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Abstract. In view of the problem that the current power
substation personnel training lacks neuromorphic
computing support on the existing AR (Augmented
Reality) system, resulting in insufficient ability of
personnel to operate substation equipment, this paper
constructs a multi-scenario training intelligent teaching
system that combines AR and neuromorphic technology.
First, this paper constructs an AR interaction model
based on SLAM (Simultaneous Localization and
Mapping), realizes the precise superposition of
equipment information through visual inertial odometer
and three-dimensional modeling, and provides operation
guidance for virtual-real integration. Secondly, this paper
designs a behavior recognition module based on spiking
neural network (SNN), uses the time coding mechanism
to convert the trainee's action trajectory into a pulse
sequence, and uses the LIF neuron structure for time
series modeling to achieve real-time classification and
feedback of the operation process. Furthermore, a
multi-scenario knowledge transfer algorithm and
adaptive generation mechanism are introduced,
combined with meta-learning and GNN (Graph Neural
Network), to improve the system's generalization ability
and personalized adaptation efficiency between different
fault tasks; finally, a virtual-reality collaborative
decision-making model is established, and the organic
integration of AR guidance information and
neuromorphic feedback is realized through the state
machine and event-driven mechanism to form a
closed-loop intelligent teaching system. The results show
that the method significantly improves the trainees'
average operation accuracy and average task completion
efficiency. The trainees' operation accuracy and task
completion efficiency retention rates reached 91% and
93% respectively 8 weeks after training, which enhances
the trainees' sense of immersion in training and their
knowledge mastery. The AR system also has high
real-time performance and stability (the positioning error
is mainly concentrated in 3.5~4.0 mm; the rendering
delay is mainly concentrated in 18~20 ms). The

conclusion provides new ideas and technical support for
the intelligent training of power substations.

Key words. Power substation training, Augmented
reality, Neuromorphic technology, Multi-scenario fusion,
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1. Introduction

With the in-depth advancement of smart grid
construction, power substations are the core nodes of the
power transmission and distribution system, and the
operation level of their operation and maintenance
personnel is directly related to the safety and stability of
power grid operation [1-3]. Due to problems such as lag,
it is difficult to meet the increasingly complex equipment
structure and emergency response needs [4-6]. In recent
years, the development of emerging technologies such as
augmented reality (AR) and neuromorphic computing
has provided a new path for building intelligent and
immersive training systems [7-9]. However, how to
effectively integrate these technologies and achieve
dynamic adaptation and personalized teaching in
multiple scenarios is still a key issue that needs to be
broken through in current research.

In the research of intelligent training systems for power
substations, several teams have conducted relevant
explorations from different angles. Mondragón Bernal I
F [10] proposed a substation training system based on
virtual reality; exploring and interacting with real models
in the virtual world through games, Yang T [11] fully
explore the traffic patterns of substation networks and
use transfer learning to solve the problem of insufficient
labeled samples of abnormal traffic in substations,
proposed a new method for detecting abnormal traffic in
the station-level communication network of smart
substations based on deep transfer learning; Ou J [12]
proposed a target detection model based on an improved
fast regional convolutional neural network for automatic
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detection of five types of electrical equipment in
substations. Felinska E A [13] believed that AR-based
remote illustration played a role in minimally invasive
surgery through gaze guidance and can be used to
improve training effects; Ke Y [14] proposed a substation
safety construction operation perception and early
warning technology based on multi-dimensional
information fusion, which significantly improved the
safety level and intelligent control level of substation
construction operations.

Several research teams have conducted in-depth
explorations on the issues of multi-scenario fusion and
intelligent feedback in substation training. Song J [15]
proposed an AR system based on SLAM, which is easy
to access in a mobile environment and reduces the
burden on researchers; Sadhu V [16] proposed a new
architecture based on deep convolution and long
short-term memory neural networks to detect and
classify drone misoperations based on real-time sensor
data, with an overall accuracy rate of more than 85%.
Liu H [17] proposed a transfer learning automatic
parameter sharing technology based on multi-objective
optimization by utilizing a multi-population particle
swarm optimizer. Zhao Y [18] explored how multimodal
feedback mechanisms can significantly enhance the
realism and intuitiveness of virtual interactions, making
the experience more attractive and immersive. Li Y [19]
found that the accuracy of the online learning behavior
prediction model based on SNN was as high as 99.80%,
and pointed out that the main learning behaviors that
affect learning outcomes are students' academic
performance and participation. Although the above
studies have achieved results in their respective fields,
there are still some problems such as insufficient

technical integration and weak multi-scenario modeling
capabilities.

In order to improve the operational standardization and
knowledge mastery efficiency of power substation
personnel, the operation guidance and real-time feedback
of virtual-reality fusion are realized by constructing an
AR interaction model based on SLAM and an SNN
behavior recognition module; multi-scenario knowledge
transfer algorithm and adaptive generation mechanism
are designed to improve the system's adaptability to
complex working conditions. This method improves the
accuracy of operation guidance under virtual-reality
fusion, and also enhances the time series modeling
capability of misoperation identification. It realizes the
state sharing and event-driven feedback between the AR
end and the neuromorphic module, significantly
improves the system's generalization ability and training
adaptation efficiency in multiple scenarios, and provides
a new technical path and practical paradigm support for
intelligent training of power substations.

2. Algorithm Design

As shown in Figure 1, the power substation personnel
training system includes five core modules: AR
interaction model, neuromorphic behavior recognition
module, multi-scenario adaptation module based on
knowledge transfer, virtual-reality collaborative
decision-making module and adaptive scenario
generation module. These five modules work together to
build an intelligent and immersive training system,
which effectively improves the trainees' operation
accuracy and emergency response efficiency.

Figure 1. General diagram of the teaching system.

A. AR Interaction Model Construction

This paper constructs an AR spatial registration model
based on SLAM (Simultaneous Localization and
Mapping) [20]. This model uses visual-inertial odometry

(VIO) technology to estimate the camera pose in real
time in a mobile terminal or head-mounted display
device, and accurately superimposes virtual operation
guidance information on the physical environment in the
form of 3D annotations [21,22]. Let the pose of the
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camera at time t be  3w
t SET , which represents the

transformation matrix from the world coordinate system
w to the camera coordinate system c :

w w
w t t
t

 
  
 

R p
T

0 1�
(1)

 3w
t SOR represents the rotation matrix, and

3w
t p  represents the translation vector. The SLAM

system is used to extract and match the key frame images
to establish a sparse map point set

 1, ,i i N m M , where each map point 3
i m 

represents a three-dimensional feature point in the scene.
The two-dimensional feature point 2

j u  detected in
the current frame image is associated with the
three-dimensional map point through the projection
equation:

 π w
j t iu m T (2)

π( ) represents the perspective projection function,
which is defined as follows:

 π x x

y y

f X Z c
f Y Z c

 
   

X (3)

xf and yf are the focal lengths of the camera, and
( )x yc c is the coordinate of the main point of the
image. On this basis, the IMU (Inertial Measurement
Unit) sensor data is introduced, and the extended Kalman
filter (EKF) is used to compensate for the visual
positioning error. Assuming that the IMU measurement
values are angular velocity and linear acceleration, its
state update equation can be expressed as:

 , ,w w
t t t tfT T w a (4)

Through the VIO fusion strategy, the robustness of the
system is improved under complex working conditions
such as lighting changes and occlusion, so that virtual
information can maintain a stable and continuous
registration effect in the physical space. A structured 3D
model database is built for typical equipment in power
substations (such as circuit breakers, disconnectors, and
transformers). After completing the space registration,
the system retrieves the corresponding 3D model kO
based on the device ID, and accurately superimposes it
on the real scene through the model-image registration
technology. Assuming that the model vertex set in the
local coordinate system of the device is

 1, ,l l M v V , its projection in the camera
coordinate system is:

1w w
l o t lv



   T T v (5)

w
oT is the position of the device in the world coordinate

system, which is obtained by manual calibration before
training. The transformed vertex lv is projected onto
the image plane to complete the rendering and
superposition of the virtual operation guidance
information, thereby realizing dynamic visualization
support for the trainee's operation process.

B. Design of Neuromorphic Behavior Recognition
Module

This paper constructs a behavior recognition model
based on SNN [23-25]. The model uses a time encoding
mechanism to convert the motion trajectory data
collected by the inertial sensor into a time-series pulse
signal, and simulates the dynamic response
characteristics of the biological nervous system through a
brain-like neuron structure to achieve high-precision
motion classification and error detection. Suppose the
input action is a three-dimensional acceleration sequence

        3, ,
T

x y zt a t a t a t   a  , where 1,2, ,t T 
represents the sampling time. In order to extract its time
series features, it is first normalized:

    a

a

a t
a t





 (6)

a and a are the mean and standard deviation of the
acceleration data in the training set. The time encoding
strategy is used to convert the continuous signal into a
pulse sequence. For each dimension  , ,d x y z , a
threshold function ( )d  is defined, and a pulse is
triggered when the normalized acceleration value
exceeds the threshold:

   1,      if 

0,      otherwise
d d

d

a t
s t

  


(7)

The final input pulse vector        , ,
T

x y zt s t s t s t   s
is obtained as the first layer input of SNN. The SNN
model adopts the Leaky Integrate-and-Fire (LIF) neuron
structure, and its membrane potential dynamic evolution
process is as follows:

     
d

d
i

m i m ij j
j

V t
V t R w s t

t
      (8)

 iV t is the membrane potential of the i -th neuron at
time t ; m is the membrane time constant; mR is the
membrane resistance; ijw is the connection weight from

the j -th input neuron to the i -th neuron;  js t is
whether the j -th input neuron emits a pulse at time t .
When the membrane potential  iV t exceeds the
threshold thV , the neuron emits a pulse and resets the
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membrane potential:

 
 

 
reset th,      if 

,      otherwise
i

i
i

V V t V
V t

V t

 


(9)

The entire SNN network is composed of multiple LIF
layers stacked and trained through a supervised learning
algorithm. This study uses an error back propagation
approximation method based on spike-timing-dependent
plasticity (STDP) to minimize the cross entropy loss
function between the predicted label and the true action
category:

1

ˆlog
K

k k
k
y y



 L (10)

ky is the true label of the sample (one-hot
representation); ˆky is the activation probability of the
k th neuron in the SNN output layer.

By introducing the sliding time window mechanism, the
system can analyze the continuous operation process in
real time and complete a complete reasoning and
feedback within 200mst  , meeting the needs of
rapid correction of misoperation in power substation
training.

C. Design of Multi-Scenario Knowledge Transfer
Algorithm

This paper proposes a multi-scenario knowledge transfer
strategy based on the combination of meta-learning and
graph neural network (GNN) [26-28]. This method aims
to solve the model adaptation problem caused by the task
differences between different fault types, so that the
system can quickly adjust parameters when facing new
tasks with only a small number of samples, thus
achieving efficient training and personalized teaching.
Let the task set 1 2, , , N T T T T represent all possible
fault operation tasks, each task iT corresponds to a set

of input-output sample pairs   
1

, iM

i ij ij j
y


 xD ,

d
ij x  represents the student operation feature vector,

and  1, ,ijy K  represents the action category label.
This study uses the MAML (Model-Agnostic
Meta-Learning) framework for meta-training, with the
goal of learning an initial parameter  so that the
model can quickly adapt to new tasks after a small
amount of gradient updates on any task iT . In each
meta-training iteration, a task iT is sampled from the

task distribution  p T and its training set tr
iD is used

to update the model parameters:

 
ii JL       (11)

( )
iJ
L is the loss function of task iJ ,  is the inner

layer learning rate. The meta-gradient is calculated using
the validation set val

iD of task iJ , and the initial
parameter  is updated:

   meta i i ii i i     
       T TL L L (12)

meta     L (13)

 is the outer learning rate. In order to further explore
the semantic relationship between tasks, GNN is
introduced to construct the task dependency graph

 ,G V E . The node set V represents each task iT ,
and the edge set E represents the similarity or causal
relationship between tasks. The adjacency matrix

 0,1 N NA  is defined. If tasks iT and jT have
similar operation processes or share some equipment,
then 1ijA  , otherwise it is 0. The task representation is
aggregated and abstracted through the graph
convolutional network (GCN):

     
1 1

1 2 2l l lH D AD H W
   

   
 

(14)

  ll N dH  is the node embedding of the l layer;

NA A I  is the adjacency matrix with self-loops

added; D is the corresponding degree matrix;  lW is
the learnable parameter; ( )  is the activation function.

The task representation d
ih

 extracted by GNN is
introduced into the meta-learning framework as the
auxiliary parameter initialization of the task context
information:

      
iii i ihh h       TL (15)

Through this mechanism, the system can quickly adapt to
an unprecedented combination of faults based on the
knowledge of existing tasks, significantly improving the
generalization ability and training efficiency in multiple
scenarios.

Figure 2 shows the multi-task knowledge transfer and
adaptive generation process combining meta-learning
(MAML) and GCN. First, a set of tasks are selected from
the task set sampling for training, the model parameters
are initialized through the MAML meta-learning
framework, and the inner loop update is performed on
each task to quickly adapt to new tasks. Next, the
validation set is used to evaluate the model performance
and update the external parameters. At the same time, the
adjacency matrix A is constructed based on the similarity
and causal relationship between tasks, and the task
representation is encoded through the GCN to achieve
adaptive learning of task embedding. Finally, the system
outputs adaptive strategies for new tasks, including rapid
adaptation capabilities and generalization capabilities for
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unseen tasks. The entire process aims to improve the
versatility and personalized adaptability of the model in
multiple scenarios, thereby improving the overall
performance and teaching effect of the system.

Figure 2. Knowledge transfer process.

D. Modeling of Virtual-Real Collaborative
Decision-Making Mechanism

In order to realize the organic integration of AR guidance
information and neuromorphic behavior recognition
results in the training process of power substation
personnel, this paper constructs a virtual-reality
collaborative decision-making model based on state
machine and event-driven [29]. This model realizes
real-time judgment and response control of trainees'
operation behaviors through shared state variables and
dynamic feedback mechanism, forming a closed-loop

intelligent teaching system. Assume that the state space
of the system is  1 2, , , Ns s s S , and each state is
represents a key node in the current operation process,
such as "device identification completed", "operation
path loading", "misoperation warning triggered", etc.
During the operation of the system, the state transition is
jointly determined by the current operation context
to O and the behavior evaluation value ta A

output by the neuromorphic module:

 1 , ,t t t ts f s o a  (16)

( )f  is the state transfer function; to is the operating
environment context information perceived by the AR
end; ta is the action classification label or risk score
output by the neuromorphic module. The neuromorphic
module uses SNN for action recognition and outputs a

confidence vector        1 2, , , 0,1
T Kt t t

t Kp p p   p  ,

which represents the probability distribution of t for
K -type operation actions at the moment. If the category
corresponding to the highest probability is an abnormal
operation (such as accidentally touching a non-target
device), a high-priority feedback event is triggered:

 1,      arg max anomaly
0,                 otherwise

t
k k

t
pe

    


(17)

The AR end dynamically adjusts the guidance strategy
based on the current state ts and event flag te . Define
the guidance information set  1 2, , , Mg g g G , where
each element Mg represents a type of visual prompt
(such as 3D annotation, arrow guidance, color flashing,
etc.). The final displayed guidance instruction tg G is
generated by the following mapping:

 ,t t tg h s e (18)

( )h  is a preset decision rule function, which can be
expressed as a finite state machine (FSM), as shown in
Table 1.

Table 1. Finite State Machine.

Current State st Input Condition te Next State 1ts  Output Action tg

Normal Operation 0 Normal Operation Continue path guidance
Normal Operation 1 Anomaly Warning Display error alert &amp; correction suggestion
Anomaly Warning 0 Recovery Provide subsequent step instructions

Anomaly Warning 1 Continuous Alert Enhance visual warning &amp; pause workflow

In order to improve the real-time and stability of system
response, an event-driven timestamp synchronization
mechanism is introduced:

AR SNNt t t     (19)

ARt and SNNt represent the latest update timestamps of
the AR module and the neuromorphic module,
respectively, and  is the maximum allowed time
difference threshold (set to 200ms). When the two are
out of sync, the system can give priority to the most
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recent valid recognition result for feedback to ensure
teaching continuity.

E. Scenario Adaptive Generation Mechanism

In order to improve the diversity and personalized
adaptation capabilities of the power substation personnel
training system, this paper proposes a multi-dimensional
scenario adaptive generation mechanism based on
historical training data and expert experience [30]. This
mechanism dynamically adjusts the training scenario
through fault case clustering analysis, atypical fault
combination simulation and trainee mastery status
feedback to meet the learning needs of trainees at
different levels. Assume that the historical fault operation
records constitute a sample set:

      1 1 2 2, , , , , ,N Ny y y x x xD (20)

d
i x  : The operation feature vector of the i -th

sample, including equipment type, operation sequence,
action timing, etc.;  1,2, ,iy K  corresponds to the
fault category label (such as circuit breaker abnormality,
instrument misreading, grounding failure, etc.). An
unsupervised clustering method is used to classify
existing fault cases and extract typical working condition
characteristics. Define the cluster center set:

 1 1, , , , d
K k c c c c C (21)

Use the K -Means algorithm to minimize the following
objective function:

2

1 i k

K

i k
k

J
 

  
x

x c
G

(22)

kG represents the sample set assigned to the k th cluster.
After obtaining the typical fault mode, the mutation
operator is further introduced to simulate atypical or
compound fault combinations to enhance training
diversity. The mutation operation function ( )  is
defined, which is used to impose a small perturbation on
the original sample ix and change some operation
properties:

 i i i       x x x (23)

 is a hyperparameter that controls the intensity of
disturbance;  1,0,1 d   represents the direction of
change in the operation attributes of each dimension. A
scenario complexity adjustment module can be
constructed to dynamically adjust the difficulty of the
generated scenario according to the student's current
mastery level. Assume that the student's knowledge
mastery level is represented by the probability
distribution output by the evaluation model:

       1 2, , , 0,1
T Kt t t

t Kp p p   p  (24)

 t
kp represents the probability that the trainee can

master the kth type of fault at time t. Define the scenario
difficulty factor  0,1t  to control the proportion of
high-risk operations in the newly generated scenario:

       
1

11 max 1 1
K

t t
t k kk k

p p
K

  


       (25)

 0,1  is the balance coefficient, which reflects the
weight of individual differences and overall performance.
The scene generation process is modeled as a Markov
decision process (MDP) and optimized through deep
reinforcement learning strategy. Define the five-tuple:

 , , , ,M S A T R (26)

S is the state space, which represents the current task
characteristics and the trainee's mastery status; A is the
action space, which represents the optional fault
combinations and operation sequences; T is the state
transfer function; R is the reward function, which is
defined as

1 2TaskSuccessRate ErrorDiscoveryCounttr w w    .

1w and 2w are weight coefficients, which measure the
importance of task completion quality and error
recognition ability respectively;  0,1  represents the
discount factor. The policy function is modeled using the
Deep Q-Network (DQN) to maximize the long-term
return expectation:

π 0
π arg max

T
t
t

t
r



 
  

 
 (27)

Through the above mechanism, the system can support
the free combination of no less than 10 typical fault types,
and dynamically adjust the complexity of the training
scenario according to the real-time performance of the
trainees to achieve personalized and progressive teaching
goals.

3. Experiment and Verification

A. Experimental Design

A simulation training platform including typical power
substation equipment (circuit breakers, disconnectors,
grounding devices, etc.) was built to support AR
visualization guidance (accurate early warning of virtual
information and physical environment through SLAM
technology), SNN behavior recognition feedback
(real-time modeling and feedback of fixture operation
behavior based on SNN), and multi-scenario automatic
generation (dynamically generate failure scenarios of
varying complexity based on historical load performance
and mission requirements) functions. The platform is
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built based on the combination of physical entities and
virtual modeling, and mainly includes the following
components: physical training environment,
three-dimensional digital model library construction,
augmented reality interaction system, behavior
recognition and feedback module, multi-scenario
generation mechanism, and data collection and
evaluation system.A total of 30 trainees with primary
operation and maintenance experience were recruited to
participate in the experiment. Participants were required
to have at least six months of substation operation or
maintenance experience; be between 30 and 40 years old
to ensure physical ability and minimize age-related
cognitive changes; have no known visual impairment,
motor impairment, or other conditions that would impede
their ability to use AR devices or perform physical tasks;
and be proficient in Mandarin to ensure comprehension
of the training materials and questionnaires. To ensure
fairness and reduce selection bias, the 30 participants
were randomly assigned to two groups using a
computer-generated random number list. The control
group adopted the traditional desktop teaching + video
explanation method, and the experimental group used the
intelligent training system that integrates AR and
neuromorphic technology proposed in this paper for
training. All trainees need to complete two types of tasks:
standard operating procedure tasks (complete the

operating steps of the specified equipment according to
the specifications) and emergency fault handling drills
(quickly locate the problem and take correct measures in
the event of an emergency fault). Data is collected
through system logs and questionnaires, and comparative
analysis is performed. Central Processing Unit (CPU):
Intel Core i7-13700K; Graphics Processing Unit (GPU):
RTX 3060.

B. Evaluation of Trainee Operation Accuracy

The SNN behavior recognition module is used to
determine the trainee's action category in real time, and
combined with the preset procedure database to
determine whether the action meets the specifications.
The operation accuracy is defined as:

Correct ActionsAccuracy 100
Total Actions

  % (28)

The number of key operation steps and errors of each
student in multiple training rounds was recorded, and the
accuracy index was calculated. The experimental group
was automatically identified and prompted for incorrect
operations by the system, while the control group was
manually scored and counted by experts.

Figure 3. Comparison of operation accuracy.

Figure 3 shows the comparison of the operation accuracy
of the control group and the experimental group. The
X-axis is the 15 numbers and the Y-axis is the
corresponding operation accuracy (%). The accuracy of
the control group students ranged from 72% to 78%,
with a small overall fluctuation, indicating that the
traditional training method provided limited guidance on
standardized operations for students and it was difficult
to form a significant difference. The accuracy of the
experimental group was significantly improved, ranging
from 81% to 91%. Among them, students No. 13 and No.
15 even reached 91%, indicating that the teaching system
integrating AR and neuromorphic technology effectively
improved the standardization level of students'
operations. The comparison shows that the accuracy rate
of each trainee in the experimental group is higher than
that in the control group, reflecting the universal
applicability of this method in terms of training effect.

The system uses SLAM to achieve accurate
superposition of device information and physical
environment, allowing trainees to obtain real-time visual
guidance in the AR interface and reduce the occurrence
of misoperation. The SNN-based behavior recognition
model can model the trainees' actions in time series,
combine the action trajectory data collected by the
inertial sensor, classify and identify the key steps in the
operation process, and provide immediate feedback and
correction suggestions when errors are detected. The
existence of this closed-loop teaching mechanism has
enabled the trainees in the experimental group to form
more standardized operating habits after multiple
trainings, and the accuracy rate is significantly higher
than the traditional training method using manual scoring,
which shows that the method has good application
potential and teaching value in the training of power
substation personnel.
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C. Emergency Response Efficiency Evaluation

Two emergency failure scenarios can be set to record the
total time taken by trainees from the occurrence of the
failure to the completion of the processing, in seconds (s),
to measure emergency response capabilities. The average
response time is defined as:

response
response

1

1
i

N

i
T T

N 

  (29)

response
i
T represents the response time of the i th student,
and N is the sample size.

Figure 4. Emergency response efficiency evaluation. Figure 4 (a) Sudden failure scenario 1; Figure 4 (b) Sudden failure scenario 2.

Figures 4 (a) and (b) show the comparison of the
students' operation response time in the control group
and the experimental group under sudden failure
scenarios 1 and 2, respectively. From the overall data, the
response time of the experimental group in both
scenarios is generally lower than that of the control
group. In the sudden failure scenario 1, the response time
of the control group was distributed between 68 and 79
seconds, while that of the experimental group was
concentrated between 52 and 59 seconds. In scenario 2,
the response time of the control group was mostly in the
range of 70 to 79 seconds, while that of the experimental
group was stable in the range of 54 to 62 seconds.
Whether in scenario 1 or 2, the experimental group
showed faster and more consistent response performance,
reflecting that the proposed teaching system integrating
AR and neuromorphic technology has obvious
advantages in improving students' emergency response
capabilities.

The system provides clear operation process prompts
through AR operation guidance built by SLAM, enabling
trainees to locate equipment more quickly and perform
correct actions; the SNN module performs temporal
modeling of trainee behavior, identifies misoperations in
real time and provides feedback on correction
suggestions, effectively reducing judgment delays and

error correction time. In the sudden failure scenario 1,
the average response time of the trainees dropped from
73 seconds in the control group to 56 seconds in the
experimental group. In scenario 2, the average response
time also dropped from 75 seconds to 58 seconds,
reflecting the system's good adaptability and teaching
closed-loop control capabilities under complex working
conditions. The standard deviation of the experimental
group's response time in both scenarios was small,
indicating that the system training effect had high
consistency and stability. This further verifies the
effective role of this method in enhancing emergency
response capabilities in power substation personnel
training.

D. Scenario Adaptability Evaluation

Five different types of fault task scenarios were set,
including short-circuit tripping, instrument abnormality,
erroneous operation recovery and other complex working
conditions. The completion rate of trainees in each type
of task was calculated, that is, the proportion of trainees
who successfully completed the task. The formula is:

Number of  Successful Attempts in Scenari o Completion Rate
Total Number of   Attempts in Scenario k

k
k

 (30)
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Figure 5. Scenario adaptability evaluation. Figure 5 (a) Task completion rate; Figure 5 (b) Completion rate change trend of 10 rounds
of training.

Figure 5 shows the average task completion rate and
completion rate change trend of the control group and the
experimental group under five typical fault scenarios.
Figure 5 (a) is a radar chart, including short-circuit
tripping, instrument abnormality, erroneous operation
recovery, grounding failure and protection malfunction.
Each angle direction represents a specific scene. The
average values of the control group in the five scenes are
concentrated in 63%~69%, while the experimental group
generally reaches 84%~91%, showing a significantly
higher contour area and overall performance. Figure 5 (b)
further shows the changing trend of the trainees' task
completion rate in 10 rounds of training, with the X-axis
representing the training round and the Y-axis
representing the completion rate (%). The control group
improved slowly and had a low final completion rate,
such as short-circuit tripping, which ultimately reached
only 65%, while the experimental group showed a high
initial completion rate in the early stages and stabilized
in the later stages. For example, in the instrument
abnormality scenario, the completion rate of the
experimental group reached 90% in the 10th round,
which intuitively reflected the significant advantages of
the experimental group in multi-scenario adaptability.

The completion rate of the experimental group in each
scene in Figure 5 (a) is higher than that of the control
group. The improvement is obvious in tasks that rely on

judgment and feedback mechanisms, such as "instrument
abnormality" and "grounding failure", reaching 91% and
89% respectively, indicating that the SNN behavior
recognition module can effectively capture the timing
characteristics of actions and provide timely correction
prompts. The experimental group in Figure 5 (b) was
able to quickly understand the task logic in the early
stages, thanks to the closed-loop teaching mechanism
formed by the AR visualization guidance built by SLAM
and the real-time feedback driven by SNN. This
virtual-real collaborative approach improves learning
efficiency and enables trainees to have stronger
migration capabilities between different scenarios,
maintaining a stable high-level performance in a variety
of fault tasks, reflecting the effectiveness and practicality
of this method in intelligent training of power
substations.

E. Subjective Rating of Training Immersion

This paper uses the Likert five-level scale to score the
quality of AR experience, covering five dimensions:
interface friendliness, guidance clarity, environmental
realism, feedback timeliness, and overall satisfaction.
Each trainee fills out a questionnaire after each training
to form subjective rating data. Table 2 summarizes the
mean scores of each dimension.

Table 2. Subjective rating of training immersion.

Dimension Control Group (Max=5) Experimental Group (Max=5)
Interface Friendliness 3.1 4.6
Guidance Clarity 3 4.7
Environmental Realism 3.2 4.8
Feedback Timeliness 3.3 4.9
Overall Satisfaction 3.2 4.7
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Table 2 shows the average scores of the control group
and the experimental group on the five dimensions of
training immersion, which were evaluated using a
five-point Likert scale with a full score of 5 points,
covering interface friendliness, guidance clarity,
environmental realism, feedback timeliness, and overall
satisfaction. From the data, the scores of the control
group in various dimensions are generally concentrated
between 3.0 and 3.3, reflecting that the traditional
training method has obvious deficiencies in interactive
experience and immersion. The scores of the
experimental group have significantly improved, among
which the timely feedback has reached 4.9 points, the
environmental realism has reached 4.8 points, and the
clarity of guidance and overall satisfaction have both
reached 4.7 points. This shows that the trainees have a
high degree of recognition of the teaching system that
integrates AR and neuromorphic technology in terms of
visual guidance, real-time feedback and operational
immersion. By comparison, it can be seen that the
experimental group outperformed the control group in all
dimensions, especially in "timely feedback" and
"environmental realism", which reflects the advantages
of the system in virtual-real fusion teaching.

The SLAM-based AR system realizes the precise
superposition of equipment information and physical
environment, enabling students to complete operation
tasks in a virtual environment with a strong sense of

reality, thereby improving the subjective scores of
"environmental realism" and "guidance clarity". The
SNN module has good time coding capabilities and
pushes correction prompts immediately when it detects a
tendency for misoperation. This is directly reflected in
the "timely feedback" score of 4.9, which is much higher
than the 3.3 points of the control group. The closed-loop
feedback mechanism of the system enhances the trainees'
trust and participation in the training process, and
ultimately makes the "overall satisfaction" score reach
4.7 points. This intelligent teaching design based on
virtual-real collaboration not only improves the students'
operating experience, but also provides solid technical
support for personalized training. It is an important
foundation for realizing a highly immersive and highly
adaptable power substation training system.

F. Knowledge Mastery Assessment

A standardized question bank is used to conduct pre-tests
and post-tests on students, covering equipment principles,
operating procedures, fault judgment, etc. The
knowledge mastery improvement is defined as:

post preS S S   (31)

preS is the pre-test score, and postS is the post-test score.
Figure 5 is a line graph comparing the pre- and post-test
scores.

Figure 6. Knowledge mastery assessment.

Figure 6 shows the changing trend of knowledge mastery
of the control group and the experimental group before
and after training. The X-axis is the number of the 15
trainees, and the Y-axis is the assessment score (full
score 100 points). From the data, the average score of the
experimental group after training is significantly higher
than that of the control group. For example, the post-test
score of ID 8 in the experimental group reached 87
points, while its pre-test score was only 71 points, an
increase of 16 points. Compared with the control group,
the score of ID 8 increased from 65 points to 74 points,
an increase of only 9 points. Overall, the improvement of
the experimental group students is generally between 15

and 19 points, while the control group is mostly
concentrated in the range of 6 to 10 points, reflecting the
problem of slow knowledge absorption under the
traditional teaching method. The chart intuitively reflects
the superiority of the teaching system integrating AR and
neuromorphic technology in promoting knowledge
mastery through clear line comparison.

The fundamental reason for the significant improvement
in the knowledge mastery of the experimental group lies
in the virtual-reality fusion teaching mechanism
proposed in this paper. The AR interactive model based
on SLAM can provide three-dimensional visual
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operation guidance, allowing students to understand the
equipment structure and operation process more
intuitively. The SNN behavior recognition module
dynamically models the students' answering process,
provides real-time feedback on the knowledge points,
and guides them to correct their misconceptions. This
closed-loop teaching strategy effectively improves
students' learning efficiency and memory retention
ability. Most students in the experimental group scored
more than 80 points after training, indicating that the
system has improved basic cognitive levels and enhanced
the ability to understand and apply complex knowledge
points. The multi-scenario adaptive generation
mechanism enables each student to receive personalized
training on different knowledge points, thus avoiding the
learning bottleneck caused by "unified teaching + unified
testing". These advantages have contributed to the
significant improvement of the experimental group's pre-
and post-test scores, verifying the effectiveness of the
proposed method in improving knowledge mastery.

G. AR System Performance Evaluation

The real space coordinates are collected as a reference

benchmark through high-precision calibration equipment,
and the Euclidean distance difference between the
system output posture and the true value is calculated as
the positioning error. The specific formula is as follows:

     2 2 2
est true est true est trueLocalization Error x x y y z z      (32)

estx , esty , and estz represent the estimated position
coordinates of the system, and truex , truey and truez
represent the real coordinate values obtained by the
calibration device. At the same time, a timestamp mark is
inserted in the key path from image acquisition to screen
rendering completion, and the time difference between
the two is calculated to obtain the single-frame rendering
delay. The formula is:

render captureRendering Latency t t  (33)

rendert is the rendering completion time, and capturet is
the image acquisition start time. This indicator reflects
the real-time response of the system in the virtual-real
fusion process.

Figure 7. AR system performance evaluation. Figure 7 (a) Positioning error; Figure 7 (b) Rendering delay.

Figure 7 is an AR system performance evaluation, Figure
7 (a) and (b) represent positioning error and rendering
delay respectively. Figure 7 (a) shows the average error
value and ±0.2 mm fluctuation range for each student.
The values are concentrated between 3.5 and 4.0 mm,
showing good consistency between virtual and real space.
Figure 7 (b) shows the response time of the system under
different students. The delay value is distributed between
18 and 20 ms, with an error bar of ±0.5 ms. This reflects

that the system has high real-time and stability, and
reflects the high-precision registration capability and
efficient rendering performance of the AR module in the
power substation training scenario.

The model improves its robustness in complex
environments such as lighting changes and occlusions
through feature extraction, 3D map matching, and IMU
sensor data fusion, thereby achieving sub-millimeter

(a)

(b)
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positioning accuracy. At the same time, at the rendering
level, the system uses lightweight 3D modeling and
efficient GPU acceleration strategies to ensure low
latency characteristics of screen updates. This verifies the
technical feasibility and practicality of the AR interaction
model proposed in this paper in the application of power
substation personnel training, and also provides a solid
foundation for the real-time collaboration of the
subsequent neuromorphic feedback module.

H. Hierarchical Evaluation of Scenario Complexity

The state-action space is constructed through the
student's historical training data, and the task complexity
factor is calculated by combining the response time and

error rate. Different fault types are divided into three
levels of complexity: low, medium, and high. Assume
that the average response time of task k is  kt , and
its average error rate is k . The complexity factor kC
is defined as the product of the two:

 k k kC t   (34)

According to the kC value, tasks are divided into the
following three complexity levels: low complexity:

2.0kC  ; medium complexity: 2.0 5.0kC  ; high
complexity: 5.0kC  .

Figure 8. Layered evaluation of scenario complexity.

The horizontal axis in Figure 8 represents the training
rounds (1 to 10 rounds), and the vertical axis represents
the task complexity score kC . The higher the value, the
more complex the task requires of the trainee; each
broken line represents a typical fault task, such as
short-circuit tripping, protection malfunction, instrument
abnormality, etc. Judging from the data, the short-circuit
tripping and protection malfunction tasks always
maintain a high complexity throughout the training
process (average values are 5.6 and 5.2, respectively),
and are classified as high complexity tasks. The error
operation recovery task is stable at around 1.6, which is a
low complexity task. Other tasks such as instrument
abnormalities and grounding failure are between the two
and constitute a medium complexity level. The
complexity model constructed based on the product of
response time and error rate enables the system to
dynamically identify task difficulty and adjust teaching
content.

The system uses Markov decision process modeling,
combined with deep Q network strategy optimization, to
dynamically update the state transition probability and
reward function based on the student's historical training
data to achieve a quantitative assessment of task
complexity. High-complexity tasks such as short-circuit
tripping have long response times and high error rates
because they involve multiple devices linked to each
other and real-time judgment, so they are rated high;

while basic operation tasks such as error recovery
processes are clear and have low error rates, so they are
rated low. The system divides tasks into three categories,
and matches tasks of corresponding levels to students
with different mastery levels through multi-scenario
knowledge transfer algorithms and adaptive generation
mechanisms, achieving personalized teaching goals.

I. Long-term Effect Tracking

This paper conducts periodic retests on 15 students in the
experimental group at 1, 2, 4, 6, and 8 weeks after
completing all training, records their operation accuracy
and task completion efficiency, and analyzes knowledge
retention and skill transfer capabilities.

In each retest, trainees need to independently complete
two types of tasks: standard operating procedures and
emergency troubleshooting drills. The operation
accuracy retention rate is defined as:

   
acc

0

A t
R t

A
 (35)

0A is the operation accuracy at the end of training, and

 A t is the average accuracy at the retest in week t .
The task completion efficiency retention rate is defined
as:
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   
eff

0

E t
R t

E
 (36)

0E is the task completion efficiency at the end of
training, and  E t is the average completion efficiency
at the retest in week t . The exponential decay model is

used to fit the long-term memory retention curve:

  tR t e  (37)

 is the forgetting rate coefficient, which reflects the
tendency of knowledge or skills to decay over time.

Figure 9. Long-term effect tracking.

Figure 9 shows the changing trends of the operation
accuracy and task completion efficiency retention rate of
the teaching system integrating AR and neuromorphic
technology in the 1st, 2nd, 4th, 6th, and 8th weeks after
the trainees completed the training, and fits the data with
the exponential decay model. The horizontal axis is time;
the vertical axis is retention rate. The measured points
are represented by circles and squares to indicate the
maintenance of operation accuracy and task completion
efficiency, respectively, and the dotted line represents the
fitted forgetting curve. At the 8th week, the maintenance
rates of the operation accuracy and task completion
efficiency of the experimental group students were 91%
and 93%, respectively, indicating that the proposed
teaching system has significant advantages in improving
the persistence of students' skill mastery.

The SNN behavior recognition module improves the
accuracy and timeliness of misoperation recognition by
time-coding and pulse modeling the trainees’ action
trajectories, allowing trainees to form more stable action
memories during training. AR guidance information and
neuromorphic feedback mechanisms form a closed-loop
teaching system, which enhances the ability to make
immediate corrections and the effect of knowledge
internalization during the learning process. At the same
time, the multi-scenario adaptive generation mechanism
dynamically adjusts the training difficulty according to
the trainees' mastery status, so that trainees at different
levels can continue to consolidate their knowledge
structure at an appropriate challenge level. These
mechanisms jointly support the high retention rate of
learning outcomes and verify the feasibility and
effectiveness of the proposed method in achieving the

transformation from short-term reinforcement to
long-term capacity building in power substation
personnel training.

4. Statistical Analysis

Table 3 show that the experimental group is significantly
better than the control group in all key indicators. The
operation accuracy of the experimental group (87.6% ±
2.9) is significantly higher than that of the control group
(75.0% ± 3.2), and the difference is highly statistically
significant ( t = 5.23, p < 0.001). The effect size (1.89)
shows that this teaching method has a substantial impact
on improving the operational standardization of trainees.
In terms of emergency response efficiency, the average
response time of the experimental group (57.8 s ± 3.1) is
significantly shorter than that of the control group (73.4 s
± 4.5), and the statistical test also reaches a significant
level ( t = 6.12, p < 0.001). The effect size is as high
as 2.15, indicating that the teaching system combining
AR and neuromorphic technology can effectively shorten
the trainees' response time to sudden failures and
improve their emergency handling capabilities. The task
completion rate of the experimental group (88.9% ± 3.7)
was also significantly better than that of the control
group (66.3% ± 4.1) ( t = 7.45, p < 0.001, effect size
= 2.58), reflecting the outstanding advantages of this
method in multi-scenario adaptability and personalized
teaching. In terms of knowledge mastery improvement,
the difference between the pre-test and post-test scores of
the experimental group (17.5 ± 2.8) was much higher
than that of the control group (7.8 points ± 2.1) ( t =
5.98, p < 0.001, effect size = 2.12), indicating that the
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teaching system is effective in promoting knowledge
internalization and long-term memory formation. The
subjective immersion score results showed that the
experimental group (4.7 ± 0.3) and the control group
generally scored lower (3.2 ± 0.4), further verifying the
positive role of AR and neuromorphic feedback

mechanism in enhancing learning experience and
improving participation. In summary, the intelligent
teaching system based on AR and neuromorphic
technology has shown significant advantages over
traditional training methods in multiple dimensions and
has good application prospects and promotion value.

Table 3. Comparison of Key Performance Indicators.

Metric Control Group
( n =15)

Experimental
Group ( n =15) T -value P -value Effect Size

Operation Accuracy (%) 75.0 ± 3.2 87.6 ± 2.9 5.23 < 0.001 1.89

Emergency Response Time (s) 73.4 ± 4.5 57.8 ± 3.1 6.12 < 0.001 2.15

Task Completion Rate (%) 66.3 ± 4.1 88.9 ± 3.7 7.45 < 0.001 2.58

Knowledge Mastery Improvement (points) 7.8 ± 2.1 17.5 ± 2.8 5.98 < 0.001 2.12

Subjective Immersion Score (points) 3.2 ± 0.4 4.7 ± 0.3 8.56 < 0.001 2.92

5. Conclusions

This paper combines AR and neuromorphic technology
to propose a multi-scenario fusion teaching optimization
method for power substation personnel training. By
building an AR interactive model based on SLAM to
realize virtual-reality fusion operation guidance, this
paper designs an SNN behavior recognition module for
temporal action modeling, and introduces multi-scenario
knowledge transfer and adaptive generation mechanisms,
which effectively improves the students' operational
standardization, emergency response efficiency and
knowledge mastery under complex working conditions.
The experimental results show that this method
significantly improves the average operation accuracy
and average task completion efficiency of trainees, and
the operation accuracy and task completion efficiency
retention rates of trainees after 8 weeks of training reach
91% and 93% respectively, enhancing the immersiveness
of training and the ability to adapt teaching to
personalization. The AR system also has high real-time
and stability (positioning errors are mainly concentrated
in 3.5~4.0 mm; rendering delays are mainly concentrated
in 18~20 ms). In the future, edge computing and
brain-computer interface technologies can be further
integrated to promote the development of intelligent
training systems towards higher levels of human-like
cognitive capabilities, providing more efficient technical
support for the cultivation of intelligent talents in the
power industry.
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