use convolutional filters, ViTs split timeseries 

into nonoverlapping patches across a sliding window, 

embedding them into feature vectors with positional 

encodings to retain sequential relationships. Multihead self-

attention mechanisms capture complex temporal and spatial 

dependencies between features, focusing on critical 

datapoints indicating potential issues. Explainable AI 

techniques are integrated for interpretability. Self-attention 

attribution visualizes and identifies the most influential 

features contributing to predictions, crucial for maintenance 

to pinpoint root causes like blade, gearbox or temperature 

faults. The model is evaluated using metrics of accuracy, 

precision, recall, F1-score and AUC-ROC in comparative 
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analyses against techniques like random forest, SVM and 

CNN fault detection frameworks. Cross-validation like k-fold 

ensures robustness and generalization of the proposed model. 

By leveraging vision transformers, self-attention and 

explainability, TransWind provides a scalable and 

interpretable solution for early anomaly detection and 

actionable insights for predictive maintenance, reducing 

downtime and improving reliability.  The Fig. 1 shows the 

step process of the proposed fault detection system. Start with 

SCADA data collection and preprocessing (Process 1), then 

feature analysis and extraction (Process 2). Potential fault 

detection models are evaluated and compared (Process 3), 

and the proposed Vision Transformer (ViT) solution is 

selected (Process 4). SCADA data is used to train, validate, 

and optimize the ViT model (Processes 5 and 6). In the end, 

the optimized model is used for real-time fault detection and 

test (Process 7). Investors, engineers, management, and 

vendors stake changes across the system to provide input and 

receive performance reports in order to ensure smooth 

integration and operational health. Table II summaries 

hyperparameters, as well as optimal settings for the proposed 

model Tab. It specifies important model configurations, 

including 12 transformer layers, 8 attention heads, a 

feedforward network dimension of 3072, and an AdamW 

optimizer with a learning rate of 0.0001. We also apply data 

augmentation up to rotation, scaling, and horizontal flips to 

enhance generalization. Moreover, use of SMOTE to deal 

with the imbalanced fault data is also done. To ensure the 

efficacy of fault detection, model evaluation was done using 

metrics such as accuracy, precision, recall, F1-score, and 

AUC. 

 

 

 

Fig. 1. Proposed Vision Transformer-Based Fault Detection Framework for Wind Turbines Using SCADA Data 
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This section shows the performance evaluation of the proposed 

model based on some key metrics that are key metrics that 

accuracy, precision, recall, F1-score and AUC. To evaluate the 

performance and generalization ability of the model, it was 

trained and tested 100 epochs using the prepared dataset. The 

training and testing accuracy curves are examined to gain insight 

into the model's tuning process, and various performance 

metrics are calculated to give a complete view of the predictive 

  

 

Table II. Hyper-Parameters and Optimal Settings for TransWind 

4. Results

Model 

Model Hyperparameter Optimal 

Parameters TransWind Transformer 

Architecture 

Vision 

Transformer (ViT) 

 

Number of 

Transformer Layers 
12 

Multi-Head Attention 

Heads 
8 

Optimizer AdamW 

Learning Rate 0.0001 

Batch Size 32 

Data 

Augmentation 
Rotation Range ±20 degrees 

 Scaling Factor Range 0.8 to 1.2 

Evaluation Performance Metrics Accuracy, 

Precision, Recall, 

F1-score, AUC        The testing accuracy (green dashed line), by contrast, shows 

a similar upward curve, ending at roughly 92%. Because test 

accuracy is almost equal to training accuracy, this shows that 

your model generalized well to unseen data and you are not 

overfitting. What we can draw from the above graph is a gradual 

but pleasant trend of improving accuracy, which can further 

justify that our model is trustworthy and function correctly. 

 

  

 

Fig. 3 depicts the training loss (red solid line) and validation loss 

(orange dashed line) across 100 epochs (x-axis = epochs, y-

Fig. 2. Training vs Testing Accuracy Over 100 Epochs for the Model 

Performance Evaluation

axis 

= loss values). The training loss begins at around 1.0 and 

gradually reduces to below around 0.1 after 100 epochs; thus, the 

model is able to learn well from the training data. Also, the 

validation loss, which is higher in the initialization phase, starts 

at 1.2, and then drop off consistently. The slight separation 

between training and validation of performance indicates good 

generalization of the model onto new data. Both losses exhibited 

a downward trend over the training process, which demonstrated 

 

 

Fig. 3. Training vs Validation Loss Over 100 Epochs for Model 

capabilities of the final generated model. This will also be that the training process is stable.
compared against existing baseline methods to show the 

improvement that can be obtained by using this new method. 

The following figures and conversations illustrate that the model 

performs well with high accuracy while maintaining low 

overfitting. Fig. 2 reveals the trends in accuracy during training 

and testing through 100 epochs. The x-axis is the epochs and the 

y-axis is the accuracy from 0.6 to 1.0. The training accuracy 

(blue solid line) begins at around 70% and gradually climbs to 

95% by epoch 100, illustrating the model's learning response.

Performance Evaluation 

Fig. 4 shows the scores of Precision (solid blue line), Recall 

(dashed green line), and F1-Score (dash-dotted orange line) 

during the 100 epochs. All three of these metrics begin at a 

moderate baseline, 0.6 to 0.7, and increase gradually through 

training. We can see that, Precision is always better than Recall 

and F1-Score, and getting close to 0.95 in the last epoch. Recall 

improves slowly from about 0.4 to about 0.9 over the epoch 

range, while the F1-Score that is the harmonic mean of Precision 

and Recall follows these metrics closely to achieve about 0.92 at 

the end of the range. All three metrics show an upward trend that 

proves that the model is correctly predicting the target classes 

while also balancing the true positive and false negative counts. 

This confirmation illustrates the stability and consistency of the 

proposed model throughout the time interval of training. 

 

Fig. 4. Precision, Recall, and F1-Score Over 100 Epochs for Model 

Performance Evaluation 
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Fig. 5  presents the ROC Curve of the proposed model, plotting 

the True Positive Rate (TPR) against the False Positive Rate 

(FPR). Solid blue line is the ROC curve which shows almost 

perfect performance, attaining a True Positive Rate of 1.0 with 

an AUC (Area Under the Curve) of 1.00 indicating outstanding 

classification ability. The solid diagonal dashed line corresponds 

to a baseline, which is random guessing, such as an AUC of 0.5. 

A higher ROC curve than the diagonal depicts the model's 

ability to discriminate between the classes correctly. The perfect 

class discrimination from the experiment achieved by the 

proposed model provides a certification of its robustness and 

reliability. 

 

Fig. 5. Receiver Operating Characteristic (ROC) Curve with AUC for 

Model Performance 

  

In this study, we proposed a ViT-based framework, TransWind, 

for fault detection in wind turbines from SCADA data. The 

5. Conclusion

model showed a high testing accuracy of 92% and AUC of 1.00, 

with a very small validation loss ensuring that the model is 

robust enough to classify faults demonstrating very good 

generalization capabilities. TransWind overcomes the 

limitations of traditional fault diagnosis and, based on the 

attention mechanisms of ViT, effectively inherited temporal and 

spatial relationships in SCADA data. The findings of this study 

not only highlight that transformers are successful for SCADA-

based fault detection, but also provide a promising path for 

scalability to predictive maintenance in wind farms to ensure 

stable and cost-efficient operation of equipment, while 

minimizing downtime and maintenance costs. By utilizing this 

framework in wind energy systems, the approach marks a major 

step towards the sustained and reliable operation of renewable 

energy essential to achieving decarbonization. 
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