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Abstract. This article proposes a collaborative
optimization framework based on graph neural networks
to address the problems of multi-source heterogeneity,
high-frequency fluctuations, low energy efficiency, and
high emissions in county-level distributed energy
systems. By constructing heterogeneous graphs including
photovoltaics, energy storage, loads, and industrial
terminals, the dynamic coupling relationship of nodes is
modeled using graph attention networks (GAT), and
green potential node recognition is achieved by
combining GraphSAGE. A cascaded optimizer is
designed to integrate graph convolution and
reinforcement learning to improve scheduling response
capability and structural coupling level. Introduce
multi-scale graph partitioning and boundary node
synchronization mechanism to achieve regional
autonomy and global coordination. The experimental
results show that this method outperforms the baseline
strategy in terms of carbon efficiency, response delay,
and comprehensive benefits, effectively supporting the
green and intelligent transformation of county-level
energy systems.
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1. Introduction

The county-level energy system is profoundly evolving
from centralization to distribution and from one-way
supply to multi-directional interaction. In the context of
replacing fossil energy with clean energy and promoting
the “dual carbon” strategy, new energy units such as
distributed photovoltaics, energy storage systems, and
electric loads are being deployed at an accelerated pace
in urban and rural areas [1-3]. This trend makes the
energy system highly heterogeneous and dynamic, and
the scheduling object shifts from centralized loads to
multi-source and multi-node collaboration. The system
structure is also becoming increasingly complex. As an
important carrier of the national energy structure
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transformation, the energy scheduling problem in the
county has evolved from simple supply and demand
matching to a multi-dimensional comprehensive
scheduling problem, including fluctuation prediction,
response coordination, and energy efficiency control
[4,5]. At the same time, the traditional scheduling
mechanism that relies on central optimization models
and rule bases faces huge challenges, mainly manifested
in the inability to meet the real-time response
requirements of seconds or minutes, as well as the
stability and computing efficiency bottlenecks under
high-frequency energy fluctuations [6,7]. In addition,
there is a lack of the ability to model the system structure
relationship in the scheduling control process, ignoring
the collaborative coupling characteristics between
various distributed units in time and space, resulting in
significant limitations on the overall scheduling
efficiency and adaptability of the system [8,9].

At the county economic level, promoting the
development of local people-enriching industries is an
important path to achieving the rural revitalization
strategy. Rural industries such as cold chain logistics,
agricultural processing, and small-scale industries are
gradually increasing their dependence on the energy
system. In actual operation, these industries usually have
problems such as high unit energy consumption, strong
load fluctuations, and a low degree of low carbonization
in the operation process. On the one hand, these
industries are generally not well coupled with the
distributed clean energy system, showing the
phenomenon of “industrial islands”, that is, there is a
lack of collaborative scheduling mechanism between the
energy structure and the production structure [10,11],
resulting in weak clean energy absorption capacity and
difficulty in giving equal weight to carbon emissions and
energy efficiency control. On the other hand, energy
infrastructure planning, dynamic changes in industrial
loads, and uneven spatial distribution have further
amplified the systematic split between energy and
industry [12,13]. In this context, building a
comprehensive optimization framework that can
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coordinate both energy dynamics and industrial
regulation needs has become a key task in promoting the
green transformation of county economies.

At present, scholars around the world have carried out
various explorations in the field of distributed energy
scheduling and industry chain optimization. In terms of
distributed energy scheduling, a large number of studies
have adopted methods such as model predictive control,
mixed integer programming, and robust optimization to
try to achieve a balance between multi-source
collaboration, load response, and cost control [14,15].
This type of method has certain practicality in
deterministic scenarios, but it generally relies on global
modeling assumptions and static parameter constraints,
making it challenging to adapt to high-frequency
fluctuations and large-scale heterogeneous node
scheduling scenarios [16,17]. In terms of industry chain
optimization, research is mostly focused on input-output
efficiency, energy consumption cost analysis, industry
chain structure reconstruction, etc., mainly using linear
programming, hierarchical analysis, and other methods
to achieve node-level local optimization and failing to
explore the interaction mechanism between energy
supply and demand and industrial nodes from the
perspective of system structure [18-20]. The common
feature of these studies is that they lack efficient
processing methods for unstructured, multi-dimensional
interactive data at the modeling level, making it difficult
to achieve systematic integration of energy scheduling
and industrial collaboration.

Graph neural networks (GNN) have been applied to
complex network system analysis in recent years,
showing strong structural learning and information
dissemination capabilities. Some studies have begun to
apply GNN to tasks such as energy load forecasting and
microgrid scheduling optimization and achieve
adaptation to system topology changes through dynamic
learning of node features and adjacency relationships
[21,22]. However, most of these applications are still
limited to energy-side data and lack joint modeling with
actual industrial systems. They cannot effectively
describe the liquidity characteristics between energy
supply and demand and the green benefit transmission
path between industrial network structures [23,24]. In
terms of industry chain modeling, graph convolutional
neural networks and embedding representation methods
have been used for logistics path optimization and
resource allocation prediction. Although some structural
optimization models have shown performance superior
to traditional linear methods, there are still gaps in
energy system integration and regional scheduling
constraint processing [25,26]. In addition, in recent years,
researchers have proposed various battery state
estimation techniques in the modeling of solar energy
and energy storage systems, such as data-driven SOC
prediction models and battery life decay compensation
strategies, which provide support for the stable operation
of county-level energy systems. Meanwhile, with the
widespread application of IoT technology, network
security issues are becoming increasingly prominent in

smart grids. Relevant research focuses on the design of
secure communication protocols driven by the Internet of
Things, the optimization of intrusion detection systems,
and the privacy protection mechanism in the edge
computing environment. The concept of "strengthening
resilience" is proposed to improve the adaptive resilience
of the system in the face of network attacks. These
studies provide technical references for the deep
integration of county-level distributed energy systems
and the prosperous industrial chain, and also offer new
ideas for building a safe, green, and intelligent energy
regulation framework.

Based on the above research, this paper proposes a graph
neural network-driven collaborative optimization
framework for county-level multi-source heterogeneous
systems. This method constructs a heterogeneous graph
network based on photovoltaic, energy storage, load
terminals, and industrial nodes, uses node attributes and
edge weights to express system structural characteristics,
and dynamically models the coupling relationship
between nodes through the graph attention mechanism to
capture the nonlinear relationship between energy
transmission and load response. At the same time, a
bidirectional energy-industry graph structure is
constructed, and industrial indicators such as carbon
emission intensity, energy efficiency parameters, and
node output value are embedded in the scheduling
network to realize the identification of green potential
nodes and high-value energy consumption paths [27,28].
Further application of graph convolution and
reinforcement learning cascade modules can realize joint
optimization of scheduling paths, energy distribution,
and cost control. A multi-regional autonomous control
mechanism is built through a graph partitioning strategy
to ensure efficient coordination of the system under
geographical distribution. This study aims to bridge the
modeling gap between energy systems and industrial
systems and improve the responsiveness, intelligence,
and sustainability of county green economic systems.

2. Design of Distributed Collaborative Optimization
Model

A. Construction of Multi-source Node Graph
Structure

1) Heterogeneous Energy Graph Modeling Method

In the graph modeling stage, physical entity units are
used as graph nodes, and each energy unit in the system
(such as photovoltaic panel arrays, energy storage groups,
motor loads, cooling pump systems, and agricultural
planting terminals) is abstracted as a graph node with
spatiotemporal state and energy behavior. Node attributes
are initialized in a unified coding method, including
real-time power generation (in kW, with a sampling
frequency of 5 minutes), current load level (%), and
geographic coordinates (latitude and longitude). The
node state time series data storage period is 24 hours.
The step size is 12 frames. The sliding window update
strategy is used to achieve dynamic state modeling.
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Figure 1. 24-hour power time series and sliding window examples. Figure 1(a). 24-hour power time series; Figure 1(b) .Sliding
window examples.

The Figure 1(a) shows the power changes of
photovoltaic and load nodes within 24 hours. Time is the
horizontal axis, and power is the vertical axis. The
photovoltaic output reaches a peak of about 151.3kW at
12:00, showing a typical sunshine curve. The load power
fluctuation is relatively stable, ranging from
25kW-72.1kW. The Figure 1(b) shows the sliding
window from 12:00-13:00 noon. Photovoltaic power is
maintained above 140kW most of the time, with an
average load of about 29.4kW. Supply and demand are
well matched. The two figures reflect the dynamic
characteristics of heterogeneous nodes and provide basic
data support for graph neural network modeling and
scheduling optimization.

The construction of edges follows the principles of
spatiotemporal proximity and energy flow coupling. First,
static connection edges are defined based on
geographical distance and distribution network topology,
where nodes under the same feeder are set to be strongly
coupled and the average transmission distance is
controlled within 0.8km. Second, dynamic edge weights
are defined based on the interactive relationship between
energy transmission capacity and load, and the average
power exchange (in kW) and the maximum load
response amplitude are calculated through historical
operation data to form a weight initialization template.
Each edge is given a directionality, indicating the actual
energy flow direction. The edge attributes further include
line resistance (in Ω), communication delay (in ms), and
maximum power capacity (in kW), which are used to
model transmission loss and response speed in
subsequent scheduling path optimization.

All node attribute vectors are normalized and
supplemented with type label encoding, such as PV
(Photovoltaic), Battery, Load, Industry, etc., as node
types embedded into the input graph neural network
structure. The graph structure is organized in the form of
an adjacency list, and each node records its connected
node index and edge attribute set. The data interface is
unified in Tensor format to facilitate subsequent graph
neural network loading.

The data collection part is completed by deploying
distributed collection terminals. The photovoltaic node
data is sampled by the inverter with a resolution of 1kW
and an error rate of less than 1%. The energy storage
node data comes from the BMS (Battery Management
System), including SOC (State of Charge), output power,
voltage, current, and other information. The power load
data is obtained by the smart meter with a sampling
accuracy of ±0.5%. The geographic location information
is called and calibrated based on the GIS (Geographic
Information System) interface. The raw data is initially
cleaned by the edge computing node and uploaded to the
scheduling platform through the Kafka channel. After the
structured processing is completed by Spark Streaming,
it is mapped to the graph database structure for node
update.

After the graph structure is initialized, a timed update
mechanism is used to rebuild the graph once an hour, and
a dynamic graph sequence is constructed through
continuous node state streams for subsequent graph
neural model training [29,30]. The length of the
historical data backtracking window is 72 hours, and the
length of the rolling sequence retained for each update is
288 frames to ensure the temporal continuity and scene
representativeness of the model training samples.

2) Graph Representation Enhancement and Feature
Sparse Processing

A graph representation enhancement strategy and a
sparse feature completion mechanism are added after the
graph is constructed. First, the node type-guided feature
mapping method is used to map and transform the initial
attributes of different types of nodes. The transformation
function is implemented through a multi-layer perceptron,
and the output is unified into a 16-dimensional vector to
ensure the uniformity of the dimension in the input stage
of the graph neural network. Each perceptron structure
contains two linear mapping layers and one dropout layer,
with a hidden dimension of 32 and an activation function
of ReLU.
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The specific method is to collect similar attribute data of
nodes within three hops along the direction of its graph
neighbors for any node with missing attributes during
graph construction and then to take the weighted average
as the completion value. The weight coefficient is
determined by the weight of the adjacent edge and the
similarity of the node type. This method can maintain the
integrity of the graph structure and the consistency of the
input data without applying external inference, avoiding
input mismatch or gradient explosion problems in the
neural network training process.

This study designed a three-level robustness assurance
mechanism: (1) The edge computing layer adopts a
sliding window-based Z-score filter to eliminate sensor
drift and communication noise in real time; (2) A robust
neighbor selection strategy is introduced into the feature
completion mechanism to eliminate the interference of
long-term offline nodes on the completion results; (3)
Adversarial data enhancement is introduced in the model
training stage to improve the tolerance to data missing
and errors.

The graph data is finally encapsulated in the PyTorch
Geometric standard format, including node attribute
tensors, edge index matrices, edge attribute tensors, and
node mask identifiers, and is uniformly stored in the
GPU (Graphics Processing Unit) memory to support
batch parallel training. To support multi-graph sequence
input, a graph queue cache mechanism is designed, and
graph samples are extracted from the cache for loading in
each training iteration to improve training efficiency.

Through the above-mentioned graph structure
construction and enhancement mechanism, the digital
mapping of key physical units of the county-level
distributed energy system is realized, providing
high-quality graph input data for energy distribution
inference and scheduling path learning in subsequent
graph neural networks.

In order to address the issues of data loss, delay, and low
resolution caused by weak information and
communication infrastructure in rural areas, this paper
introduces a multi-level robustness guarantee mechanism
in the model design and training stages. Firstly, during
the construction phase of the graph structure, a feature
completion method based on neighbor aggregation is
adopted to weight and complete missing attributes using
node information within the three hop range. Secondly, Z
fractional filter is deployed in the edge computing layer
to eliminate sensor drift and communication noise in real
time.

B. Energy Scheduling Inference Based on Graph
Attention

The system uses the GAT to model the node coupling
weights of multi-source heterogeneous graphs. Each
graph node takes its attribute vector as input and is first
mapped to a unified latent space through a linear
transformation. The transformation matrix dimension is
set to  in out,F F , where in 16F  and out 64F  . Then,
a shared attention mechanism is added between each pair
of connected nodes to perform weighted aggregation on
the features of adjacent nodes. The attention weight is
calculated by the attention scoring function activated by
LeakyReLU, and the coefficient range is normalized to
[0,1], which is used to describe the energy coupling
strength and scheduling response possibility [31,32].

In terms of model structure, a two-layer GAT
architecture is adopted. The first layer is used to learn the
initial coupling graph and construct the intermediate
feature representation, and the second layer further
aggregates the semantic neighbor information to
complete the scheduling potential modeling. The number
of attention heads is set to 8, and the output dimension of
each head is 8, which is finally spliced into a
64-dimensional node representation. During the training
phase, all nodes are processed in parallel using batch
graph embedding, and the final embedding vector of the
node is used in the energy state prediction and
scheduling path generation tasks.

Node position encoding uses the inverse function of the
geographical distance between nodes to adjust the initial
value of the attention weight. The node type is embedded
as an 8-dimensional vector and participates in the bias
modeling of the attention scoring stage. Through the
above enhancement mechanism, the model can more
precisely capture scheduling preferences, such as the
priority linkage of energy storage equipment and the
priority supply of industrial terminal loads.

The training objective function of the graph attention
module adopts the strategy of minimizing the node state
prediction error. Specifically, the power state at the next
moment is used as the label, and the mean-square error
(MSE) loss function is used to calculate the difference
between the predicted value and the true value, and the
sum is accumulated for all nodes. The optimizer used is
Adam. The initial learning rate is 0.001. The training
batch size is 32 graph samples. The training cycle is set
to 200 epochs. A single round of training takes about 3.4
seconds in a GPU environment.
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Figure 2. Multi-head attention activation pattern.

Figure 2 is a heatmap of the multi-head attention
activation pattern. The horizontal axis of the heatmap is 8
attention heads, and the vertical axis is 40 node indexes.
The color value maps the activation intensity from 0 to 1.
It can be found that on node heads 1 and 2, about 25% of
the nodes (mainly energy storage) have an average
activation intensity of more than 0.8, which verifies that
the multi-head mechanism can capture differentiated
scheduling preferences for different node types.

This mechanism constructs a local path search graph
based on the Euclidean distance between nodes in the
embedding space and the attention weight strength. It
performs a multi-source shortest path search with the
energy supply node as the starting point and the target

load node as the endpoint.

In the specific implementation, a k-nearest neighbor
graph ( 5k  ) for all nodes is built first in the embedding
space, and the top 5 connections with the highest
attention weights are retained as candidate path edges.
Then, a pruning operation based on energy transmission
capacity constraints is performed in the candidate graph
to remove connection paths that exceed the maximum
instantaneous power transmission capacity (in kW; the
threshold for photovoltaic nodes is set to 80kW and for
energy storage nodes is 120kW). Finally, a local
scheduling path graph is constructed through a heuristic
depth-first search (DFS).

Figure 3. Distribution of local scheduling paths and scheduling costs based on graph attention.
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Figure 3 shows a county energy network with 30 nodes,
where the node types include energy storage,
photovoltaics, and loads. The connection between nodes
is constructed based on the k-nearest neighbor principle,
and the existence of edges indicates possible scheduling
paths. The values on the edges represent the scheduling
cost from one node to another, and the cost calculation
considers the path length, resistance loss, and average
scheduling delay. This figure shows the distribution of
scheduling paths and the scheduling costs of different
paths, which helps to understand the optimization
direction of the scheduling strategy and the spatial
distribution characteristics of the scheduling cost.

After the path generation is completed, the path flow is
scheduled and allocated based on the current load
demand value and the remaining discharge capacity of
the energy storage node. The allocation strategy adopts
the principle of minimum scheduling cost priority. The
scheduling cost calculation comprehensively considers
factors such as path length, resistance loss, and
scheduling delay to form a path scheduling score. In each
round of scheduling, the path with the smallest score is
selected as the main scheduling path, and the remaining
paths are used as redundant adjustment channels.

The path update frequency is set to 15 minutes, and the
update process performs resampling operations based on
the latest graph attention output. The path history data is
saved in the local cache and used as dynamic label data
in the subsequent training phase to support the
reinforcement learning module training of the scheduling
network. At the same time, the scheduling path volatility
is an important indicator for measuring the stability of
graph attention, which is used to regulate the
regularization term in the GAT model training to
suppress the model from overfitting specific path
patterns.

C. Embedding Green Benefit Evaluation in the
Industry Chain

1) Construction of the Energy-Industry Bidirectional
Graph and Injection of Green Attributes

On the basis of the basic heterogeneous graph structure,
to realize the “energy-industry” collaborative scheduling
strategy at the county level, a two-way graph network
structure including industrial terminal nodes is
constructed. New node types include actual energy
consumption entities such as agricultural processing
workshops, small and medium-sized manufacturing
enterprises, and e-commerce logistics terminals. Each
industrial node is embedded with two types of key green
indicator attributes: energy consumption per unit of

output value (unit: kWh/10,000 yuan) and carbon
emission intensity (unit: kgCO₂/kWh). The basic data
sources include the National Energy Conservation Center
Industry Catalog Database and the enterprise-measured
load report. For typical rural industries, the unit energy
consumption range is set at 7.4 to 56.8kWh/10,000 yuan,
and the carbon emission intensity ranges from 0.49 to
1.32kgCO₂/kWh.

In the graph structure, to achieve two-way information
transmission, two types of directed edges are set: “energy
node→industrial node” and “industrial node→energy
node”. The former is used to represent the energy supply
relationship, and the latter is used to provide feedback on
the green weight of the load response. To enhance the
representation ability, the three dimensions of scheduling
frequency, unit energy consumption benefit ratio, and
industry priority level (divided into three levels, with
values of 1-3) are added to the edge features as encoding
inputs. In addition, to avoid the embedding offset caused
by the uneven distribution of attributes of industrial
nodes, the BatchNorm standardization operation and the
DropEdge strategy are used to give sparse probability to
the edge weights of high carbon and high load to
suppress structural bias.

Node feature embedding adopts a hybrid representation
vector method. Energy nodes retain basic features such
as power, coordinates, and storage capacity. After the
industrial nodes are embedded with green indicators, the
final input is formed by combining the 64-dimensional
linear mapping matrix with the energy consumption
distribution Gaussian embedding, which serves as the
input source of the subsequent graph convolution module
[33]. The embedding of the industry green indicator
distribution adopts Gaussian kernel density estimation
modeling to improve the model’s ability to distinguish
low-carbon industries.

2) Potential Node Mining and Green Path
Adjustment Mechanism

After completing the construction of the
“energy-industry” graph structure and injecting green
attributes, the mining of green potential nodes and
dynamic optimization of scheduling paths are performed
based on the graph neural network. The graph model
adopts a multi-layer GraphSAGE (Graph Sample and
AggregatE) structure to obtain the green semantic
features of nodes through a cascaded hierarchical
aggregation mechanism. In each layer of convolution, the
adjacent node feature aggregation adopts the maximum
pooling strategy, and the nonlinear modeling ability is
enhanced through the ReLU activation function. The
final output is the embedded representation for green
potential scoring.
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Figure 4. Distribution of green potential score for industrial nodes.

Figure 4 shows the distribution of green potential scores
of industrial nodes. The vertical axis represents the green
potential score of the node, ranging from 0 to 1. The
node size corresponds to the energy consumption per
unit output value (kWh/10,000 yuan), and the larger the
value, the higher the energy consumption. The node
color maps the carbon emission intensity (kgCO₂/kWh).
This figure intuitively reflects the green energy
efficiency characteristics of each industrial node, which
helps to precisely screen green potential nodes and
support the decision-making of coordinated optimization
scheduling of distributed energy and industry chains.

The potential scoring function is designed to integrate
three indicators: green energy efficiency score (Green
Efficiency Score), node edge connection density (Edge
Degree), and current load response ratio (Load
Participation Ratio). The normalization interval of the
scoring function is 0-1. Nodes above 0.85 are marked as
green potential nodes and enter the scheduling priority
set. This scoring function is used as a secondary
supervision target of the graph neural network. It is
trained in parallel with the main target of node energy
consumption prediction, sharing the underlying
parameters. The joint optimization objective function is
as Formula (1):

total forecast green  L L L (1)

Among them,  represents the green objective weight
coefficient, which is set to 0.3.

After completing the screening of green potential nodes,
the scheduling path generation module applies the
original graph path search logic to the green constraint
function. The specific process is to use the green path
cost function greenC when selecting the path. This

function considers the average carbon emission intensity
and the inverse of unit energy efficiency of the industrial
nodes involved in the path and prioritizes the scores of
low-carbon and high-efficiency paths. For high-carbon
paths in the original shortest path set, their scheduling
frequency is reduced to within 0.5 times of the original
value, and the weights between nodes are updated
through feedback from the graph attention module.In
order to cope with the dynamic changes in industrial
green attributes, this study designs a dual-cycle update
mechanism: the main cycle (24 hours) is used for global
path optimization, supplemented by hourly local green
indicator fine-tuning. Specifically, the carbon emission
intensity and unit output value energy consumption of
industrial nodes are collected in real time through online
sensors, and the weight parameters in the green potential
scoring function are dynamically corrected in
combination with sliding windows. For example, if the
unit energy consumption of an agricultural product
processing workshop decreases by 10% due to process
upgrades, its green potential score will trigger
recalculation within 1 hour and be synchronously
updated to the priority queue for scheduling path
selection. In addition, a dynamic attenuation factor
(attenuation coefficient 0.95 hour  ) is introduced
into the green path cost function to ensure that the weight
of new data decays over time and avoid the interference
of historical data on real-time decision-making.

The path update cycle is set to once every 24 hours, and
it runs globally on the main control scheduling system.
At the same time, the green node distribution is
dynamically cached to the edge node equipment to
achieve independent execution of green scheduling on
some nodes. To support the controllability of the green
scheduling strategy on the scheduling cost of the entire
system, the greenness-cost trade-off factor  is
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integrated into the model. Its value is set by the county
policy. In this system test, its default value is set to 0.6.

This mechanism achieves the optimization of energy
efficiency regulation at industrial nodes without
significantly increasing system scheduling costs while
increasing the green proportion of energy utilization in
counties, supporting the linkage between subsequent
people-enriching industries and green development
goals.

D. Cascaded Task-driven Scheduling Optimizer

1) Multi-Objective Graph Embedding and State
Assessment Modeling

To achieve joint regulation of energy supply stability,
carbon emission level, and economic benefits, a graph
cascade scheduling optimization architecture is designed.
The time series features and structural representation of
each energy configuration scheme in the multi-source
node graph are extracted through the graph neural
network, and a state transition model is constructed.
Based on the distributed energy graph, the system
encodes photovoltaic, wind energy, energy storage, grid
nodes, and industrial energy load nodes as state nodes.
The node features include the average output in the past
24 hours, predicted volatility (measured in standard
deviation, in kW), carbon factor, and unit energy
consumption economic value (in yuan/kWh).

The embedding module uses a multi-layer graph
convolutional network (GCN) and GraphSAGE joint
structure. The first two layers use GCN to extract the
topological structure influence between nodes. From the
third layer onwards, GraphSAGE is used to aggregate
dynamic time series features, and skip connections are
added to retain the original physical structure
information. The embedding output of each node is a
128-dimensional vector, which is aggregated into the
current system state representation through the
multichannel attention mechanism within the node. The
state evaluation function of the graph cascade task is
based on the following indicators: system supply and
demand matching rate, carbon emission cost ratio, and
load guarantee rate. The values are calculated separately
through the output of the embedding layer connected to
three parallel scoring networks.

The graph cascade mechanism combines the green node
scoring results of the previous stage with the current
scheduling task state into the evaluation network, making
the scheduling strategy green and inherited, reducing the
drift of path decisions. To enhance the adaptability to
abnormal perturbations, edge perturbations are added to
the graph structure during training, representing energy
supply interruptions caused by sudden weather changes
or external power outages. The edge weights are
randomly perturbed in the range of 0 to 60% of the
conventional transmission capacity. The system
dynamically updates the node state space in the
evaluation module and reconstructs the feasibility
domain of the potential scheduling path in combination

with the perturbation context.

2) Scheduling Optimization and Strategy Update
Mechanism of Graph-Strategy Linkage

The scheduling optimization module is designed as a
deep reinforcement learning framework based on the
graph structure state space to achieve optimal policy
iteration under multi-objective constraints. The proximal
policy optimization (PPO) algorithm is used to train the
policy network. The input of the policy network is the
graph structure embedded state, and the output is the
scheduling probability distribution of various energy
path configurations. The action space includes the energy
transmission path selection between nodes, the energy
storage charging and discharging adjustment coefficient,
and the scheduling execution time window adjustment
(in minutes; the value range is discretized into 5 levels
within ±15 minutes).

The policy network is a three-layer fully connected
network with dimensions of 256, 128, and 64 in each
layer. The output layer is a softmax activation function,
which represents the selection probability of different
strategies. The value network and the policy network
share the weights of the first two layers and output the
expected reward value of the system. The reward
function design comprehensively considers the system
operation cost (Cost), carbon emission penalty (Carbon
Penalty), and load loss penalty (Load Loss Penalty), as
shown in Formula (2):

1 2t t t tR C CP LL       (2)

Among them, 1 and 2 are penalty weights, and the
empirical setting values are 0.5 and 0.8.

During the training process, a time-sliding window
mechanism is used. Each round of policy evaluation and
update covers 6 hours of rolling data. The experience
replay pool (with a capacity of 5,000 state-action
trajectories) is used to accelerate policy convergence. To
improve the generalization performance of the policy, the
graph structure input samples include three typical load
scenarios: daytime peak, nighttime trough, and extreme
weather, accounting for 60%, 25%, and 15%,
respectively. In addition, the system performs policy
migration synchronization every 12 hours, sends the
master station policy parameters to the county controller,
and supports offline inference execution of edge
scheduling nodes.

The graph cascade optimization architecture uses a
reinforcement learning strategy control mechanism in a
multi-source heterogeneous graph space to achieve
dynamic adjustment of energy distribution plans and
optimal path selection. Before scheduling execution, the
system generates five sets of strategy candidate
sequences and uses a short-term simulator to predict their
corresponding state change trends. Finally, the
scheduling instructions are screened and issued for
execution based on the maximum expected reward
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criterion.

E. Multi-scale Graph Partitioning and Regional
Autonomous Control

1) Design of Region Partitioning Algorithm Based on
Structural Features

To improve the parallelism and response efficiency of the
scheduling system in large-scale county-level energy
graphs, the overall graph structure needs to be divided
into several regional autonomous subgraphs, and the
information boundaries between subgraphs need to be
controllable. The partitioning strategy is based on node
features, edge connectivity, and geographical proximity.
It is completed using a multi-scale graph clustering
method. The initial partitioning uses an improved
Louvain algorithm to perform community detection on
the overall heterogeneous graph structure, and the
optimization goal is to maximize the modularity function,
where the edge weight is weighted based on the energy
transmission capacity and spatiotemporal coupling in the
previous modeling. The node attribute vector includes
geographic coordinates (normalized longitude and
latitude), node type labels (One-Hot coding for
photovoltaic, wind power, load, industrial terminal, etc.),
and dynamic output average. The modularity threshold is
set to 0.35, and the number of nodes in each subgraph
after partitioning is controlled between 50 and 80 to
ensure the stability of the operation complexity of the
autonomous control module.For the parameter setting of
the modularity threshold (0.35) and the subgraph scale
(50-80 nodes), this study adopts an adaptive adjustment
strategy based on historical load characteristics.
Specifically, by clustering and analyzing the county's
geographical characteristics (such as population density
and industrial distribution) and load fluctuation rate
(areas with a standard deviation of ≥15% are marked as
high dynamic areas), the modularity threshold is
dynamically adjusted: the modularity threshold in high
dynamic areas is reduced to 0.25 to promote fine-grained
division, and the modularity threshold in low dynamic
areas is increased to 0.4 to reduce the number of
subgraphs. The subgraph size constraint is also
optimized according to the node type density: the upper
limit of the subgraph in the industrial node-intensive area
is extended to 100 nodes to retain the coupling
characteristics of the industrial chain; the subgraph in the
rural distributed load area is compressed to 30-50 nodes
to reduce communication overhead.

On the basis of primary partitioning, a local optimization
phase based on spectral clustering is further adopted to
perform secondary partitioning on the fuzzy partition
boundary area. The normalized Laplacian matrix is used
for eigendecomposition. The first five order feature
vectors are selected and input into the K-means
algorithm to fine-tune the boundary area attribution. This
step mainly acts on the transition zone where the weight
edge of the node is close to the critical value, which can
improve the partition stability by about 12% on average.
Finally, multiple autonomous subgraphs are formed, and
each subgraph is regarded as a regional scheduling unit

with independent operation capabilities. To ensure that
the partition results are spatiotemporally robust, the
system re-executes the graph partitioning operation every
24 hours in the area where the historical load variation
rate exceeds 15%, and retains the previous partition
result for cross comparison and difference mapping. The
modularity function is defined as Formula (3):

 ,

1 ,
2 2

i j
ij i ji j

k k
Q A c c

W W


 
  

 
 (3)

Q : Modularity value of the graph partition. ijA : Edge
weight between nodes i and j (considering energy
transmission capacity and spatiotemporal coupling). ik
and jk : Total edge weight of nodes i and j . W :
Sum of all edge weights in the graph. ic and jc :
Community labels to which nodes i and j belong.

 , :1i jc c when i jc c is present; otherwise 0
(indicating intra-community connection).

The node attribute vector is constructed (for clustering
input), as shown in Formula (4):

   lon , lat ,OneHot type ,i ii i iP   x (4)

Among them, ix : Attribute vector of node i . lon i and
lat i : Normalized values of node longitude and latitude.

 OneHot type i : OneHot code of node type. iP :
Average value of dynamic output of node in the recent
period.

2) Regional Autonomous Scheduling Strategy and
Boundary State Synchronization Mechanism

The autonomous controller runs independently in each
regional subgraph and constructs a local scheduling
graph through the local state estimator and the graph
attention mechanism. The scheduling strategy uses the
GAT structure to enhance the recognition of critical paths
and high-variability nodes and integrates with the PPO
strategy network to achieve dynamic optimization of
energy flow within the subgraph. The regional control
cycle is set to refresh the state every 30 minutes, and the
scheduling decision generation and action issuance are
completed within 15 minutes. The strategy output
includes energy storage charge and discharge ratio
adjustment, photovoltaic output limit control (±15%),
and load switching priority change.

The boundary node state synchronization mechanism is
used to maintain global consistency between subgraphs
and ensure scheduling path coordination. Boundary
nodes are defined as high-weight hub nodes connecting
two or more subgraphs, accounting for about 6% to 10%
of the total number of nodes. Each boundary node sets up
a state mirror unit to record its projection state in the
adjacent subgraph. The boundary information
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synchronization cycle is every 10 minutes, using the
boundary message passing (BMP) algorithm based on
message passing. The synchronization content includes
the node power change (in kW), time series prediction
error (in %), and strategy selection probability vector
(the dimension is the number of strategy spaces). The
threshold judgment mechanism is used during
synchronization, and full synchronization is triggered
only when the difference in the boundary node state
exceeds the preset change rate of 5%, reducing
communication overhead.

The system designs a local conflict coordinator to trigger
a two-way strategy backtracking mechanism when
boundary conflicts are detected. The specific process is
as follows: after the boundary node detects that the
scheduling output is mutually exclusive, it executes a
low-priority strategy replacement according to the
priority of the node’s influence range. If there is still a
conflict, it goes back to the strategy generation network
to perform local gradient suppression and adjust the
strategy distribution until the conflict is eliminated. This
mechanism verifies in the scheduling simulator that each
epoch converges within 4 iterations on average, meeting
the real-time performance requirements.

Figure 5. Hierarchical collaborative control architecture of county-level energy system.

Figure 5 shows the hierarchical collaborative control
architecture of the county-level energy system. First, the
global heterogeneous graph is divided into multiple
scales through an improved community detection
algorithm, and the subgraph boundary is optimized in
combination with the spectral clustering method. The
dynamic adjustment mechanism automatically
reconstructs the topology according to the load changes
to form multiple autonomous subgraphs. The graph
attention network and reinforcement learning strategy are
used within each subgraph to achieve local energy
scheduling optimization. The boundary nodes
synchronize their states through a dedicated protocol,
and global coordination is triggered when the difference
exceeds the threshold. The conflict resolution mechanism
uses a gradient suppression method to quickly converge
the system state, maintain overall stability while ensuring
regional autonomy, and achieve an effective balance
between distributed control and global optimization.

By building a stable and efficient graph partitioning and
regional autonomous system, this study significantly
improves the scalability and local response speed of the
system while ensuring the stable operation of the
county-level energy graph structure. The autonomous
subgraphs achieve global perception and local adaptive

coordination through boundary nodes, providing a
structural basis for the subsequent dynamic perturbation
response and the linkage of energy use strategies of the
people-enriching industry chain.

In order to enhance the adaptability of the model to
different counties, the following mechanisms were
introduced in this study:

(1) Dynamic regional division mechanism: automatically
adjust regional boundaries based on the geographical
characteristics (population density) and load fluctuation
rate of the county;

(2) The configurability of the green potential scoring
function: the scoring weights can be adjusted according
to the carbon emission targets and industry types of
different counties;

(3) Incremental update mechanism of graph attention
module: supports updating only node embedding vectors
without retraining the entire model;

(4) Edge deployment and lightweight processing: The
model can be deployed locally in the county, supporting
real-time updates and policy migration.
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The boundary node synchronization and policy update
mechanism mentioned in this article has low
computational and communication overhead in practice.
The system adopts a boundary message passing
algorithm based on message passing, which only triggers
synchronization when the node state difference exceeds
the preset threshold (5%), significantly reducing
communication frequency. The synchronization content
mainly includes node power variation, prediction error,
and strategy selection probability vector, with a single
communication data volume controlled within 1KB. The
strategy update adopts a lightweight model parameter
synchronization method, with a full update every 12
hours. The edge nodes support local strategy inference,
significantly reducing the computing pressure on the
central node and ensuring the real-time and scalability of
the system.

3. Task-driven Collaborative Evaluation Indicator
System

The experimental evaluation in this chapter is based on
the actual operation data set of a typical county in China
throughout 2023. The data set covers 40 distributed
energy nodes and 30 people-enriching industry nodes.
The data collection frequency is 5 minutes/time,

including key attributes such as dynamic power
generation power, load intensity, real-time carbon
emission intensity (kgCO₂/kWh), and energy
consumption per unit output value (kWh/10,000 yuan).
12 groups of typical scenario data are specially included:
sunny/cloudy photovoltaic fluctuation scenarios
(accounting for 60%), night valley scenarios (25%), and
extreme weather disturbance scenarios (15%) to fully
verify the robustness of the model. The original data is
cleaned by the Kafka-Spark edge computing pipeline and
stored in the graph database.

A. Energy-Industry System Carbon Efficiency Index

The carbon efficiency index is evaluated by the level of
industrial output value corresponding to unit carbon
emissions. First, the energy input and carbon emission
intensity parameters of each industrial node are collected
and normalized with the output value data within the
scheduling cycle. Then, a node carbon efficiency matrix
is constructed to aggregate the regional energy
consumption and output ratio, reflecting the carbon
utilization efficiency level brought by different energy
configurations to industrial output. The index is used to
compare the green collaboration performance of the
system under different strategies.

Figure 6. Cross-node carbon efficiency evaluation and scheduling strategy. Figure 6 (a) Cross node carbon efficiency evaluation;
Figure 6 (b) Scheduling strategy.

The Figure 6(a) shows the carbon efficiency index of
each industrial node. The X-axis is the node number, and
the Y-axis is the carbon efficiency value (0-1). Nodes 28
and 29 have the highest values, reaching 0.9711 and
0.9682, respectively, which have significant green
potential. The Figure 6(b) shows the changes in the
average carbon efficiency of the system under the three
scheduling strategies. The optimized collaboration
strategy performs best, with a peak value of 0.89, which
is better than the baseline strategy overall. The results
show that reasonable scheduling can improve the carbon
efficiency of the system, and giving priority to
supporting efficient green nodes is conducive to
achieving industrial low-carbon collaboration.

B. Node Scheduling Response Delay

This indicator is used to quantify the average time from
when the node state changes to when the scheduling
policy is updated. The evaluation process includes
recording the state mutation timestamps of all key nodes
in each epoch of scheduling and tracking the execution
time triggered by the policy output in the graph network.
All response delay data are aggregated to calculate the
weighted average response cycle of the node to evaluate
the control sensitivity of the system under sudden load or
environmental changes.
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Table 1. Performance differences of different types of nodes in scheduling response

Node Type Avg Response Delay (ms) Max Response Delay (ms) Weighted Avg Response Delay (ms)
PV Node 120 145 118
Storage Node 95 110 97
Flexible Load Node 80 100 82
Rigid Load Node 130 160 128
Industry Terminal Node 105 130 107

Table 1 shows the performance differences of different
types of nodes in scheduling response, and the
comparison reflects the sensitivity and worst
performance of the system driven by the graph neural
network under sudden load or environmental
perturbation. The average response delay of the
photovoltaic node is 120ms, and the maximum delay is
145ms, which means that although it can quickly trigger
the strategy in high-priority scheduling, it occasionally
has large delays. The average delay of the energy storage
node is 95ms, and the maximum delay is 110ms. The
weighted delay is 97ms. The results highlight its stability
in second-level response. The average delay of the rigid
load node is 130ms, and the maximum is 160ms. The
weighted delay is 128ms, reflecting the bottleneck effect
of the strategy update of this type of node. The average
delay of the industrial terminal node is 105ms, and the
maximum is 130ms, indicating that the scheduling
constraint of the industrial load is between the two.

Overall, the flexible load node has a higher scheduling
sensitivity, while the rigid load node is the key constraint
point of the system response.

C. Network Collaboration Stability Indicator

The network collaboration stability is evaluated by
measuring the fluctuation amplitude of the graph
embedding representation after multiple epochs of
scheduling iterations. After each epoch of graph network
forward propagation, the embedding vector of each node
is extracted, and the change of Euclidean distance
between consecutive moments is recorded. The mean and
variance of the embedding change of all nodes are
statistically analyzed to reflect the structural convergence
of the system and the consistency of the whole network
behavior during the strategy adjustment process, which
effectively measures robust performance.

Figure 7. Embedding fluctuation mean and variance during graph neural network training.

Figure 7 shows the evolution trend of the embedding
fluctuation mean and variance during the training of the
graph neural network, which is used to evaluate the
network collaboration stability of the system. The X-axis
is the training epoch (1 to 100). The Y-axis of the upper
figure represents the node embedding fluctuation mean,
and the Y-axis of the lower figure represents the
embedding variance. It can be found that the fluctuation
mean gradually decreases from the initial approximately
0.5, stabilizes after the 60th epoch, and remains below
0.1, indicating that the node representation gradually
converges after multiple epochs of scheduling
optimization. The variance indicator also shows a

significant downward trend, from the initial 0.3 to within
0.05 after the 80th epoch, indicating that the consistency
of the embedding fluctuation of the entire network is
enhanced. This result shows that the constructed
scheduling strategy has strong robustness and structural
convergence in the graph space, supporting the system in
achieving stable energy flow collaborative regulation
under dynamic perturbations.

D. System Benefit Composite Score

The composite score integrates the results of multiple
objective functions, including unit energy cost, carbon

228



emission fines, and the increase in the output value of
each industry. The evaluation method constructs a
weighted linear combination based on the normalized
score vector. The weight of each dimension is preset
according to the county planning goal. For example,

when the carbon emission reduction goal is the main one,
the weight is tilted towards the carbon indicator. The
final score is used for horizontal comparison and priority
ranking among scheduling strategies.

Table 2. Comprehensive benefit scores of four scheduling strategies.

Strategy Cost
Score

Carbon
Penalty Score

Output
Value Score

Cost Weighted
(0.3)

Carbon
Weighted (0.4)

Revenue
Weighted (0.3)

Composite
Score

Baseline Strategy 0.6 0.55 0.65 0.18 0.22 0.195 0.595

Collaborative
Optimization 0.75 0.8 0.9 0.225 0.32 0.27 0.815

Reinforcement
Learning 0.7 0.7 0.85 0.21 0.28 0.255 0.745

Hybrid Strategy 0.65 0.75 0.8 0.195 0.3 0.24 0.735

Table 2 compares the comprehensive benefit scores of
the four scheduling strategies, strengthening green
collaborative optimization across the three dimensions of
cost, carbon emissions, and output value. The baseline
strategy is defined as a traditional model predictive
control framework, whose objective function only
optimizes the scheduling cost and does not explicitly
constrain carbon emissions and industry collaboration.
The composite score of the baseline strategy is only
0.595, including a cost score of 0.60, a carbon penalty
score of 0.55, and an output value score of 0.65. In
contrast, the collaborative optimization strategy proposed
in this paper scores a high score of 0.80 in the carbon
penalty dimension, with a weighted carbon penalty
contribution of 0.32, and the final composite score
climbs to 0.815, significantly ahead of other solutions.
The reinforcement learning strategy and hybrid strategy
obtain composite scores of 0.745 and 0.735, respectively,

indicating that they are also feasible in balancing costs
and carbon emissions, but they are still inferior to the
comprehensive driving effect of the collaborative
optimization strategy on improving low-carbon output
value.

E. Comparison of Energy Configuration Elastic
Response

This indicator is used to measure the adaptability of the
system to maintain the target output capacity under
different energy ratio adjustments. By constructing a set
of simulated scheduling scenarios, the main energy types
(such as photovoltaics, wind power, and energy storage)
are perturbed proportionally, and the changes in system
output value and carbon emission response are observed
under fixed industrial load conditions.

Figure 8. Comparison of elastic response of multi-energy system configurations under different perturbation levels.

Figure 8 is a comparison of the elastic response of
multi-energy system configurations under different
perturbation levels, where the horizontal axis is ±20%
perturbation and the vertical axis is the elasticity

coefficient. Figure 8 shows the changes in the elasticity
coefficients of photovoltaic, wind power, energy storage,
and their combined configurations under different
perturbation levels, reflecting the system’s
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anti-perturbation ability. All types reach the maximum
elasticity of 1.00 at 0 perturbation. The elasticity
coefficient of the energy storage drops to 0.80 at -20%
perturbation, and that of the photovoltaic is 0.90,
showing that photovoltaic stability is higher. The
elasticity coefficient of the combined configuration
maintains 0.93 and 0.95, respectively, under ±10%
perturbation, indicating that multi-source collaborative
scheduling can significantly improve the system’s
elasticity and robustness, verifying the effectiveness of
the proposed mechanism.

F. Regional Autonomous Collaboration Efficiency

To evaluate the collaboration effect of the multi-scale
graph partitioning strategy in actual scheduling, five
typical regional subgraphs are selected and quantitatively
analyzed from three dimensions: synchronization delay,
message frequency, and collaboration success rate, to
reveal the response efficiency and collaboration stability
of the graph neural scheduling mechanism in regional
autonomy.

Table 3. Comparison of regional subgraph autonomous collaboration performance.

Subgraph Region Synchronization Delay (ms) Message Frequency (times/min) Collaboration Success Rate (%)
Subgraph A 150 12 95
Subgraph B 180 10 92
Subgraph C 140 14 97
Subgraph D 165 11 94
Subgraph E 155 13 96

Table 3 shows the collaboration performance indicators
of the five subgraphs under the multi-scale region graph
partitioning. Overall, subgraph C performs best, with the
lowest synchronization delay (140ms) and the highest
collaboration success rate (97%), indicating that its graph
structure partitioning and policy inference are the most
efficient. Subgraph B has problems such as high
synchronization delay and low message frequency, and
its collaboration success rate is relatively low (92%),
indicating that its node relationship density may not be

conducive to high-frequency collaboration. The overall
data reflects the dynamic adaptability differences of the
regional autonomous mechanism under GNN
collaborative control, which is helpful to further optimize
the graph structure and scheduling algorithm.

G. Model Expansion Performance

The performance under graph scale expansion is shown
in Table 4.

Table 4. Performance under Scale Expansion.

Number of nodes in the graph Average training time (per epoch) Inference delay (ms) GPU memory usage (MB)

50 2.3s 68 420

80 3.1s 79 610

100 4.2s 93 850

150 6.8s 125 1200

200 10.5s 168 1800

As the number of nodes in the graph increases, the
training time and inference delay show a non-linear
increase, but still meet the deployment requirements at
the county edge within 100 nodes. For nodes above 150,
the graph structure needs to be optimized or a
lightweight strategy should be adopted. The overall

architecture has certain scalability and is suitable for
medium-sized county-level energy system applications.

The results of the ablation experiment are shown in Table
5.

Table 5. Ablation Experiment.

Module combination Carbon efficiency index Weighted response delay (ms)

Complete model (GAT+GraphSAGE+PPO) 0.89 97

Remove GAT 0.78 115

Remove GraphSAGE 0.82 105

Removing GAT and GraphSAGE in sequence resulted in
a decrease in carbon efficiency index and response delay,
indicating that each module made significant

contributions to system performance. Among them, GAT
plays a key role in graph attention modeling,
GraphSAGE plays a crucial role in green potential
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mining, and PPO plays a key role in multi-objective
scheduling optimization. Module collaboration can
achieve optimal performance.

The performance of the model in extreme environmental
scenarios such as prolonged cloudy days and system
failures is shown in Table 6.

Table 6. Extreme Environmental Scenarios.

Scenario Type Decrease in photovoltaic output (prolonged cloudy
days) Energy storage system malfunction

Scene Description The photovoltaic power generation has decreased to
30% of the normal level

Energy storage node crashes or
output is limited

Scheduling response delay (ms) 115 142

Carbon Efficiency Index (0-1) 0.81 0.74

Green path availability rate (%) 86% 75%

System recovery time (min) 8 15

In extreme environmental scenarios, the model still
exhibits strong robustness and adaptability. For example,
in long-term cloudy conditions, carbon efficiency and
green path availability remain at a high level, verifying
the practicality and fault tolerance of the model under

complex disturbances.

The performance comparison of different graph neural
network architectures in county-level energy system
tasks is shown in Table 7.

Table 7. Performance comparison of different graph neural network architectures in county-level energy system tasks.

Model architecture Average response delay (ms) Carbon efficiency index Comprehensive score

This paper model 97 0.89 0.815

GIN 112 0.83 0.76

Graph Transformers 105 0.86 0.79

GCN 118 0.8 0.735

GraphUNet 125 0.78 0.71

GAT dynamically models the energy coupling
relationship between nodes through attention mechanism,
improving scheduling response speed and carbon
efficiency; GraphSAGE supports efficient aggregation
and green potential mining under large-scale graph
structures, adapting to the needs of county-level energy
industry collaborative optimization. The combination of
the two is better than GIN, Graph Transformers and other
architectures in response delay, carbon efficiency and
comprehensive score, taking into account performance
and deployability, and is more suitable for rural edge
computing environment.

4. Conclusion

The distributed energy dispatch and county industrial
chain collaborative optimization framework based on
graph neural network relies on graph attention
mechanism, graph cascade optimizer and multi-scale
autonomous control method to achieve efficient
coordination of energy dynamic allocation and industrial
green transformation. Experimental results show that the
proposed model performs well in improving energy
utilization efficiency, reducing carbon emission intensity
and enhancing system stability, and has good practical
value and promotion potential. There are still certain
limitations in algorithm adaptability, regional difference

adaptability and system integration stability. In particular,
the generalization ability needs to be further improved in
the face of cross-regional dispatch, complex
environmental disturbances and long-term dynamic
feedback conditions. Although the framework proposed
in this paper integrates complex components such as
GAT, GraphSAGE and PPO, it achieves functional
decoupling through modular design. Each module can be
deployed and upgraded independently, reducing the
overall maintenance difficulty. For example, the graph
attention module only needs to update the node
embedding vector regularly without retraining the entire
model; the regional autonomous control subgraph can be
run locally to reduce dependence on central computing
power. In addition, the model parameters have been
lightweight processed and verified to be real-time on
county-level edge devices. For scenarios with
insufficient operation and maintenance capabilities, it is
recommended to adopt a pre-trained model + incremental
update strategy, which only requires basic IT personnel
to complete daily maintenance. This article focuses on
interpretability for non-technical personnel in model
output design, ensuring that energy managers can
understand and trust system recommendations. By
introducing standardized green potential scoring,
visualization of path scheduling costs, display of regional
division mechanisms, and multi-objective comprehensive
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scoring mechanisms, the system output not only has
technical guidance significance, but also facilitates
practical scheduling operations for rural energy managers.
The framework proposed in this study has a good
modular structure and parameter adjustability, which can
adapt to county-level energy systems under different
geographical and industrial backgrounds by adjusting the
input characteristics of green potential rating weights,
regional partitioning strategies, and graph attention
mechanisms. In the future, the introduction of federated
learning mechanisms can achieve collaborative training
across multiple counties, further enhancing the model's
generalization ability.

Acknowledgment

None

Data Availability Statement

The county-level distributed energy system and
prosperous industry chain operation data used in this
study are sourced from the 2023 national typical
county-level actual operation dataset, covering 40
distributed energy nodes and 30 prosperous industry
nodes. The data collection frequency is 5 minutes per
time, including key attributes such as dynamic power
generation rate, load intensity, carbon emission intensity,
and energy consumption per unit output value. The
original data is cleaned by Kafka Spark edge computing
pipeline and stored in the graph database. Due to privacy
concerns related to local energy infrastructure, the
complete raw data has not been made public to the
public.

Consent to Publish

The manuscript has neither been previously published
nor is under consideration by any other journal. The
authors have all approved the content of the paper.

Funding

This work was supported byHezhou University doctoral
research startupfund project "Research on the
optimization of industries for enrichingpeople in
Guangxi karst environment"(2024BSQD12).Guangxi
ZhuangAutonomous Region's philosophy and Social
Sciences Planning researchproject "Research on the
theoretical logic and practical path of greenindustries for
enriching people promoting the development of new
qualityproductive forces in Guangxi"(24MZF018).

Author Contribution

[Kan Wu]: Developed and planned the study, performed
experiments, and interpreted results. Edited and refined
the manuscript with a focus on critical intellectual
contributions.

[Sishi Xie]: Participated in collecting, assessing, and
interpreting the date. Made significant contributions to

date interpretation and manuscript preparation.

[Zhanjun Xie]: Provided substantial intellectual input
during the drafting and revision of the manuscript.

Conflicts of Interest

The authors declare that they have no financial conflicts
of interest.

References

[1] W. Liao, B. Bak-Jensen, J.R. Pillai, Y.L. Wang, Y.S. Wang.
A review of graph neural networks and their applications
in power systems. Journal of Modern Power Systems and
Clean Energy, 2021, 10(2), 345-360. DOI:
10.48550/arXiv.2101.10025

[2] Y. Wu, H.N. Dai, H. Tang. Graph neural networks for
anomaly detection in industrial Internet of Things. IEEE
Internet of Things Journal, 2021, 9(12), 9214-9231. DOI:
10.1109/JIOT.2021.3094295

[3] H.Y. Wu, M.H. Wang, Z. Xu, Y.W. Jia. Graph attention
enabled convolutional network for distribution system
probabilistic power flow. IEEE Transactions on Industry
Applications, 2022, 58(6), 7068-7078. DOI:
10.1109/TIA.2022.3202159

[4] A. Protogerou, S. Papadopoulos, A, Drosou, D. Tzovaras,
L. Refanidis. A graph neural network method for
distributed anomaly detection in IoT. Evolving Systems,
2021, 12(1), 19-36. DOI: 10.1007/s12530-020-09347-0

[5] J.H. Cai, W. Liang, X. Li, K.C. Li, Z.W. Gui, M.K. Khan.
GTxChain: A secure IoT smart blockchain architecture
based on graph neural network. IEEE Internet of Things
Journal, 2023, 10(24), 21502-21514. DOI:
10.1109/JIOT.2023.3296469

[6] Y.H. Zhu, Y.Z. Zhou, W. Wei, L.Q. Zhang. Real-time
cascading failure isk evaluation with high penetration of
renewable energy based on a graph convolutional
network. IEEE Transactions on Power Systems, 2022,
38(5), 4122-4133. DOI: 10.1109/TPWRS.2022.3213800

[7] G.M. Dong, M.Y. Tang, Z.Y. Wang, J.C. Gao, S.K. Guo,
L.H. Cai. Graph neural networks in IoT: A survey. ACM
Transactions on Sensor Networks, 2023, 19(2), 1-50. DOI:
10.1145/3565973

[8] E.E. Kosasih, F. Margaroli, S. Gelli, A. Aziz, N.
Wildgoose, A. Brintrup. Towards knowledge graph
reasoning for supply chain risk management using graph
neural networks. International Journal of Production
Research, 2024, 62(15), 5596-5612. DOI:
10.1080/00207543.2022.2100841

[9] E.E. Kosasih, A. Brintrup. A machine learning approach
for predicting hidden links in supply chain with graph
neural networks. International Journal of Production
Research, 2022, 60(17), 5380-5393. DOI:
10.1080/00207543.2021.1956697.

[10] X.K. Zhou, J.Y. Wu, W. Liang, K.I. Wang, Z. Yan, L.T.
Yang. Reconstructed graph neural network with
knowledge distillation for lightweight anomaly detection.
IEEE Transactions on Neural Networks and Learning
Systems, 2024, 35(9), 11817-11828. DOI:
10.1109/TNNLS.2024.3389714

[11] Y.X. Shao, H.Z. Li, X.Z. Gu, H.B. Yin, Y.W. Li, X.P.
Miao, et al. Distributed graph neural network training: A
survey. ACM Computing Surveys, 2024, 56(8), 1-39.
DOI: 10.1145/3648358

[12] J.Y. Han, J.X. Wang, Z.H. He, Q. An, Y.Y. Song, A.
Mujeeb, et al. Hydrogen‐powered smart grid resilience.

232



Energy conversion and economics, 2023, 4(2), 89-104.
DOI: 10.1049/enc2.12083

[13] V.Veerasamy, L.P.M.I. Sampath, S. Singh, H.D. Nguyen,
H.B. Gooi. Blockchain-based decentralized frequency
control of microgrids using federated learning
fractional-order recurrent neural network. IEEE
transactions on smart grid, 2023, 15(1), 1089-1102. DOI:
10.1109/TSG.2023.3267503

[14] C. Ju, T.K. Trinh. A Machine Learning Approach to
Supply Chain Vulnerability Early Warning System:
Evidence from US Semiconductor Industry. Journal of
Advanced Computing Systems, 2023, 3(11), 21-35. DOI:
10.69987/JACS.2023.31103

[15] S. Park, W.B. Chen, D. Han, M. Tanneau, P.V.
Hentenryck. Confidence-aware graph neural networks for
learning reliability assessment commitments. IEEE
Transactions on Power Systems, 2023, 39(2), 3839-3850.
DOI: 10.1109/TPWRS.2023.3298735

[16] A. Presekal, A. Ştefanov, V.S. Rajkumar, P. Palensky.
Attack graph model for cyber-physical power systems
using hybrid deep learning. IEEE Transactions on Smart
Grid, 2023, 14(5), 4007-4020. DOI:
10.1109/TSG.2023.3237011

[17] H.Y. Lin, M.Y. Yan, X.C. Ye, D.R. Fan, S.R. Pan,W.G.
Chen. A comprehensive survey on distributed training of
graph neural networks. Proceedings of the IEEE, 2023,
111(12), 1572-1606. DOI:
10.1109/JPROC.2023.3337442

[18] K. Zkik, A. Sebbar, O. Fadi, S. Kamble, A. Belhadi.
Securing blockchain-based crowdfunding platforms: an
integrated graph neural networks and machine learning
approach. Electronic Commerce Research, 2024, 24(1),
497-533. DOI: 10.1007/s10660-023-09702-8

[19] M. Zhang, Z. Zhen, N. Liu, H.J. Zhao, Y.Q. Sun, C.G.
Feng. Optimal graph structure based short-term solar PV
power forecasting method considering surrounding
spatio-temporal correlations. IEEE Transactions on
Industry Applications, 2022, 59(1), 345-357. DOI:
10.1109/TIA.2022.3213008

[20] Z.W. Chen, H.B. Ke, J.M. Xu, T. Peng, C.H. Yang.
Multichannel domain adaptation graph convolutional
networks-based fault diagnosis method and with its
application. IEEE Transactions on Industrial Informatics,
2022, 19(6), 7790-7800. DOI: 10.1109/TII.2022.3224988

[21] E.E. Kosasih, A. Brintrup. Towards trustworthy AI for
link prediction in supply chain knowledge graph: a
neurosymbolic reasoning approach. International Journal
of Production Research, 2025, 63(6), 2268-2290. DOI:
10.1080/00207543.2024.2399713

[22] Y. Song, D.Y. Tang, J.S. Yu, Z. Yu, X. Li. Short-term
forecasting based on graph convolution networks and
multiresolution convolution neural networks for wind
power. IEEE Transactions on Industrial Informatics, 2022,
19(2), 1691-1702. DOI:10.1109/TII.2022.3176821

[23] J.S. Kumar, B. Archana, K. Muralidharan, V.S. Kumar.
Graph Theory: Modelling and Analyzing Complex

System. Metallurgical and Materials Engineering, 2025,
31(3), 70-77. DOI: 10.63278/1320

[24] E. Mohammadi, M. Alizadeh, M. Asgarimoghaddam,
X.Y. Wang, M.G. Simões. A review on application of
artificial intelligence techniques in microgrids. IEEE
Journal of Emerging and Selected Topics in Industrial
Electronics, 2022, 3(4), 878-890. DOI:
10.1109/JESTIE.2022.3198504

[25] K. Choudhary, B. DeCost, L. Major, K. Butler, J.
Thiyagalingam, F. Tavazza. Unified graph neural
network force-field for the periodic table: solid state
applications. Digital Discovery, 2023, 2(2), 346-355.
DOI:10.1039/D2DD00096B

[26] T. Mortlock, D. Muthirayan, S.Y. Yu, P.P. Khargonekar,
M.A.A. Faruque. Graph learning for cognitive digital
twins in manufacturing systems. IEEE Transactions on
Emerging Topics in Computing, 2021, 10(1), 34-45. DOI:
10.1109/TETC.2021.3132251

[27] Z.G. Liu, P. Qian, X.Y. Wang, Y. Zhuang, L. Qiu, X.
Wang. Combining graph neural networks with expert
knowledge for smart contract vulnerability detection.
IEEE Transactions on Knowledge and Data Engineering,
2021, 35(2), 1296-1310. DOI:
10.1109/TKDE.2021.3095196

[28] C. Gao, Y. Zheng, N. Li, Y.F. Li, Y.R. Qin, J.H. Piao, et
al. A survey of graph neural networks for recommender
systems: Challenges, methods, and directions. ACM
Transactions on Recommender Systems, 2023, 1(1), 1-51.
DOI: 10.1145/3568022.

[29] B.N. Huang, Y.S. Li, F.N. Zhan, Q.Y. Sun, H.G Zhang.
A distributed robust economic dispatch strategy for
integrated energy system considering cyber-attacks. IEEE
Transactions on Industrial Informatics, 2021, 18(2),
880-890. DOI: 10.1109/TII.2021.3077509.

[30] E.E. Kosasih, E. Papadakis, G. Baryannis, A. Brintrup. A
review of explainable artificial intelligence in supply
chain management using neurosymbolic approaches.
International Journal of Production Research, 2024, 62(4),
1510-1540. DOI: 10.1080/00207543.2023.22816631

[31] S.W. Wu, F. Sun, W.T. Zhang, X. Xie, B. Cui. Graph
neural networks in recommender systems: a survey.
ACM Computing Surveys, 2022, 55(5), 1-37. DOI:
10.1145/3535101

[32] A.M. Kettner, L. Reyes-Chamorro, J.K.M. Becker, Z.X.
Zou, M. Liserre, M. Paolone. Harmonic power-flow
study of polyphase grids with converter-interfaced
distributed energy resources—Part I: Modeling
framework and algorithm. IEEE Transactions on Smart
Grid, 2021, 13(1), 458-469. DOI:
10.1109/TSG.2021.3120108

[33] L. Alrahis, S. Patnaik, M.A. Hanif, M. Shafique, O.
Sinanoglu. PoisonedGNN: Backdoor Attack on Graph
Neural Networks-based Hardware Security Systems.
IEEE Transactions on Computers, 2023, 72(10),
2822-2834. DOI: 10.1109/TC.2023.3271126

233


