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Abstract. The current material warehousing and
outbound management of the power system has problems
such as low efficiency, rigid planning, and frequent path
conflicts, which lead to material accumulation, regional
congestion, and reduced operating efficiency, seriously
restricting the stable operation of the power supply chain.
In response to this situation, this paper proposes a power
material storage and scheduling optimization method
based on the deep deterministic policy gradient (DDPG)
algorithm and the 6G-enabled cyber-physical system
(CPS). In the warehousing stage of power materials,
combined with the high bandwidth and low latency
characteristics of the 6G network, the CPS system
realizes real-time perception and dynamic storage
adjustment of material information; in the outbound
stage, the DDPG algorithm is used to construct a
continuous state-action space, optimize the path planning
and dynamic obstacle avoidance of automatic guided
vehicles (AGV) equipment, and improve the scheduling
efficiency of power emergency materials. Experimental
results show that after integrating the 6G-CPS system,
the material scanning time is shortened from the
traditional 45 seconds/item to 25 seconds/item, and the
efficiency is improved by 44%; the optimized path
distances of DDPG in simple and complex environments
are 7.2m and 8.6m respectively, which are better than the
comparison algorithms such as A2C (Advantage
Actor-Critic) and A3C (Asynchronous Advantage
Actor-Critic), and the convergence speed and reward
value are optimal. The research results provide an
efficient solution for smart grid material management,
which can effectively support the material dispatching
needs in scenarios such as new energy access and power
emergency repair.

Keywords. Deep Deterministic Policy Gradient,
Cyber-Physical System, Path Optimization, Warehouse
Scheduling, 6G Network
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1. Introduction

Power material storage and dispatching [1,2] plays a key
role in the supply chain management of the power
system, directly affecting the timeliness of material
supply and the stability of the operation process. With
the expansion of the scale of the power grid and the
improvement of the level of intelligence, the material
storage system faces more complex management needs.
This not only meets the daily operation and maintenance,
but also needs to cope with various scenarios such as
emergency repairs and new energy [3] access, which puts
higher requirements on the accuracy and efficiency of
material dispatching. The efficient dispatch of power
material storage directly supports the stability of the
renewable energy supply chain and the agile response of
the smart grid. In the scenario of large-scale access to
new energy, the rapid deployment of energy storage
equipment, cables and other materials can shorten the
construction period of power stations; and in emergency
repairs of power grids, dynamic path planning can
accelerate the distribution of key equipment and improve
fault recovery efficiency.

Traditional power material storage systems [4] rely on
fixed rules for warehousing and outbound scheduling. In
the case of diverse material types and frequent demand
fluctuations, they lack intelligent adjustment capabilities,
resulting in limited warehousing and outbound operation
processes and reduced overall operating efficiency. In
terms of warehousing management, the material storage
layout is not optimized, the storage space utilization rate
is low, and the storage and access path design is
unreasonable, resulting in reduced operating efficiency.
Some materials occupy fixed positions for a long time
and fail to make intelligent adjustments based on the
frequency of delivery, which increases the operating
distance of the handling equipment. In addition, the



warehouse environment is complex, and the traditional
management model mainly relies on manual or barcode
scanning to record data, which makes it difficult to
achieve real-time perception of the status of materials,
affecting the accuracy of the scheduling system. During
the outbound process, equipment scheduling lacks
efficient planning, and path conflicts are prone to occur
during task execution, resulting in reduced work
efficiency. Traditional warehousing systems are still
mainly based on static scheduling, and fail to
dynamically optimize based on equipment status and
environmental changes, resulting in lengthy equipment
travel paths and extended operation time. There are many
transport equipment inside the warehouse, and the paths
frequently cross. There is a lack of efficient path
optimization methods, which further affects the
scheduling efficiency. In this context, it is urgent to
introduce intelligent scheduling technology to optimize
the storage method of incoming materials, improve the
ability to plan outgoing paths, and ensure the efficiency
and stability of warehouse management.

For the optimization of power material storage
scheduling, there are methods based on the Internet of
Things (IoT) [5,6] and big data analysis [7], which
collect storage environment data through sensors and
optimize material scheduling in combination with data
analysis technology. However, In some complex
warehousing environments, the data transmission rate of
traditional IoT architecture may be unable to meet the
needs of some high-real-time applications, affecting the
system's perception and response efficiency. In addition,
big data analysis relies on historical data for optimization
and lacks adaptive adjustment capabilities for dynamic
environments, which affects the scheduling optimization
effect. In the management of inbound and outbound
routes, some studies have used classic algorithms such as
A* [8] and Dijkstra [9] to optimize the driving routes of
warehousing equipment. These methods can provide
better paths in static environments, but they are difficult
to adjust in real time in complex dynamic scenarios and
cannot adapt to changes in the equipment, materials, and
environmental conditions in the storage system.
Reinforcement learning methods [10] have also been
introduced for path optimization. These methods have
achieved certain results in path optimization, but in the
storage scheduling tasks in high-dimensional continuous
space, the reinforcement learning methods in discrete
action spaces have great limitations and are difficult to
optimize path decisions efficiently. Some other methods
use rule-based warehouse scheduling strategies to adjust
equipment task allocation through predefined rules.
However, such methods are difficult to adapt to real-time
changes in the warehouse environment and cannot
effectively solve equipment scheduling conflicts.
Multi-agent reinforcement learning can be introduced to
try to optimize scheduling strategies in multi-equipment
collaborative scheduling scenarios. Due to the complex
task environment in the storage system and the difficulty
in accurately modeling the collaborative relationship
between equipment, these methods still face great
challenges in practical applications. In addition, the
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power storage environment is highly dynamic, including
complex factors such as randomly appearing obstacles
(such as temporary stacking equipment), sudden tasks
(such as emergency repair material allocation), and
multi-AGV collaborative scheduling, which are difficult
to fully model wusing traditional mathematical
programming methods. Although methods such as mixed
integer linear programming (MILP) have the advantage
of interpretability, they need to be frequently remodeled
and solved in dynamic environments, and are difficult to
meet the needs in scenarios with strict real-time
requirements. In this context, DDPG is a good choice.
DDPG can directly process continuous action spaces
(such as the precise steering angle and speed adjustment
of AGVs), avoiding the loss of accuracy caused by
discretization, which is particularly important for the
precise handling of large power equipment. Furthermore,
the application of 6G-CPS also provides inspiration for
this study. The real-time environmental perception data
provided by the 6G-CPS system perfectly matches the
online learning characteristics of DDPG, enabling the
system to continuously optimize strategies.

This paper adopts a warchouse intelligent scheduling
optimization method based on 6G integrated
cyber-physical system (CPS) and deep deterministic
policy gradient (DDPG) algorithm. First, CPS and 6G
network are used to realize real-time perception of
warehouse status and data interaction, and dynamically
adjust the material storage location to improve space
utilization. Then, the DDPG reinforcement learning
algorithm is used to perform path planning and obstacle
avoidance optimization in the continuous action space
during the outbound stage. The contributions of this
paper are as follows:

(1) A power material warehouse scheduling optimization
method based on 6G network and CPS (cyber-physical
system) is constructed. The ultra-low latency and high
bandwidth characteristics of 6G are used to realize
real-time perception and dynamic storage adjustment of
material information, greatly improving the warehouse
efficiency and intelligence level.

(2) This paper adopts the deep deterministic policy
gradient (DDPG) algorithm for path planning and
dynamic obstacle avoidance, successfully overcoming
the limitations of traditional path optimization methods
in dynamic environments, especially in complex
warehouse scenarios. The path planning and scheduling
efficiency of AGV equipment has been significantly
improved.

(3) The innovation of this paper is primarily reflected in
three aspects: First, for the specific scenario of power
material storage, we deeply integrate the real-time
sensing capabilities of 6G-CPS systems with DDPG
algorithms to achieve millisecond-level updates of
environmental status information. This enables adaptive
adjustment of reward factor weights according to
dynamic changes in storage environments, whereas



existing studies predominantly focus on static or
quasi-static scenarios. Second, in reward mechanism
design, we adopt a task urgency-based dynamic priority
adjustment strategy. By dynamically reconstructing
reward functions using real-time task information
obtained through 6G networks, this approach
demonstrates unique value in power emergency material
dispatch scenarios. Finally, we establish an energy
consumption model considering the characteristics of
power equipment, incorporating energy consumption
patterns of heavy-duty equipment like transformers into
reward functions. This fundamentally differs from energy
optimization approaches in conventional logistics
scenarios.

Article organization: Chapter 1 is an introduction: This
chapter introduces the main problems existing in the
storage and dispatch of power materials, such as low
efficiency, frequent path conflicts, and the optimization
needs for these problems. This article proposes a
scheduling optimization method based on 6G network
and CPS system, and briefly describes the research
background and objectives.

Chapter 2 is related work: This chapter reviews the
research progress related to the storage and dispatch of
power materials, involving intelligent storage systems,
path optimization algorithms, reinforcement learning and
other fields, analyzes the advantages and disadvantages
of existing methods, and provides a theoretical basis for
the method proposed in this article.

Chapter 3 is a method: This chapter describes the
proposed optimization method in detail, including the
challenges of power material storage and dispatch, CPS
system modeling, the integration of 6G network and CPS,
and the application of DDPG algorithm in path planning.
The method section explains how to use advanced
technology to solve the efficiency problem in the storage
system.

Chapter 4 is an experimental design: This chapter
introduces the design of the experiment, including the
construction of the experimental environment, the setting
of evaluation indicators, and the comparative analysis of
different algorithms. The purpose of the experimental
design is to verify the effectiveness of the proposed
method in actual storage dispatch.

Chapter 5 is the results: This chapter shows the
experimental results, analyzes the performance of
different algorithms in terms of path optimization, time
consumption, and operation efficiency, and verifies the
advantages and effects of the 6G-CPS and DDPG
methods proposed in this paper.

Chapter 6 is the conclusion: This chapter summarizes the
research results of this paper, emphasizes the intelligence
and efficiency of the power material storage scheduling
optimization method based on 6G network and CPS
system, and discusses future research directions and
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potential applications.
2. Related Works

For the optimization of power material storage
scheduling, researchers mainly study two aspects:
intelligent storage system and path optimization
algorithm. In the research of intelligent warehousing
system,Pal S [11] et al. used convolutional neural
network to optimize storage space layout and improve
storage efficiency. The results show that CNN
(Convolutional Neural Networks) can accurately analyze
spatial relationships and realize intelligent storage
strategy  optimization, thereby improving storage
operation efficiency. In practical applications, the
generalization ability of the model, real-time computing
requirements, and adaptability to complex warehousing
environments still need further research and optimization.
Zakaria I H [12] et al. explores the pivotal role of smart
warehousing solutions in enhancing logistics efficiency
and driving sustainable development. The study clarifies
the definition, technical components, and sustainability
practices of intelligent storage systems. Through case
analysis and comparative research, it reveals smart
warcehouses'  significant advantages in resource
optimization, cost reduction, and supply chain resilience
enhancement. However, challenges remain including
high costs, complex system integration, and data security
concerns. Sodiya E O [13] and others studied the
profound impact of Al (Artificial Intelligence) in
warchouse automation and explored how Al-driven
systems can optimize warehouse operations through
technologies such as machine learning, computer vision,
and reinforcement learning, improve accuracy, speed,
and cost-effectiveness, and promote the efficiency,
accuracy, and adaptability of warchouse automation
systems. However, they still face challenges such as

real-time data processing and adaptation to
environmental  changes.Research  on  intelligent
warehousing systems demonstrates the application

potential of the technology, but also exposes challenges
in real-time computing and environmental adaptability,
which promotes further exploration of path optimization
algorithms.

As a key technology, CPS has a wide range of
applications in the field of logistics. Domestic and
foreign scholars have explored the scheduling
optimization path of intelligent warehousing under the
CPS architecture. Liu B et al. analyzed the opportunities
and challenges of the CPS scheduling system in the
logistics park and proposed the need to strengthen the
intelligent collaboration between perception,
decision-making and execution [14]; Aron C et al
proposed the "cloud material handling system" to
achieve dynamic resource allocation and digital
interoperability, enhancing the flexibility and intelligence
of warehousing scheduling [15]; Lu Y et al. focused on
the role of information-physical fusion in promoting the
environmental adaptability of warehousing systems in
green port scenarios [16]; Piardi L et al. constructed a
CPS architecture for intelligent warechouses based on



MAS to achieve distributed warehousing management
and scheduling optimization [17]. These studies not only
expand the theoretical basis of intelligent warehousing
systems, but also further reveal the key value of path
optimization algorithms in scheduling systems.

In the research of path optimization algorithms, Li K [18]
used reinforcement learning and soft computing methods
to solve the scheduling problem of stackers and
automatic guided vehicles (AGVs). By establishing a
Q-learning-based model and introducing fuzzy control
methods, he optimized the warchouse logistics
scheduling process and improved the efficiency of the
system. Celik M [19] studied the time-constrained
storage replenishment routing problem in parallel
channel warehouses and proposed a heuristic method to
optimize the replenishment path and timeliness, reduce
the total travel time and ensure timely availability of
goods. Rijal A [20] proposed an efficient order
processing solution by comprehensively planning
warehouse operations and transportation scheduling,
combining the expansion of temporary storage space and
the extension of delivery time windows, which
significantly reduced overall costs and improved
distribution efficiency. Liu S et al. [21] proposed the
A*-GWO algorithm by improving the Gray Wolf
Optimization (GWO) algorithm and combining it with
the A* algorithm. This algorithm solved the problem of
random changes in static obstacles in the path planning
of a mobile charging robot in a parking lot and improved
the optimization effect of the number of iterations and
path length.The above path optimization algorithms
demonstrate different solutions, but there are also
problems such as convergence speed, energy efficiency
and real-time performance in complex environments.
Moreover, the existing intelligent warehousing systems
and path optimization algorithms mainly focus on static
optimization and do not fully consider the challenges of
dynamic scheduling.

In the field of power material storage, dynamic changes
in the environment and emergencies are inevitable in
actual operations, which requires the dispatching system
to have higher flexibility and real-time performance.
Dynamic dispatching strategy has become an important
direction in current research and urgently needs to be
explored and developed. In the face of dynamic
scheduling strategies in the system, Some studies have
proposed a multi-agent manufacturing system based on
the Internet of Things to realize the dynamic
optimization of flexible workshop scheduling problems.
It has advantages and wide applicability in dynamic
event scheduling problems, but it may still face
challenges of computing efficiency and real-time
performance in complex environments [22,23]. In recent
years, with the widespread application of AGVs in
intelligent warehousing systems, research on dynamic
path planning has become increasingly in-depth. Bai Y et
al. proposed a two-level path planning method that
combines Kohonen neural network and Q learning to
achieve dual optimization of path length and planning
time in multi-AGV dynamic path planning, effectively
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improving system efficiency [24]; Zhang L et al.
constructed a scheduling optimization architecture based
on deep reinforcement learning to address the energy
consumption problem in AGV battery replacement
scheduling, and achieved dual-objective optimization of
delay and energy consumption through a novel dueling
dual Q network algorithm, significantly improving the
cost-effectiveness of the flexible manufacturing process
[25]; Fan F et al. proposed a hybrid deep reinforcement
learning model for intensive manufacturing scenarios,
optimized the robot's spatiotemporal path tracking, and
effectively balanced the efficiency and safety of the
system [26]. In addition, Leon J F et al. combined
simulation and reinforcement learning to develop a
hybrid algorithm for optimizing warehouse storage
location allocation, which helps to deal with problems
such as environmental variable uncertainty and worker
interaction in warchouse operations [27]. Zhang L et al.
further introduced digital twin technology into AGV
scheduling and proposed an integrated optimization
framework that combines static path planning and deep
reinforcement learning to effectively avoid dynamic
congestion and deadlock problems and significantly
improve system stability and efficiency [28]. Although
existing research has made significant progress in
intelligent warehousing systems and path optimization
algorithms, they still face challenges in practical
applications such as insufficient generalization ability,
high real-time computing requirements, and poor
environmental adaptability.

Existing research has laid a solid foundation for the
intelligent and efficient scheduling of power material
storage from the construction of intelligent storage
systems, the application of CPS architecture to the design
of path optimization algorithms. In terms of intelligent

storage systems, researchers have improved the
automation level and system intelligence of storage
management by introducing convolutional neural

networks, artificial intelligence, robotic systems and CPS
architectures, and promoted the optimization of storage
resource allocation and scheduling methods. In the field
of path optimization, a variety of algorithms such as
reinforcement learning, ant colony algorithms, deep
neural networks and intelligent agent collaborative
control have been applied to AGV, drone and mobile
robot scheduling, significantly improving the accuracy
and efficiency of path planning. At the same time, some
studies have combined simulation environments, digital
twin  platforms and multi-agent  collaboration
mechanisms to show good potential in dynamic
scheduling strategies, energy consumption management
and system adaptation. These achievements demonstrate
the broad application prospects of intelligent technology
in power storage scheduling and expand the depth and
breadth of theoretical research and engineering practice.
Although current research has made many breakthroughs,
there are still some problems that cannot be ignored.
Most methods have excellent optimization performance
in static environments, but their generalization and
real-time response capabilities are still insufficient in
actual scenarios with frequent dynamic events and strong



environmental uncertainty. In addition, the algorithm has
high computational complexity and high resource
consumption, which limits its deployment efficiency in
large-scale storage systems. Some studies do not
consider the complexity of system integration, data
security, and edge computing coordination mechanisms,
which leads to certain obstacles in its application in
industrial scenarios. Therefore, it is urgent to propose an
intelligent scheduling solution that takes into account
efficiency, real-time performance, and environmental
adaptability to meet the growing demand for intelligence
in power material storage systems.Based on this, this
paper proposes an optimization scheme for power
material storage scheduling. By using the DDPG
algorithm to optimize path selection, the performance
bottleneck of traditional algorithms in complex
environments is effectively improved, and further
exploration and innovation are made in the intelligence,
automation and efficiency of warehouse scheduling
systems.
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3. Methods

Figure 1 illustrates the intelligent grid material storage
and dispatch optimization framework, which, through the
deep integration of 6G networks and cyber-physical
systems, establishes a comprehensive
perception-decision-execution closed-loop system. The
6G network provides ultra-low latency and ultra-high
bandwidth communication, enabling the cyber-physical
system's perception layer to collect real-time data on
power material status. This real-time data is used for
dynamic optimization of storage layouts and as input to
the DDPG algorithm, driving the intelligent path
planning of AGVs. The DDPG agent continuously
optimizes its decision-making strategy using a six-factor
reward mechanism, ensuring the shortest path while also
managing energy consumption and obstacle avoidance
safety.
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Figure 1. Optimal framework of smart grid material storage and scheduling.

A.  Problem Description

Power material storage management is a key link to
ensure the normal operation of the power system, among
which warehousing management is the core issue
affecting warehousing efficiency and the stability of the
material supply chain. In the warehousing link, due to the
unreasonable arrangement of material storage locations,
it often results in low space utilization and long paths,
resulting in low material storage and access efficiency.
Traditional warechousing management methods usually
rely on fixed rules and manual judgment, lacking flexible
optimization mechanisms, which increases the time and
transportation costs of robot handling. In addition, the
types and storage requirements of materials are often
complex and diverse, and the unreasonable order of
material storage may lead to scheduling conflicts in the
subsequent outbound link, affecting the efficiency of the
overall warehousing system. In the outbound link, the
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order of material removal and path planning have always
been difficult to optimize in warehousing management.
Traditional outbound route planning often ignores
dynamic factors such as changes in the warehouse's
internal environment, material outbound priorities, and
storage conditions. This can lead to unreasonable route
planning and frequent equipment scheduling conflicts,
resulting in route congestion and long equipment waiting
times, which seriously affect operational efficiency.In
addition, the scheduling of internal storage and transport
equipment lacks a real-time feedback mechanism, which
cannot be flexibly adjusted according to the actual
environment, greatly reducing the overall scheduling
capacity of the system. The existence of these problems
leads to the lack of efficient and nimble scheduling
strategy for the management of power materials in and
out, serious waste of resources, low operational
efficiency, and negative impact on the timely response
and emergency treatment of the power system.



B. CPS System Modeling

Cyber-physical systems (CPS) [29,30] rely on big data,
networks, and massive computing, integrate technologies
such as intelligent perception, analysis, prediction, and
optimization, achieve the organic coordination of
computing, communication, and control (3C), and
promote the deep integration of cyber space and physical
space and its objects, environment, and groups. CPS can
collect, store, model, analyze, mine, evaluate, predict,
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optimize, and coordinate big data of physical space,
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characterization of objects, so that cyberspace and
physical space can be deeply integrated, interact in real
time, be coupled, and update each other. It can promote
the comprehensive intelligence of industrial assets
through self-perception, self-memory, self-cognition,
self-decision-making, self-reconstruction, and intelligent
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Perceiving the Environment

dig
<z

Control Center

‘\I) |

Sensor Node

Actuator  Actuator Network
| gt 3
‘i,b Actuator '

Control Unit

instrictions

>A

Information Center

Cyber-Physical System

Figure 2. CPS system flow.

The cyber-physical system is mainly divided into three
parts (Figure 2), namely the perception layer, network
layer and control layer.

The perception layer is mainly composed of sensors,
controllers, collectors and other devices. The sensors in
the perception layer are the terminal devices in the
cyber-physical system. They mainly collect specific
information about the environment. The perception layer
mainly obtains information data about the environment
through sensors and sends it to the server at regular
intervals. After receiving the data, the server processes it
accordingly and returns the corresponding information to
the physical terminal device. After receiving the data, the
physical terminal device needs to make corresponding
changes.

The network layer is mainly a bridge connecting the
information world and the physical world. It mainly
realizes data transmission, provides real-time network
services for the system, and ensures the real-time
reliability of network packets. The control layer mainly
analyzes the data sent back by the physical device based
on the cognitive results of the cognitive layer, and returns
the corresponding results to the client to present them to
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the customer in a visual interface.

C. CPS Integrates 6G Network to Optimize Storage
Management

In the scenario of power material storage, the
irreplaceability of 6G compared to 5G is mainly reflected
in three aspects: 1) Ultra-low latency can ensure
real-time obstacle avoidance of AGV between dense
shelves, avoiding the risk of collision caused by delays in
the 5G environment; 2) The THz frequency band can
achieve centimeter-level material positioning, which
meets the precise storage management of large power
equipment such as cables and transformers, and
improves the meter-level accuracy compared to 5G;
Intelligent slicing technology allocates exclusive
bandwidth for emergency material dispatch. When
disasters such as typhoons occur, it can ensure that the
dispatch instructions of emergency repair materials are
transmitted first, while 5G static slicing is difficult to
cope with sudden traffic. This paper introduces 6G
network [31,32] to greatly improve the real-time
performance, data transmission capability and
intelligence level of CPS, providing a better solution for
power material storage and dispatching.



Table 1. Parameter comparison of different networks(Source: Authors’ own work).

Network 4G 5G 6G

Peak rate 1 Gbps 10-20 Gbps 1 Tbps
User-Experience-Rate 10-100 Mbps 100 Mbps-1 Gbps 10 Gbps and above
Latency 30-50 ms 1 ms Less than 0.1 ms
Spectrum range 2-6 GHz 24-100 GHz 1 THz

Device connection density 103 Equipment/km?

10° Equipment/km? 107 Equipment/km?

Position-accuracy 10m Im Imto lcm
Engrgy . consumption High-energy-consumption Relative optimization very . low powet
optimization consumption

Table 1 shows the parameter comparison of different
networks. Compared with 4G and 5G, 6G network has
greatly improved in speed, latency, connectivity,
intelligent computing, etc. The speed of 6G network can
reach 1Tbps, which enables CPS to have stronger data
processing capabilities. Ultra-low time delay, the delay is
reduced to 0.1 milliseconds, ensuring real-time control
and collaborative computing capabilities, and improving
the accuracy of task scheduling. It also supports
concurrent connection of multiple devices, enhancing the
adaptability of CPS in large-scale IoT environments. The
6G network also has THz frequency bands and
intelligent sensing technology, which enables CPS to
have environmental perception capabilities and better
locate and detect materials.In the power material storage
scenario, 6G's millisecond-level latency advantage is
directly reflected in key links. The transmission delay of
AGYV control instructions is reduced from 1ms in 5G to
below 0.1ms, which increases the emergency obstacle
avoidance response speed by more than ten times. When
multiple AGVs are coordinated and dispatched, 6G's
0.1ms-level synchronization accuracy can reduce path
conflicts. High-frequency inventory status updates
ensure accurate tracking of time-sensitive materials such
as new energy equipment. This feature is particularly
important in power emergency repair scenarios.

Ultra-high-precision RFID (Radio Frequency
Identification) [33,34], millimeter-wave radar, and
holographic imaging sensors are used at the perception
layer to achieve accurate perception of the status of
materials and equipment. By attaching tags, real-time
monitoring of information such as material type, quantity,
and storage environment can be achieved, and
ultra-high-definition monitoring data can be transmitted
back in real time to provide support for intelligent
analysis.

At the network layer, the ultra-low latency data
transmission capability of 6G networks can avoid data
congestion and ensure the real-time nature of key CPS
decisions. Through 6G’s intelligent slicing technology
[35,36], different levels of service quality can be
assigned to different tasks of CPS to ensure the reliable
transmission of high-priority materials.

In the control layer, edge computing combined with 6G
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networks can effectively process key tasks locally,
reduce cloud dependence, and improve decision-making
speed. By combining 6G networks, the CPS system can
effectively manage and optimize the storage and dispatch
of power materials, greatly improve work efficiency, and
reduce  unnecessary  troubles and  computing
consumption.

6G networks are superior to 5G in terms of speed,
latency and intelligence, and are particularly suitable for
large-scale IoT, real-time scheduling and complex
decision-making needs in dynamic environments. In
power material storage, although 5G can meet most
real-time needs, there are still bottlenecks in equipment
coordination, path replanning and exception handling.
After 6G is integrated with CPS, it provides 0.1ms
ultra-low latency and Tbps bandwidth, supports
intelligent communication and perception, realizes
real-time monitoring of materials, prediction of
environmental changes and optimization of equipment
autonomous decision-making, and significantly improves
warehouse management efficiency. After 6G integrates
CPS technology, it not only provides 0.lms ultra-low
latency and Tbps-level large bandwidth, but also realizes
real-time perception of material status, prediction and

feedback of storage environment changes, and
autonomous optimization of equipment decision-making
behavior through intelligent communication and

perception empowerment. It should be noted that 5G
network can meet the real-time perception requirements
of CPS in most static storage scenarios. However, for
special scenarios such as emergency material dispatching
of power, when it is necessary to process high-definition
sensing data of more than 1000 nodes at the same time,
6G's Tbps level bandwidth advantage is significant. In
the power storage system with extremely high
requirements for efficiency, safety and intelligent
response, the deep integration of 6G and CPS has
become a necessary choice to break through traditional
bottlenecks and improve the overall intelligence level of
the system, rather than a simple performance stacking.

Although the integration of 6G and CPS requires high
initial investment, such as sensor upgrades, infrastructure
transformation, and edge computing node deployment,
the long-term returns are significant. The ultra-high
bandwidth and low latency of the 6G network reduce



communication waiting and resource conflicts, improve
warehousing efficiency, and save manpower and energy
consumption. The intelligent scheduling supported by 6G
enables the CPS system to dynamically respond to
environmental changes and reduce operating costs. As
the technology matures and costs decrease, the intelligent
warehousing management solution based on 6G+CPS
has long-term economic feasibility and promotes the
large-scale application of intelligent energy storage
systems.
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D. DDPG Model Optimizes Outbound Management

This paper introduces the DDPG model algorithm to
optimize the material outbound management of AGV
(automatic guided vehicle) equipment. AGV is an
intelligent transportation equipment that does not require
manual driving and relies on a navigation system to
move autonomously. It can complete material handling
tasks efficiently and safely. The specific flow chart is
shown in Figure 3.
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Figure 3. AGV delivery outbound process.

As can be seen from Figure 3, after the superior
management system issues instructions, the dispatching
system formulates and dispatches AGV equipment, and
the AGV goes according to the address information
obtained, and after the goods are scanned and identified,
they transport the materials. It effectively transports the
materials to the designated location, scans and identifies
them, and unloads the materials after the identification is
confirmed. After the materials are transported out of the
warehouse, feedback can be given to the system. After
receiving the feedback information, the system can
screen and find out whether there are still materials that
need to be shipped out, and send instructions to the AGV.
If not, it can return to rest. However, in the warehouse
management system for power material storage and
scheduling, the path planning and scheduling methods of
AGV equipment when performing material retrieval
tasks have certain limitations. Traditional outbound route

planning often fails to fully consider key factors such as
the dynamic changes in the warehouse's internal
environment, the priority of material outbound delivery,
and storage conditions, resulting in a lack of flexibility in
planning and prone to scheduling conflicts. Due to
unreasonable path selection, AGVs may encounter route
congestion, long waiting times, and other problems
during operation, thereby reducing overall operating
efficiency.

DDPG is a deep neural network optimization method
based on reinforcement learning, which is suitable for
decision-making tasks in continuous action space. DDPG
combines the advantages of Deep Q Network (DQN) and
deterministic policy gradient, adopts Actor-Critic
architecture and uses target network and experience
replay to improve training stability.
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Figure 4. DDPG optimization process.
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Figure 4 shows the DDPG algorithm framework, which
uses the Actor-Critic architecture. DDPG learns the
optimal strategy through the interaction of agents in the
environment to maximize the cumulative reward. The
Actor-Critic framework mainly includes four neural
networks. The Actor network is responsible for inputting
states and outputting deterministic actions. The Critic
network is responsible for inputting states, actions, and
outputs. The target Actor network & target Critic
network are responsible for delayed updates and stable
training.

In order to improve the scheduling and path planning
efficiency of AGV equipment in the outbound
management of power materials, this paper models the
outbound management problem as a reinforcement
learning optimization problem in a continuous action
space. The optimization goal is to maximize the
cumulative reward of the overall outbound process of
AGYV, comprehensively considering multiple indicators
such as the shortest path, the shortest time, the successful
obstacle avoidance, the smooth path, the lowest energy
consumption and the satisfaction of task priority, so as to
maximize the outbound efficiency, improve the system
operation stability and optimize the resource utilization.
The optimization target expression is shown in formula

(1).
“E[YL0n] (M)

Where 7
network, o' represents the reward discount factor, and

T represents the upper limit of the time step of task
execution.

represents the strategy output by the policy

In this paper, the decision variable is the AGV mobile
action selection, such as forward, turning angle, speed
adjustment and other continuous actions.

The constraint condition formula is shown in (2).

c AGYV > obstacle (t) Z qsafe
ng <Eg

Path(sstartsgaal) € Pathv
Sfinish deadline
T <

2

10 =0, < @y and 0y, v,
Where (S AGV 2 obstacle

AGYV and the obstacle at any time, and G

represents the distance between the

we TEpresents

the safety distance. Eg  represents the total energy

consumption of the AGV in the outbound task, and
Eg represents the maximum allowable energy

T;deadline

consumption threshold. represents the deadline

of the task, ¢, represents the maximum turning rate,
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and v, represents the maximum speed.

The definition of the state space is shown in formula (3).

S/ = |:x/ s yt 4 9[ ’ vt ’ gt ’ cAGV 2 obstacle (t)9 Egremain (t)’ pt ’ ]7 "]ap“'ed:|
3
Where x, and y, represent the current position

coordinates of the AGV, 6,

orientation angle of the AGV, v, represents the current

represents the current

speed, g, represents the target position coordinates,

Egremain (t)
represents the priority information of the current task,
and T/ represents the elapsed time.

represents the current remaining power, p,

The definition of the action space is shown in formula

).
4 =[a,().a,().a,0)] 4

Where a,(f) represents linear speed adjustment, a,(¢)

represents angular speed adjustment, and  a,(?)

represents direction.
Framework process steps:

Actor selects one a, according to the behavior strategy

and sends it to the environment to execute q, :

a, = u(s,|0")+ N, (5)

The behavior strategy is a random process generated by
the current online strategy and random noise, and the
value sampled from this random process.

In reinforcement learning, the state-action value function

Q7" (s,a) is used to measure the expected value of future

cumulative rewards after taking action a from state s
under the strategy:

0" () =B, [ X vris,a)f,=s.a,=a] (6)
v is the discount factor.

Under the deterministic strategy p(s) , the optimal Q

value satisfies the Bellman equation [31]:

O(s.a) =r(s,a)+yE. [0 uis)N] ()



s is the next state.

Deterministic Policy Gradient: DDPG uses a policy
gradient method to optimize the policy (s).

Vi =B_,[V.06.a]09),,V,.u6s0M] ®

Among them, J s the expected return of the strategy,
and @“ is the parameter of the policy network.

Target value of the Critic network: The Critic network is
used to evaluate the action selection of the Actor network,
and its target value is calculated by the target Q network.

y=r+y0 (s, u(s

0))o?) ©

Among them, Q and u are the target Critic network

and the target Actor network respectively; 6" and 6°
are the parameters of the target network.

The Critic network uses the mean square error loss
function to minimize the Q value estimation error. The
optimization purpose is to make the estimated Q value as
close to the target value as possible.

L(0%) =B[(Q(s.a|0?) -] (10)

Policy update of actor network: The parameter update of
actor network is based on policy gradient.

Vi =B |V, u(s|0)V,06.al0 = )| (11)

Among them, D is the experience playback buffer.

In order to improve the training stability, DDPG adopts a
soft update strategy to update the parameters of the main
network to the target network:

0% « 0% +(1-7)0% (12)

0" «— 10" +(1-1)0" 13)

Among them, 7 is a soft update parameter.

DDPG uses the experience replay mechanism to store the
experience of the agent's interaction with the
environment and randomly samples for training to reduce
data correlation and improve training stability.

The stored data format is:
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(8:5,57;55,,0)  (14)

Since DDPG uses a deterministic strategy and is prone to
falling into local optimality, it is necessary to add noise
for exploration:

a, = u(s,|0")+ N, (15)

N is the noise term, and the Ornstein-Uhlenbeck (OU)
process is usually used to simulate time-related noise and
improve exploration efficiency.

OU process:
dx, =0(u—x,)dt+ocdW, (16)
Among them, p is the long-term mean.

Based on the traditional DDPG reward mechanism, this
paper innovatively designs a six-factor reward structure,
including path length reward, time consumption penalty,
obstacle avoidance reward, path smoothness reward,
energy consumption optimization penalty and task
priority reward. Through multi-objective weighted
optimization, the design guides AGV to perform efficient
path planning in complex warehouse environments,
reduce redundant points, reduce the number of turns and
energy consumption, and optimize task priorities. In
terms of obstacle avoidance rewards and energy
consumption optimization, continuous quantitative
indicators are introduced to avoid extreme negative
incentives and ensure a smooth training process. The task
priority is dynamically adjusted in the reward mechanism,
and the reward weight is adjusted in real time according
to the timeliness of the task, thereby optimizing the
decision-making strategy in multi-task scheduling and
improving scheduling efficiency and resource utilization.

n=wWR, +w,R +w,R +w,R +w,R, (17)
Among them:

* 7,: The reward obtained by the agent at time t.

* R, : Path length reward.

* R : Time reward.

* R : Path smoothness reward, reduce sharp turns.

* R : Obstacle avoidance reward, avoid collisions or

high-risk areas.



* R, : Task priority reward, high-priority tasks receive

additional incentives.

The weight parameters are determined by grid search:
other weights are fixed first, and different combinations
are tested in the range of [wl, w2,...]€ {0.1,0.3,0.5}, and
the weights that make the AGV completion time, path
length and other indicators optimal are selected.

Obstacle avoidance reward: To improve safety, AGV
should avoid collisions with obstacles.

Generate optimal
scheduling decisions

Among them, A, is the collision penalty coefficient, 1

means collision occurs, and 0 means no collision. The
design penalty can also be performed by adjusting the
distance between obstacles.

N 1
RC = _142i:1m (19)

obs i

The above reward factors comprehensively consider the
internal and external factors of AGV machines and
equipment, conform to the actual navigation situation,
improve the quality and efficiency of DDPG path
planning, and enhance environmental adaptability.

The system interaction diagram of 6G+CPS and DDPG
is shown in Figure 5.

Execution and Intelligent
feedback ) decision making
Real-time
’ transmission of
AGV robot sensor data
(Material handling execution) IDID.AG; i
Updated
. based on 6
Experience reward
E)@cute actions and replay fjam optimization
provide feed back status US?d.m strategies
Perception and training
Communication
CPS perception layer
(sensors, RFID, millimeter wave Experience replay buffer Reward function module
radar)
Collect environment and
material information * * * * * *
6G network Obstacle Energy
(ultra-low latency, high-speed Path Time avoidanc consump Smooth Prionty
transmission) e tion

Figure 5. 6G+CPS and DDPG system interaction diagram.

In Figure 5, the CPS perception layer collects warehouse
environment and material status information in real time
through ultra-high precision sensors, and efficiently
transmits the perception data to the DDPG agent with the
help of the ultra-low latency and high-speed transmission
capabilities of the 6G network. Based on the received
environmental status, DDPG combines a
multi-dimensional reward mechanism to generate the
optimal outbound dispatch decision and command the
AGV equipment to perform the handling task. After
completing the action, the AGV transmits the feedback
status back to the CPS, forming a closed loop of
perception-decision-execution-feedback,  continuously
improving the system's autonomous adaptability and
optimization capabilities, and realizing the intelligent and
efficient management of power material in and out of the
warehouse.

Compared with general material storage and dispatching,
there are several distinct and unique features in the
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storage and dispatching of power materials.

(1) Power materials are complex in type, high in value,
and some materials have timeliness and urgency
requirements, which require extremely high storage and
retrieval speed and outbound response time.

(2) The power industry's requirements for safety and
stability far exceed those of general logistics. The
inbound and outbound processes of materials need to be
strictly controlled to avoid dispatch conflicts and
equipment waiting.

(3) The storage environment requirements for power
materials are diverse, such as high temperature, low
temperature, explosion-proof, and moisture-proof, which
requires highly dynamic perception and adaptation of
storage layout and dispatching.



(4) Sudden emergency events, such as natural disasters
and equipment failures, pose extremely high challenges
to the rapid dispatch response of materials.

The above -characteristics are directly reflected in
modeling and methodology, such as introducing the CPS
system to realize real-time environmental perception and
intelligent feedback, using 6G network to improve the
timeliness of perception and control, using reinforcement
learning DDPG to dynamically optimize AGV path
planning and scheduling strategies, and incorporating
multi-dimensional indicators such as path smoothness,
energy consumption optimization and task priority into
the reward mechanism to ensure the scheduling system is
efficient, stable and intelligent in response to highly
complex environments.

4. Experimental Design
A.  Dataset Collection

During the experiment, warehouse location information
was collected and a high-precision 3D warehouse model
was built based on this data. The model was built using
Autodesk Revit professional 3D modeling software,
which completely restored the warehouse's internal
layout, shelf distribution, and channel information,
providing  support for  subsequent  warehouse
management optimization and AGV path planning
experiments.The display diagram of the simulated power
material warchouse is shown in Figure 6. In the
warehouse scene in Figure 6, the first picture shows that
the robot is mainly used to move goods from the goods
placement ground to the assembly line, the second and
fourth pictures show that the robot is mainly used to
stack items, and the third picture shows that the robot is

mainly used to move goods from the assembly line to the
shelf.

This study used Autodesk Revit software to build a
high-precision three-dimensional warehouse model. As a
professional  software widely used in building
information modeling (BIM), Revit has the advantages
of precise modeling, strong detail restoration ability, and
good compatibility. It can accurately reproduce the
internal layout of the warehouse, shelf distribution, and
channel information. This paper chooses Revit mainly
because it supports complex structure modeling, space
optimization analysis, and can provide an accurate
three-dimensional ~ environment foundation  for
subsequent warehouse management optimization and
AGV path planning simulation experiments, thereby
improving the transparency and repeatability of the
research.

In the warchousing management of electric power
materials, the warehousing task refers to the process of
receiving, inspecting, coding, and storing newly arrived
materials in accordance with established warehousing
rules. The warehousing task requires that materials be
placed in the optimal location quickly and accurately to
maximize warehouse space utilization and facilitate
subsequent outbound operations. The outbound task is to
extract specified materials from the warehouse according
to scheduling instructions and transport them to the
shipping or use area. The outbound task must not only
consider the outbound priority and distribution order of
materials, but also optimize route planning, avoid
transportation conflicts, and improve overall outbound
efficiency. As the two core links of warehousing
operations, warchousing and outbound directly affect the
operating efficiency and service response speed of the
warehousing system.
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Figure 6. Display of simulated power material warehouse.

As can be seen from Figure 6, different robots are
performing material flow work at their respective
positions. Goods are effectively identified by robot
equipment and distributed to different shelf locations for
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effective management and storage. Different goods are
stored in different locations, which requires robots to
have high-intensity computing capabilities and strategies.
This paper uses the CPS system combined with the 6G



network to effectively place and manage the incoming
materials. At the same time, multiple AGV machines and
equipment use superior instructions to effectively carry
out the outbound delivery of materials. This paper

introduces the DDPG algorithm to optimize the path
planning efficiency and operation performance of AGV
in the material handling process.

Table 2. Warechouse shelf placement information.

Shelf number | Latitude(®) Longitude(®) Storage category Shelf capacity Current inventory
S01 115.5368 30.4321 Power transmission | 80
&distribution equipment

S02 115.4789 30.3012 Cable 50 40

S03 115.5997 30.2894 Power distribution components | 200 150

S04 115.5213 30.4118 Insulation materials 150 120

S05 115.6812 30.2743 Electric motor 80 60

S06 115.4608 30.3539 Battery equipment 120 100

S07 115.5091 30.4204 Cable 90 70

S08 115.6289 30.3592 Insulation materials 60 50

Table 2 shows the placement of warehouse shelves. The components, insulation materials, motors, storage

location and commodity categories of each shelf are
different. They can be divided into (power transmission
and distribution equipment, cables/wires, distribution

batteries) and other categories. The incoming materials
need to be stored according to the actual categories to
facilitate subsequent outbound operations.

Table 3. AGV machine equipment location.

I]i%l.upment Latitude(°) Longitude(°) Load capacity (kg) | Running speed (m/s) State

AGV-01 121.6237 31.4962 500 1.2 Leisure

AGV-02 121.4591 31.2299 600 1.5 In transit

AGV-03 121.5374 31.3745 550 1.3 Charging

AGV-04 121.6982 31.3126 700 1.4 Under maintenance
AGV-05 121.4859 31.2988 500 1.2 Leisure

AGV-06 121.6002 31.2354 650 1.6 In transit

AGV-07 121.5346 31.3901 550 1.3 In transit

AGV-08 121.6905 31.2783 1000 1.0 Leisure

AGV-09 121.5229 31.4154 700 1.4 In transit

Table 3 shows the parameter indicators of each AGV Minutes Seconds
machine equipment, its location, the weight of goods it DD = Degrees+ 60 + 3600 2D

can bear, the delivery speed and the status of the machine
equipment.

B.  Data Ppreprocessing

The collected data is preprocessed to better train the
subsequent model and check whether there are any
missing values. In the case of missing data, the mean
filling method is used to fill.

R -
x=—>»  x. (20
nZIZI ’ ( )

For the location longitude and latitude in common data
tables, they can be converted to decimal degrees.
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Table 2 contains the category marks of different stored
commodities, which can be optimized using the label
encoding formula.

[, = Label Encoding(c;) (22)

Finally, the data is normalized and scaled to a specific
range.

7 _X-n (23)

4 is the average value of the data.




X-X_.
norm = (24)
X —-X

max min
C. Simulation Experiment

In order to verify the effectiveness of the DDPG fusion
algorithm for inbound and outbound scheduling
management, this paper conducts a simulation
experiment. A workspace is created in the specified
directory and the working environment is configured.
This paper sets the environment variables and adds
dependencies. The simulation algorithm is a map-free
navigation based on DQN [32], DDPG, A2C [33,34],
A3C, GWO, REINFORCE (Monte Carlo policy gradient)
[35]. It includes two simulation environments: simple
environment and complex environment. The relevant
experimental parameters are shown in Table 4.

In this paper, the hyperparameter setting of the DDPG

algorithm is mainly based on the trade-off between the
convergence speed and stability of the algorithm. A
smaller learning rate (0.0001 for Actor network and
0.001 for Critic network) helps to improve the stability
of training and avoid violent gradient fluctuations; the
discount factor of 0.99 is used to emphasize long-term
returns, making the strategy more forward-looking in
decision-making; the sampling batch size of 128
balances the training efficiency and update quality; the
soft update rate of 0.01 ensures smooth updates of the
target network and reduces the accumulation of
estimation errors; the exploration noise variance is set to
0.1 to guide the agent to have sufficient exploration in
the early stage, while controlling the noise amplitude to
accelerate convergence; the experience pool size is set to
100,000 to ensure rich sample diversity, reduce the
correlation between samples, and improve the training
effect. The overall parameter setting aims to take into
account the training stability, exploration ability and final
strategy performance in the simulation environment.

Table 4. Initialization parameter settings.

Training parameters Value
Learning Rate 0.0001
Discount Factor 0.99
Sampling batch 128
Soft update rate 0.01
Exploring Noise Variance 0.1
Experience pool size 100 000
Critic network learning rate 0.001
Actor Network Learning Rate 0.0001

Table 4 shows the initial parameters designed for the
experimental process, including learning rate, discount
factor, sampling batch, soft update rate, exploration noise
variance, experience pool size, and learning rate
functions of the two target networks (Critic network,
Actor network).

A.  Warehouse Scheduling Optimization

By combining CPS with the 6G network, each incoming
material is scanned and identified, and the material
category label is added to it, so that the incoming
materials can be effectively managed.In Table 5, the
storage efficiency is calculated based on the average

5. Results change in the processing time of a single item.
Table 5. Scheduling optimization effect.
Evaluation Traditional ~ Solution | 6G Network | DDPG Algorithm | Full Solution Contribution Breakdown
Metric (No Optimization) Slicing Only Only (5G) (6G+DDPG)
Warchousi 6G: 29% (45—32)
arehousing 45s/piece 32s/piece 38s/piece 25s/piece
efficiency
DDPG: 15%)] (45—38)
Category 6G: 15%71 (73%—88%)
V) 0 0, [
Classification 73% 88% 85% 93% DDPG: 12%7
(73%—85%)
Pl ; 6G: 7%1 (75%—82%)
acemen 0 0 o o
Accuracy 75% 82% 0% 96% DDPG: 15%7
(75%—90%)

Table 5 presents the performance comparison of
warehouse scheduling optimization solutions before and
after implementation. In traditional configurations,

warehouse efficiency stood at 45 seconds per item with
73% category classification accuracy and 75% placement
precision. The adoption of the comprehensive
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optimization solution (6G+DDPG) achieved a 44%
improvement in warehouse efficiency to 25 seconds per
item, a 20% increase in category classification accuracy
to 93%, and a 21% enhancement in placement precision
to 96%. Technical contribution analysis reveals that 6G
network slicing primarily boosted warehouse efficiency
(from 45 to 32 seconds, contributing 29%)), attributed to
its ultra-low latency that significantly accelerated
material scanning and data transmission. The DDPG
algorithm further optimized warehouse efficiency (from
32 to 25 seconds, contributing 15%) while substantially
improving placement accuracy. Both 6G and DDPG

Shelf location
-

contributed to improvements in category classification.
Results demonstrate that 6G networks excel in real-time
data transmission, while DDPG algorithms demonstrate
superior spatial optimization capabilities. Their
synergistic  effect achieved significant  overall
performance enhancement.

B.  Route Planning

The algorithm used in this paper and other optimization
algorithms have a path optimization effect in a simple
simulation scenario, where there are fewer obstacles.

DQN
GWO
A3C
REINFORCE
A2C
DDPG

. AGV location

Obstacle

Shelf location

AGYV Location

Figure 7. Path planning results in a simple environment.

Figure 7 shows the results of path simulation by different
path optimization algorithms in a simple environment.
The simple environment represents the number of
obstacles (tables, stools) in the warehouse (greater than
or equal to 5), and the path planning is performed by
extracting power materials from the AGV equipment.
The green line represents the DON optimization
algorithm, which uses a deep neural network to represent
the objective function and constraints of the optimization
problem. The optimization approximates the optimal
solution through a deep learning model. However, the
DQN algorithm is sensitive to the initialization parameter
settings. If the initialization is improper, the model may
fall into a local optimal solution. The planned route
distance is poor, and the path distance is 13.5m. The A3C
algorithm can train multiple strategies in parallel to
improve training efficiency. It generates and updates
model parameters through asynchronous training
strategies to accelerate algorithm convergence, but it
requires multi-core hardware support and consumes a lot
of resources. Its path distance is 8.6m. The A2C
algorithm is a synchronous version of A3C. Both training
and updating are relatively more stable. By introducing
the advantage function, it effectively reduces the
variance of the traditional policy gradient method and
improves training efficiency. Due to the conservative
policy update, A2C may have a low exploration degree,
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resulting in slow training or falling into a local optimum,
with an optimization path distance of 9.9m. The
REINFORCE algorithm uses the Monte Carlo method to
update the policy, does not rely on function estimation,
and directly optimizes the policy. However, the policy
update can lead to a large variance of the policy gradient,
and the training process is prone to instability and slow
convergence. Its optimization path distance is 10.3m.
The GWO algorithm is a swarm intelligence
optimization algorithm that simulates the cooperative
hunting behavior of gray wolf groups and searches for
the optimal solution through different wolves distributed
in the search space. However, it has poor adaptability
and performs poorly in dynamic environments and
cannot make rapid adjustments to the environment. Its
optimized path distance is 11.3m. The DDPG algorithm
Actor and Critic network used in this paper can
efficiently generate path planning. The optimized path
distance of the machine equipment is 7.2m, and the
optimization effect is the best, which is significantly
better than other algorithms. The optimized path distance
of the machine equipment is 7.2m, and the optimization
effect is the best, which is significantly better than other
algorithms, indicating that it helps to optimize the path of
AGV machine equipment and enable it to efficiently
complete material outbound delivery.
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Figure 8. Path planning results in complex environments.

In order to verify the path optimization effect in different
environments, a complex environment (Figure 8) was
designed again for experiments. The number of obstacles
(greater than or equal to 8) increased significantly, and
the obstacle area also changed. By planning the path for
AGYV equipment to extract power materials in a complex
environment, the DDPG algorithm also has the best path
optimization effect, with an optimized distance of 8.6m,
which is not significantly different from that in a simple
environment. The DQN algorithm has the worst
optimization effect with an optimized path distance of
19.1m in an environment with more and larger obstacles.
The path distance of the A3C algorithm in a complex

environment is 12.3m. The path distance of the A2C
algorithm also reached 13.8m. The path optimization
distance of the REINFORCE algorithm was 12.1m. The
GWO algorithm performed poorly in complex
environments, with a path distance of 16.3m. By
verifying the material outbound management experiment
in complex environments, it can be concluded that the
DDPG algorithm has the best optimization effect in
different environments. It can dynamically help the AGV
robot to extract materials out of the warehouse, and
effectively avoid obstacles, reducing unnecessary
troubles and energy consumption.

Table 6. shows the optimization results of path planning under dynamic obstacle environment.

DDPG 9.2 22 26.5 1.3
A3C 12.7 30 223 1.9
A2C 14.1 33 21.1 2.1
REINFORCE | 13.3 35 20.5 2.2
GWO 17.2 38 17.8 24
DON 20.3 40 16.5 2.5

Table 6 presents the optimization results of path planning
for different algorithms in a dynamic obstacle
environment. The DDPG algorithm performed
exceptionally well, achieving an optimized path length of
9.2 meters, significantly outperforming other algorithms.
It also had the fastest convergence rate, reaching the
optimal solution in just 22 training sessions. In terms of
reward values, DDPG achieved an average reward of
26.5, demonstrating strong learning capabilities and
optimization effects, with a standard deviation of 1.3,
indicating high stability. In contrast, other algorithms
such as A3C, A2C, and REINFORCE had longer
optimized path lengths, at 12.7 meters, 14.1 meters, and
13.3 meters, respectively, and slower convergence rates,

requiring 30,33, and 35 training sessions. Additionally,
the GWO and DQN algorithms performed poorly in
dynamic obstacle environments, with longer optimized
path distances and lower reward values. These results
highlight DDPG's superiority in complex dynamic
environments, particularly in path optimization and
algorithm stability.

C. Reward Value Verification

In this experiment, the same reward mechanism is
designed for each algorithm to verify the reward value
change trend of each algorithm in different environments.
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Figure 9. Comparison of reward values. (A). Reward value in a simple environment (B). Reward value in a complex environment.

Figure 9 shows the reward value results of path planning
performed by each algorithm in different environments.
The X-axis represents the number of iterations of the
algorithm, and the Y-axis represents the reward value.
Figure 9A shows the reward values of each algorithm in
a simple environment. It can be seen that the red line
represents the DDPG algorithm used in this paper. When
the number of training times is 20, the line tends to
converge, and the reward value tends to be stable at 32.
This shows that the DDPG algorithm can make the most
accurate route planning in the early training. The A3C
algorithm started to converge and gradually stabilize
after 28 training times. The convergence speed was
lower than that of the DDPG algorithm. The convergence
time of the A2C algorithm was similar to that of the A3C
algorithm. It gradually converged after 30 training times.
The REINFORCE algorithm started to converge after 32
training times. The GWO algorithm did not have a good
convergence effect on the reward value during its path
optimization process. The algorithm converged after 35
training times. The DQN algorithm has the worst reward
value convergence effect and the slowest convergence
speed. The algorithm stabilizes after 38 trainings. Figure
9B shows the reward value change trend of each model
in a complex environment. The average reward value of
the DDPG algorithm in a complex environment can
reach 24.12, and stabilizes in the 28 range in the later
stage of training iterations. The average reward value of
the A3C algorithm is 21.26, but in the early stage of
training (1-45), the reward value fluctuates greatly and
lacks stability. The average reward value of the A2C
algorithm is 18.98, and its reward value performs well,
rising steadily and stabilizing in the 21 range in the later
stage. The average reward value of the REINFORCE

algorithm is 19.75. The reward value is stable in the 22
range in the later stage. The average reward value of the
GWO algorithm is 16.53. Its reward value curve showed
huge fluctuations in the early stage of training, lacking
stability. The average reward value of the DQN
algorithm was 16.76, which also showed huge
fluctuations. Under the influence of complex
environments, it was difficult for the algorithm to
effectively calculate the optimal path, lacking stable
performance. Through the analysis of the reward results,
it can be concluded that the DDPG algorithm used in this
paper is superior to other excellent algorithms in terms of
convergence speed and reward value comparison, which
means that it can effectively help AGV equipment
complete the resource outbound scheduling optimization
task.

D. Significance Test

Based on the experimental design, this paper collects 50
running results of different algorithms in each
environment. For each algorithm, the average reward
value and standard deviation of multiple runs are
calculated in each environment. The experiment sets up
two hypotheses: Null hypothesis (HO): There is no
significant difference in the reward value of the two
algorithms in the same environment. Alternative
hypothesis (H1): There is a significant difference in the
reward value of the two algorithms in the same
environment. If the p value is less than the significance
level (0.05), the null hypothesis is rejected and it is
considered that there is a significant difference between
the two algorithms. The results of the significance test
are shown in Table 7.
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Table 7. Significance test results.

Environment Algorithm é;;flreage reward Standard deviation ]];_]t)e}fz} results with P value
DDPG 28.5 1.25 - -
A3C 253 1.45 2.35 0.032
Simple A2C 24.8 1.2 3.40 0.01
environment REINFORCE 225 1.6 4.60 0.002
GWO 20.9 2.1 5.20 0.002
DQN 18.5 2.3 6.70 0.001
DDPG 22.28 1.4 - -
A3C 19.14 1.8 2.50 0.024
Complex A2C 16.38 1.9 3.60 0.008
environment REINFORCE 17.15 2 2.85 0.015
GWO 14.24 2.3 4.90 0.01
DQN 14.49 2.1 5.10 0.01

In Table 7, it can be seen that in simple environments,
the average reward value of the DDPG algorithm is the
highest, which is 28.5, with a standard deviation of 1.25.
Among other algorithms, the average reward values

of A3C, A2C, REINFORCE, GWO, and DQN are
25.3,24.8, 22.5, 20.9, and 18.5, respectively. After the T
test with DDPG, the p values are all less than 0.05,
indicating that compared with DDPG, these algorithms
have significant differences in performance in simple
environments. Among them, the DQN algorithm has the
largest t value with DDPG, which is 6.70, and the p
value is 0.001, indicating that the difference is the most
significant. In complex environments, the average
reward value of DDPG is 22.28, which is still higher
than other algorithms; the average reward values of
A3C, A2C, REINFORCE, GWO, and DQN drop to
19.14, 16.38, 17.15, 14.24, and 14.49, respectively. In
complex environments, the T-test p values of all
algorithms and DDPG are still all less than 0.05,
indicating that the DDPG algorithm is also significantly
better than other algorithms in complex environments.
Whether in simple or complex environments, the DDPG
algorithm shows obvious advantages in average reward
value and stability.

Compared with other intelligent warehouse optimization
studies, this method performs better in terms of reward
value improvement and convergence speed. The average
reward value of existing warehouse scheduling
algorithms based on reinforcement learning in simple
environments is usually less than 25, and the training
convergence requires more than 30 times, while the
DDPG algorithm has a reward value of 28.5 under the
same conditions and only requires 20 times to converge.
In complex environments, the traditional method has
large fluctuations in reward values (standard
deviation>2) due to insufficient adaptability to dynamic
obstacles. This method stabilizes the reward value above
22 (standard deviation 1.4) through the coordination of
6G-CPS real-time perception and DDPG dynamic

decision-making, verifying its robustness advantage in
complex scenarios.

6. Conclusions

This study proposes an intelligent storage and dispatch
optimization scheme for power materials based on deep
reinforcement learning DDPG algorithm. By integrating
CPS and 6G network technology, the response efficiency
of the power material supply chain is significantly
improved. In the warchousing stage, the system shortens
the material scanning time from 45 seconds to 25
seconds (efficiency improvement of 44%), and the
classification accuracy rate reaches 93%, providing
real-time data support for the access of new energy
equipment and the allocation of emergency repair
materials; in the outbound stage, the DDPG algorithm
makes the path optimization distance of AGV in the
power storage environment (7.2m in  simple
environment/8.6m in complex environment) significantly
better than the comparison algorithm, effectively
ensuring the rapid outbound of power repair materials.
Experiments show that the scheme has the best
convergence speed (stable after 20 trainings) and reward
value (28 points in complex environment), and can adapt
to the storage and dispatch needs of special power
materials such as substation equipment and cables. The
research results provide key technical support for the
precise dispatch of materials in the construction of smart
grids. This method not only improves storage efficiency
through 6G-CPS real-time perception and DDPG
dynamic path planning, but can also be extended to new
energy equipment logistics scenarios, such as
coordinating the in-and-out priorities of energy storage
batteries, or adapting to the emergency material
dispatching needs of smart grids, further supporting
low-carbon electricity.

There are still some shortcomings in this paper, which
need to be further improved: 1. The experiment did not
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fully consider complex situations such as dynamic
obstacles and sudden task adjustments, which affected
the generalization ability of the algorithm in real
application scenarios. II. The algorithm may have
problems such as slow training convergence and limited
real-time performance in large-scale warehousing
systems. In the future, lightweight model optimization
strategies or edge computing technologies can be
combined to further improve the computational
efficiency and online scheduling capabilities of the
algorithm. III. The optimization strategies in this study
are mainly evaluated based on simulation experiments
and have not yet been tested on a large scale in real
warehouse systems. In the future, AGV can be deployed
for field verification in combination with the actual

warehouse environment to further evaluate the
adaptability and stability of the method, optimize the
scheduling strategy, and improve the practical

application value of the system.
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