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Abstract. GIS (Gas-Insulated Switchgear) equipment
generates multi-band partial discharge, electromagnetic
vibration, acoustic emission and other signals during
operation. Existing single-mode analysis is difficult to
accurately identify complex faults, and the false alarm
and missed alarm rates are high. A multi-frequency
signal feature cascade network is proposed. Through
frequency band decomposition, deep feature extraction
and fusion attention mechanism, the early and accurate
assessment of GIS sub-health status can be achieved,
thereby improving the operation safety and equipment
life. In this study, the original discharge, electromagnetic
vibration and acoustic emission signals are first
decomposed by Daubechies4 wavelet packet, and the
signals are divided into three frequency bands: low,
medium and high. Then, they are input into the
corresponding branches. Subsequently, each branch uses
convolutional neural network and self-attention module
to collaboratively extract weak fault features in time
domain and frequency domain. Next, the features output
by each frequency band branch are cascaded in the
channel dimension, and the redundancy is compressed
and the key frequency band information is strengthened
by fusion attention mechanism. Parameter sharing and
network pruning technology based on Li norm are used
to achieve model lightweight while maintaining accuracy.
Finally, with the help of transfer learning and adversarial
training framework, GIS data of different manufacturers
and models are fine-tuned and optimized. Experiments
show that under 5-fold cross validation, the proposed
model has an F1 score of 0.923 and an AUCof 0.897,
which is significantly better than baseline models such as
ResNet-18 and SVM. In the detection of key faults such
as partial discharge, the average warning time is 62.3
minutes and the detection rate exceeds 98%. In addition,
the single sample delay of the model on the platform is
only 29.9ms, which meets the real-time requirements.
The results show that this method has high recognition
accuracy, strong real-time and environmental adaptability,
and is suitable for actual GIS sub-health monitoring.
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1. Introduction

In modern power systems, gas-insulated switchgear (GIS)
is widely used in medium and high voltage transmission
and distribution systems due to its compact structure,
excellent insulation performance and high operating
safety [1-3]. However, as the GIS equipment ages, the
aging process of its internal electrical and mechanical
structures becomes increasingly complex, and early
abnormal conditions such as partial discharge,
mechanical looseness, and insulating gas leakage
gradually become precursors to equipment failures [4,5].
Although such sub-health status has not yet triggered
protective actions or obvious system abnormalities, its
potential risks have already posed a threat to the stability
of system operation [6,7]. If these sub-health signals
cannot be identified and intervened in time, the
equipment may fail suddenly during operation, causing
large-scale power outages and a significant increase in
maintenance costs. Therefore, conducting high-precision
and high-efficiency intelligent assessment research on
the sub-health status of GIS equipment during operation
has become one of the core requirements for the
development of intelligent operation and maintenance of
power equipment.

Current state assessment methods are mostly based on a
single physical mode of the signal, such as inferring the
aging state of the insulating medium by analyzing the
partial discharge signal, or judging the mechanical
looseness of the equipment by the vibration signal.
However, due to the complex internal structure of GIS
equipment and the changing operating environment, the
same fault may show inconsistent characteristics in
different signal modes, and multiple fault types may have
highly similar characteristic performances in a certain



mode [8,9], resulting in the reliability and robustness of
single-mode analysis being obviously insufficient. In
addition, there may be mutual coupling between different
faults, such as electrical discharge accompanied by
mechanical vibration enhancement, superposition of
local discharge fluctuations in acoustic emission signals,
etc. If the synergistic relationship between multiple
modes is not considered [10-12], it can be difficult to
accurately identify complex or boundary faults. This
problem of information decoupling and feature loss
seriously restricts the reliability and adaptability of
existing evaluation methods in practical applications.

In existing literature, researchers have attempted to use
time series features, spectrum features, or time-frequency
joint features of specific modes to analyze GIS faults.
Some scholars have used short-time Fourier transform
and empirical mode decomposition methods to process
partial discharge signals and extract characteristic energy
distribution for state classification [13,14]. There are also
studies that use convolutional neural networks (CNNs) to
model acoustic emission signals, which has improved the
recognition accuracy to a certain extent. However, most
of these methods focus on a single data source, the model
structure design is relatively rigid, and they lack the
ability to perceive and integrate heterogeneous
information between frequency bands [15,16]. For the
processing of multi-source heterogeneous data, some
methods have attempted to model multi-modal inputs in
parallel, but have failed to effectively solve the problems
of identifying the importance of multi-band features and
suppressing redundant information, resulting in
unsatisfactory fusion effects and even performance
degradation [17,18]. In addition, the computing resource
consumption during model deployment also limits its
practical application in online real-time evaluation,
especially in edge deployment environments.

Among the existing research results, some work has
recognized the role of multimodal fusion in promoting
evaluation results and explored the collaborative analysis
of multiple signals [19,20]. In terms of methods, some
scholars have proposed a multi-channel neural network
architecture based on feature splicing and decision-level
fusion to achieve modal fusion, and some studies have
used graph neural networks to construct signal
correlation graphs to model the relationship between
each modality. Although some progress has been made in
improving accuracy, most fusion strategies are still in the
coarse-grained splicing stage, lacking the design of
fine-grained  analysis and dynamic  weighting
mechanisms for signal multi-band features [21,22], and
are unable to fully tap the fault indication capabilities of
key frequency bands. In addition, traditional models are
often trained and tested on specific experimental data,
and there are certain adaptability bottlenecks for GIS
equipment of different manufacturers and models, and
the migration and generalization capabilities are weak,
which limits their promotion value in complex power
grids [23,24]. Therefore, there is an urgent need for a
lightweight deep network structure with frequency
domain perception, flexible fusion mechanism and
cross-domain generalization capability to improve the

93

assessment level and deployment practicality of GIS
sub-health status.

This paper aims to construct a cascade neural network
framework that integrates multi-frequency band features
to achieve efficient assessment of the sub-health status of
GIS equipment. In the modeling process, the diversity of
signal sources and differences in frequency domain
expression are fully considered. First, the local discharge,
electromagnetic vibration and acoustic emission signals
are divided into multiple frequency bands based on
Daubechies4 wavelet packet decomposition to obtain the
characteristic change laws reflecting different time scales
[25,26]. Subsequently, a multi-branch network structure
is constructed, and convolutional neural network
modules and self-attention mechanisms are introduced to
realize automatic recognition and enhanced modeling of
weak anomalies in the time and frequency domains. In
the fusion stage, channel dimension cascade and
attention compression mechanisms are used to
dynamically suppress frequency domain redundancy and
highlight the contribution of key signals. In terms of
model  optimization,  parameter  sharing  and
Li-norm-based network pruning are combined to further
compress the network structure to meet the resource
constraints of edge inference devices [27,28]. Finally, by
introducing the Domain-Adversarial Neural Network
architecture, the target domain GIS data is cross-domain
fine-tuned based on the source domain training,
effectively enhancing the robustness and adaptability of
the model in actual engineering. The multi-frequency
signal feature cascade network structure proposed in this
study has achieved excellent performance on multiple
actual working condition data sets, proving its
effectiveness and practical value in the task of GIS
sub-health status recognition.

2. Multi-Frequency Cascade Network Design

The overall process of this method is as follows: first,
multimodal signals are decomposed by wavelet packets
to extract low/medium/high frequency subbands; then,
features are extracted through independent ResNet-18
branches, and input into the classifier after CBAM fusion;
finally, ThiNet pruning and DANN migration
optimization are combined to improve deployment
efficiency. This design avoids the frequency band
confusion problem in traditional multimodal fusion while
ensuring the lightweight model.

A. Wavelet Packet Decomposition Frequency Band
Division

1) Signal Preprocessing and  Decomposition
Configuration

In order to ensure that the input signal has sufficient
information resolution and noise robustness in the
frequency domain modeling process, the three types of
original partial discharge (PD), electromagnetic vibration
(EMV) and acoustic emission (AE) signals collected
from GIS equipment are first preprocessed uniformly. All
signals were collected wusing a high-precision



multi-channel synchronous sampling system with a
sampling frequency of 2 MHz to ensure that the energy
distribution in the 20 kHz—800 kHz frequency band was
fully preserved. After the original signal was normalized
by zero mean (z-score standardization), a 4th-order
Butterworth bandpass filter was used to limit the PD
signal to the 80-600 kHz frequency band, the EMV
signal to the 20-200 kHz frequency band, and the AE
signal to the 50-500 kHz frequency band to suppress
background noise and power frequency interference. The
filtering parameters are set according to the main
distribution range of the spectrum energy of each signal
type to ensure that the high-frequency information is not
compressed or attenuated in the subsequent
decomposition stage [29,30].

After preprocessing, the Daubechies4 (db4) wavelet
basis is used to perform wavelet packet decomposition
on the three types of signals. The db4 wavelet has tight
support and good stability, and is suitable for multi-scale

modeling of non-stationary high-frequency pulse signals.
It can effectively separate local weak features and retain
the edge characteristics of the time domain. The number
of wavelet packet decomposition layers is set to 3. Under
this configuration, the original signal is divided into 2° =
8 equal-width sub-bands, covering the full frequency
domain range of the original sampling frequency band.
In the wavelet packet decomposition, a reconstruction
filter is used to completely decompose each layer of
sub-nodes without energy truncation. To avoid the
introduction of false high-frequency components by edge
effects, the signal is zero-filled by symmetric extension
before each decomposition operation, and the extension
length is equal to 1.5 times the length of the wavelet
basis filter. The 8 sub-bands obtained by decomposition
can be renumbered from low to high frequency, and the
corresponding frequency bands are divided equally by
the original sampling frequency divided by 23, so as to
facilitate subsequent frequency band splicing and
cross-signal consistency operations.

3-Level db4 DWT Multi-band Decomposition Example
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Figure 1. The reconstruction results of three frequency bands obtained after wavelet decomposition.

Figure 1 shows the reconstruction results of three
frequency bands obtained after three layers of db4 DWT
(Discrete Wavelet Transform) are performed on the
synthetic multimodal signal, corresponding to the
low-frequency, medium-frequency and high-frequency
signal components. The horizontal axis is time (unit: ms),
ranging from 0 to 2 ms, and the vertical axis is amplitude,
reflecting the energy changes of different frequency
bands in the time domain. The low-frequency part
mainly presents the oscillation characteristics of the
EMV signal; the mid-frequency band contains PD pulses
and some modulation characteristics, showing a
superimposed peak near 1 ms; the high-frequency band
highlights the AE burst noise and high-frequency
components, which are manifested as high-frequency
spikes in the time period from 0.8ms to 1.4 ms. Figure 1
verifies that the decoupling effect of the three-band
signal is good, and the PD signal is obviously
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concentrated in the mid-frequency band, indicating that
the designed wavelet decomposition scheme has good
time-frequency localization ability and is suitable for the
frequency division extraction and analysis of sub-health
fault signals.

Compared with Symlet or Coiflet wavelets,
Daubechies-4 (db4) has a shorter filter length and
stronger time-frequency localization capability, and is
particularly suitable for extracting high-frequency pulse
features in partial discharge signals of GIS equipment.
Experiments show that db4 has smaller edge oscillations
when reconstructing partial discharge spike signals, and
its tight support characteristics can effectively suppress
energy leakage between frequency bands. Compared
with Symlet-8, the characteristic signal-to-noise ratio in
the mid-frequency band (250~500 kHz) is improved by
about 12.3%.



2)  Multimodal Signal Frequency Band Construction

After the wavelet packet decomposition is completed,
three types of frequency bands are extracted from the
eight sub-bands of the third layer, which are defined as
low frequency (LF), medium frequency (MF) and high
frequency (HF) segments, and serve as three independent
input branches of the subsequent feature extraction
network. Among them, the low frequency band is
constructed by merging nodes (3,0) and (3,1),
corresponding to the 0-250 kHz frequency domain
information of the original signal; the mid-frequency
band is constructed by nodes (3,2) to (3,4), covering the
frequency band of 250-500 kHz; the high frequency
band is composed of nodes (3,5) to (3,7), mainly
reflecting the dynamic changes of high-frequency
characteristics in 500-800 kHz. The above frequency
band division is based on the empirical distribution law
of the spectral energy concentration of various fault
signals in actual data, and is restored to their own
independent time series signals through reconstruction
inverse transformation. The length of each frequency
band signal is uniformly cut to 1024 points, and after
alignment, it is input into the corresponding structure of
the multi-branch network.

The above processing flow can be repeated for EMV and
AE signals to ensure that the three types of signals
remain consistent in frequency band division logic and
structural configuration, forming 9 parallel input paths,
namely PD-LF, PD-MF, PD-HF, EMV-LF, EMV-MF,
EMV-HF, AE-LF, AE-MF, and AE-HF. Each branch
carries the characteristic representation of the mode in a
specific frequency domain. Since the upper limits of the
energy distribution of each modal signal are different, for
example, the high-frequency part of EMV is often more
affected by environmental electromagnetic interference
than the PD signal, the power spectral density (PSD)
normalization is used again after the frequency band
reconstruction to adjust the signals of each frequency
band to a uniform amplitude scale to avoid the feature
extraction network being biased towards the input of the
frequency band with higher energy [31,32]. In addition,
to strengthen the heterogeneity between frequency bands,
each reconstructed signal is no longer subjected to
high-frequency compensation or convolution fusion
operations, but is kept as a discrete input to ensure that
the subsequent network can fully learn the information
inconsistency between frequency bands.

The entire frequency band division module is deployed
at the model input end as a static preprocessing
component in the system structure. All parameters and
frequency divisions are fixed before training and do not
participate in the network end-to-end back-propagation
training.  This  strategy improves the model
interpretability and reduces the computational resource
consumption of initial modeling, effectively separating
the modeling process between frequency band feature
extraction and frequency band structure construction. On
this basis, through a clear multi-band signal division
mechanism, a stable and differentiated input foundation
is provided for the subsequent feature cascade network.
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B.  ResNet-18 Branch Feature Extraction
1)  Network Input Format and Channel Mapping

After completing the multi-band signal division, the
three types of original signals (PD, EMV, AE) are split
into three sub-bands of low frequency, medium
frequency and high frequency, respectively, forming nine
independent input paths. In order to adapt to the input
dimension requirements of the convolutional neural
network structure, all branch signals need to be
converted into a unified format. The length of the
original segmented signal is truncated to 1024 sampling
points, corresponding to a time window of 0.512 ms. On
each branch, the 1D time series is expanded into a 2D
pseudo image structure by zero padding with a sliding
window. The specific operation is to reshape each signal
segment into a 32x32 2D matrix, and form pseudo image
data after zero padding and alignment. This format
ensures that the local time domain relationship of the
signal is preserved in the spatial layout, so that the
convolution operation can effectively perceive the
short-term change characteristics.

After the construction is completed, the pseudo images
of each sub-band are sent to the feature extraction
network as independent channels. In order to reuse the
weights of the ResNet-18 model pre-trained on ImageNet,
the input image needs to be converted to a 3-channel
format. To this end, a repeated replication strategy is
used to replicate the single-channel signal three times in
the channel dimension to form a tensor of size 3x32x32
to avoid parameter dimension errors due to mismatched
channel numbers. In addition, to enhance the adaptability
of the model in different modal frequency bands, a
channel normalization operation is introduced.
Specifically, all input signals are normalized sample by
sample in the channel dimension so that each channel has
zero mean and unit variance within the sample,
suppressing the gradient offset problem caused by the
amplitude difference between modalities.

2) Feature Extraction Network Configuration and
Output Structure

The input tensor of each frequency band branch is sent to
a set of parameter-sharing but structurally independent
ResNet-18 networks for feature extraction. The network
structure adopts a standard configuration, including a
sequence of residual blocks in 5 stages. The input layer
uses a 7x7 convolution kernel, the step size is set to 2,
the number of output channels is 64, and the maximum
pooling layer is connected for preliminary spatial
compression; then the basic residual blocks with residual
connections are connected in sequence, the convolution
kernel size is fixed to 3x3, the number of output
channels is 64, 128, 256 and 512, and each stage is
repeated 2, 2, 2 and 2 times respectively; all convolution
layers are followed by BatchNorm and ReLU activation
functions. The residual structure allows the network to
retain shallow information in the deep stage, effectively
solving the gradient vanishing problem, and is suitable
for multi-input path processing with strong frequency



band differences and inconsistent features in this
task.The residual structure of ResNet-18 can alleviate the
gradient vanishing problem caused by the difference of
multi-band features. Its shallow convolution kernel (7x7)
can quickly capture the local time domain pattern of GIS
signals, while the stacked small convolution kernel of
VGGNet will cause the low-frequency band features to
be blurred; the deep separable convolution of MobileNet
will weaken the expression of weak fault features in the
high-frequency band.

In order to extract the global features of the overall
signal, a global average pooling (GAP) layer is
connected after the output of the last layer (Layer4) of
the backbone network. This layer averages the spatial
feature maps in each channel into a single scalar, forming
a one-dimensional vector of length 512 as the final
feature expression of this branch. Compared with the
fully connected layer, this method has stronger
anti-overfitting ability and simple structure, and is
suitable for stable output of medium and
high-dimensional feature representation in engineering
tasks with limited sample size.

All 9 frequency band branches extract features
independently in their respective paths, and do not share
network parameters, ensuring that the differences

between modes and frequency bands can be retained to
the greatest extent. During the training phase, each
ResNet-18 branch participates in forward propagation
and reverse gradient updates, but does not include
cross-path or fusion modules. During the inference phase,
each input signal is routed to the corresponding network
branch according to its modality and frequency band
label, performs forward propagation independently, and
outputs the corresponding 512-dimensional feature
vector. Finally, these 9 vectors are concatenated in
parallel into a one-dimensional vector of length 4608 for
subsequent cross-band cascade modeling and sub-health
status classification tasks.

In order to avoid the performance degradation caused by
feature  redundancy, a lightweight DropBlock
regularization module is introduced before feature
concatenation to perform regional masking with a
probability of 0.1 on the GAP output of each branch. The
DropBlock operation dynamically discards some
continuous dimensions during the training phase to
simulate local information loss, thereby improving the
generalization ability of the overall feature vector. All
feature extraction processes were implemented on the
PyTorch platform. The Adam optimizer was used for
training, with the initial learning rate set to le-4, the
batch size to 32, 100 iterations, and the cross entropy
loss as the optimization target.
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Figure 2. Schematic diagram of feature extraction network configuration and output structure.

In Figure 2, first, the three types of multi-frequency
signals, PD, EMV, and AE, collected from GIS
equipment are input into the system; after wavelet packet
decomposition and reconstruction of eight sub-bands,
they are divided into nine parallel branches according to
low frequency (LF), medium frequency (MF), and high
frequency (HF); each branch is sent to the pre-trained
ResNet-18 network, and after extracting features, a
512-dimensional vector is generated through global
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average pooling. Then, DropBlock regularization is
applied to reduce redundancy; finally, all branch features
are concatenated into a 4608-dimensional vector in the
channel dimension as the unified input for subsequent
classification or regression tasks. This structure ensures
the coordinated extraction and deep fusion of multi-band
information.

This multi-branch feature extraction module constitutes



the first stage of the overall modeling structure of the
system, undertakes the core functions of intra-band
feature modeling and cross-modal input format
alignment, and provides controllable and highly
discriminative basic vector input for subsequent feature
cascade and classification decision modules.

C. CBAM Feature Cascade Fusion
1)  Feature Splicing Structure Definition

After completing the independent feature extraction of
multi-band and multi-modal signals, the system obtains 9
feature vectors with a length of 512, which come from
the global average pooling output of ResNet-18 in the
low-frequency, medium-frequency and high-frequency
branches of the three modes of PD, EMV and AE. In
order to integrate the cross-modal and cross-band
representation information, it is necessary to perform a
series operation on the channel dimension on these
branch features at the vector level. Specifically, the 9
sub-vectors are arranged in order to form a
one-dimensional vector with a length of 4608 dimensions,
which serves as the joint feature expression of the overall
signal in the current time window.

The concatenation operation is implemented as the
concatenation of channel dimensions (dim=1) in the

Raw High- Frequency PD Fealures

L2-Normalized Features

tensor structure, keeping the vector direction of the
original ResNet output unchanged and ensuring that the
features of each branch retain their original semantics. In
order to maintain the stability of parameter learning in
subsequent modules, each sub-vector is L2 normalized
before concatenation so that each sub-vector has a unit
norm, suppressing the dominant effect of certain
frequency bands or modes after fusion due to their large
absolute value amplitude. In addition, in order to
improve the consistency of the feature distribution after
splicing, batch normalization is performed on the overall
splicing features to reduce the differences in statistical
characteristics between branches and provide stable input
for the subsequent operations of the attention
mechanism.

After the splicing operation is completed, a unified
representation is formed, but the information contained
in each branch is still in a parallel superposition state,
and there are problems such as cross-band redundancy
and noise dimension redundancy. It is necessary to
further introduce a learnable mechanism to weighted
model important channels and key positions [33]. To this
end, the Convolutional Block Attention Module (CBAM)
is introduced on the fused features to realize the dual
attention mechanism of channel and spatial dimensions,
so as to suppress the redundant information in the
original concatenated vector and enhance the salient
feature dimension.

Batch-Nomalized Fealures

-
=]

Sample Index
=
Sample Index
8 B

.
(=]

I \""'li, "'Jl\‘l‘ :"? ‘M\uw “,""I“ 3

"1':".. i e .\.

il '1"'”1“.” 'l et
jﬂ fh ﬁ?‘ iy ;,‘ﬁ, ﬁ i ’jéi\f%};ﬁ’,ww..
i "«p g oty 1
‘ ‘M\ i ”""',Lﬁ”\‘u# b *"L'{UD .;a‘)* 0

01 “th ;II 1 \I; \u”ﬁ:JIIJIhHJW WI hJ .;" IQI :|J|:|"| |||'|) qu -1
] 1‘ I ‘I 1llil:l | v H\' ‘I I I1l\IIIII Ir\
At i B
I’Y\. .‘\ r' i et W‘I

el
50 by

=]

[¥]
=

Sample Index
8

£
o

200 300 400
Feature Dimension

100

100 200

300

Feature Dimension

03

400 500 1000 2000 3000

Feature Dimension

4000

Figure 3. Multi-frequency modal feature preprocessing process analysis diagram.

The peak value of the original high-frequency PD feature
heat map on the left side of Figure 3 is close to +£5,
reflecting the large amplitude difference between
samples before processing; after L2 normalization in the
middle, the eigenvalue is compressed to about +0.3 range,
and the mean is close to 0, ensuring the equal energy
distribution of each sample in the 4608-dimensional
space; The batch normalization result on the right
standardizes the overall distribution to zero mean and
unit variance, and most values fall within the range of £3.
It can be seen that the multi-frequency feature
preprocessing pipeline described in this paper effectively
suppresses the energy differences between different
frequency bands and different modes through two steps
of sample-by-sample L2 normalization and global batch
normalization. It provides a consistent amplitude and
controllable distribution input basis for the subsequent
ResNet-18 branch fusion and CBAM attention weighting.
All modality-band combinations go through the same
preprocessing process.
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2) Attention Module Integration Configuration

The CBAM module includes a channel attention
submodule and a spatial attention submodule, which act
on the input features in series. First, in the channel
attention stage, the maximum pooling and average
pooling operations are performed on the input feature

1x4608
F, R™

concat
descriptions respectively, and then the two description
vectors are sent to the shared MLP (Multilayer
Perceptron) structure composed of two layers of fully
connected networks. The MLP consists of a first fully
connected layer (with 4608 input nodes and 576 output
nodes), followed by a ReLU activation, and then a
second fully connected layer (with the output dimension
back to 4608). Finally, the channel weight vector

1x4608
M, eR”

Sigmoid function. This vector can be weighted channel
by channel with the original concatenated features to

to generate two global channel

is generated after normalization by the



strengthen the channel dimension with important
identification function and suppress interference
information.

The feature tensor after channel attention weighting
enters the spatial attention submodule. Considering that
the current feature is still a one-dimensional vector, in
order to maintain the rationality of the operation of the
spatial attention mechanism, the vector needs to be
reconstructed into a two-dimensional pseudo-graph

structure in the F, e R™*” - F™ ¢ R*" way. This

dimension is configured as a 64-channel x72 feature
map width, which is an integer combination of 4608.
This facilitates the subsequent convolution operation.
Channel maximum pooling and average pooling
operations are performed on this two-dimensional map to
obtain two channel compression maps of size 1x72 ,
which are then concatenated according to the channel
dimension to form a feature description map of 2x72 .
It can be input into a 1D convolution layer with a
convolution kernel of 7x1, a stride of 1, and a channel
number of 1. The output is normalized by the Sigmoid
function to generate the spatial attention map

M, e R*” | which is then broadcast to all 64 channels

and fused element-by-element with the weighted
two-dimensional feature map of the previous channel.

After the two-stage processing of CBAM, the original
spliced features are assigned hierarchical importance
weights, enabling the model to identify and distinguish
the most discriminative sub-structure features for the

sub-health status of GIS equipment in the overall feature

]Rlx4608

space. The fusion output feature F;,,, € is used

as the final feature expression and directly sent to the
subsequent classifier structure for state judgment. The
parameters of the entire CBAM module can be learned
and jointly optimized during the training process, and all
weights participate in the gradient update during back
propagation.

This fusion strategy effectively solves the problems of
information redundancy and dilution of important
information in high-dimensional splicing features. It
guides the network to automatically identify the feature
areas most relevant to the task through the attention
mechanism, and provides subsequent classifiers with
feature inputs with higher information density and
stronger discrimination ability, thereby improving the
overall performance and stability of GIS sub-health
status recognition.

D. ThiNet Channel Pruning Lightweight
1) Channel Importance Measurement and Sorting
Mechanism

Although the use of the full ResNet-18 model for feature
extraction under the multi-frequency branch structure
can ensure the feature representation capability, its
network redundant structure has a significant constraint
on the deployment efficiency, especially in the edge GIS

98

monitoring equipment, where there is an inference delay
bottleneck. In order to reduce model complexity and
computational latency without significantly sacrificing
discriminative performance, this study introduces the
ThiNet structured pruning method to prune and compress
the ResNet-18 backbone network at the channel
granularity. The pruning target is located at the output
channel (filter) in each layer of convolution operation,
and a data-driven L1 norm strategy is used to evaluate
the importance of the channel to the output activation.

Specifically, for a convolutional layer output tensor

FeR“" | where C represents the number of
channels, H,W are the feature map sizes, the L1 norm
of each channel output feature map is calculated in turn
as an indicator of the contribution of the channel to the
overall representation. For channel i , its L1 norm is
defined as formula 1:

17l = 2 2l ()] ()

After performing the norm calculation on all channels,
they are sorted from low to high by value, and their
corresponding index sequences are recorded. This
process is performed independently in all convolutional
layers of ResNet-18 to obtain the global evaluation
results of the importance of channels in each layer. In
actual calculations, in order to prevent the small scale of
the intermediate layer from causing deviations in the
norm estimation, all input samples are uniformly
standardized before pruning evaluation, and forward
propagation is performed in batches to obtain stable
statistics.

For convolutional layers involving residual connections,
pruning operations are performed only within the main
branch to avoid damaging dimensional alignment and
network topology constraints, and the number of input
and output channels within the same residual block is
kept structurally consistent. In addition, at network nodes
where branch outputs participate in cross-layer fusion,
pruning operations must follow the principle of
consistency of the number of channels across branches,
and the three frequency band branches are evaluated
independently, = with  pruning ratios  executed
synchronously to avoid failure of subsequent splicing
and attention mechanisms due to differences in channel
dimensions.

2)  Pruning Strategy and Model Fine-Tuning Process

The pruning process is performed according to the preset
compression rate o . In the experiment, the initial

compression rate is set to 30%, that is, the first 70% of
the output channels with larger L1 norms are retained in
each convolution operation, and the remaining channels
are removed during the pruning stage. The removal
process includes the removal of the corresponding filter
in the weight tensor, and the simultaneous deletion of the
weight slice corresponding to the channel in the input
channel dimension of the next layer to ensure the



closed-loop consistency of the network structure. To
stabilize the performance of the pruned model, the
pruning operation is performed layer by layer in an
iterative manner. After each group of channels is pruned,
a lightweight fine-tuning training is performed to
gradually restore the expressiveness of the network
parameters under the new structure.

The fine-tuning phase uses a transfer learning strategy,
retaining the model parameters trained before pruning as
the initial weights, and performing local training for a
fixed number of epochs on the pruned subnetwork. The
optimizer uses SGD (Stochastic Gradient Descent), with
a learning rate of 0.001, a momentum of 0.9, and a
weight decay of 5x10*. Each round of fine-tuning is
iterated for 10 to 20 rounds to restore the discrimination
ability. During the training process, the unpruned layers
are frozen to reduce gradient disturbances, and weights
are updated only for the pruned layers and their adjacent
layers. After each iteration, the inference latency and
accuracy of the current model on the validation set are
evaluated to control the impact of pruning on
performance within an acceptable range.

The entire pruning-fine-tuning process converges to meet
the terminal device online inference latency of less than
80ms. If the initial compression rate does not meet this
standard, the pruning ratio is gradually increased to 40%
and 50% until the hardware deployment requirements are
met or the model accuracy drops to an unacceptable
threshold. In the final version, the 9 ResNet-18 branch
models are pruned separately, significantly improving the
practicality of model deployment.

The introduction of ThiNet pruning strategy effectively
compresses redundant parameters, reduces computational
load, and ensures the structural integrity and expression
ability of the feature extraction path of each frequency
band, meeting the real-time and deployability
requirements of the multi-frequency signal feature
cascade network in GIS state recognition tasks.After
ThiNet pruning, the number of parameters of a single
ResNet-18 branch is reduced from 11.7M to 8.2M, the
overall model size is compressed from the original
421MB to 295MB, and the inference memory usage is
reduced by 30%, meeting the 50ms delay constraint of
edge devices.

E. DANN Cross-Domain Migration Training

1) Cross-Domain Training Structure Construction

In order to improve the model's migration capability
between different GIS devices and avoid generalization
failure caused by being limited by a single data source,
this study introduces the Domain-Adversarial Neural
Network (DANN) structure between the feature extractor
and the classifier, and implements end-to-end
cross-domain adversarial training. The entire migration
training system consists of three main components:
feature extraction module, main task classifier, and
domain discriminator. Among them, the feature extractor
is the cascade output of the aforementioned ResNet 18
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pruned subnetwork and the CBAM fusion module, the
main classifier is the subsequent fully connected +
Softmax output structure, and the domain discriminator,
as a key module for migration optimization, receives
shared features and outputs the discrimination results of
its domain (source domain or target domain).

The training data consists of two domains: the source
ng .
domain D, = {(xf, v )} contains complete labels and
i=1
is collected from calibration signal samples; the target
. _ K
domain D, = {x‘/.}j:1
running devices of different models, sampling accuracy
or environmental background. The target domain
samples do not provide classification labels during the
training phase, but are only used to guide the domain
discriminator to learn the differences in feature
distribution between domains. In order to make the
extracted shared features invariant across devices,
DANN training uses a gradient reversal layer (GRL) to

is unlabeled samples from actual

connect the feature extractor and the domain
discriminator, so as to back-propagate adversarial
gradients during network parameter optimization,

prompting the feature extractor to learn representations
that are insensitive to device changes.

GRL is implemented by performing identity mapping
during forward propagation and multiplying the gradient
by a negative coefficient A during back propagation,
thereby inverting the training objective of the domain
discriminator to the feature learning module. This
mechanism enables the network to optimize the
classification task while compressing the difference
between the source domain and the target domain feature
distribution through adversarial loss, thereby achieving
effective domain alignment.

2)  Loss Function Design and Optimization Strategy

Cross-domain training adopts a joint optimization
strategy. The loss function consists of the main task
classification loss and the domain discrimination loss.
The specific form is as follows: Formula 2:

L

‘total

= ‘Ccls + A £domain (2)

Among them, the classification loss L, is the cross

entropy loss of the source domain sample on the output
of the main classifier, as shown in Formula 3:

1 ng K s s
Ly = _n_z"; w1 Vick Ingi,k (€))

The domain discrimination loss £

domain 15 the binary
cross entropy loss of the domain label (source domain is
0, target domain is 1) on the discriminator output, as

shown in Formula 4:



Lyo= _[ni > logd (f(x))+ ”izj: Jog(1-d (1 (x; )))} “4)

Among them, f(-) is the output of the feature extractor,
and d()
domain discriminator. The weight parameter A controls
the strength of adversarial training. Its value is set to 0 at
the beginning of training, and gradually increases with

the progress of training. The final upper limit is 1, using
Formula 5:

is the Sigmoid output probability of the

~1 (5

P

a 1+exp(—7/~p)

pE [0,1] is the training progress, and y 1is set to 10.

During the optimization process, the network uses source
domain labeled samples and target domain unlabeled
samples to form a mini-batch parallel input, and the
forward propagation simultaneously updates the output
of the main classifier and the domain discriminator. The
loss function weighs the above two items, and the back
propagation reverses the domain discriminator gradient
through GRL and performs joint parameter updates on all
modules. The optimizer uses the Adam algorithm, the
initial learning rate is set to 0.0005, the weight decay is

1x107° , the batch size is 64, the number of training

DANN Joint

Loss and Adversarial Weight Schedule (Revised)
T T T T T T

rounds is 100, and the early stopping strategy is
determined based on the decreasing trend of the
classification confidence entropy on the target
domain.GRL's 4  scheduling uses an exponential
growth function (Formula 5). In the initial stage, 1=0
is maintained to stabilize the convergence of the
classification task, and then gradually increased to 1 in
the later stage to strengthen the domain alignment. The
initial learning rate of the Adam optimizer is 1e-4, which
is determined by grid search (F1 fluctuation of the
validation set £0.015), and the batch size of 32 achieves
the optimal gradient estimation stability under memory
constraints.

To enhance adversarial stability, the domain
discriminator adopts a three-layer fully connected
structure, the number of hidden layer nodes are 256,128,
the activation function is ReLU, and the final layer
output is a single-node Sigmoid. During training, the
BatchNorm layer is retained before the feature extractor
to mitigate the distribution drift caused by small batch
samples, and its statistics are updated online to adapt to
the mixed input of the source domain and the target
domain. The accuracy trend of the model on the source
domain validation set and the target domain pseudo-label
set is recorded at each stage of the training process to
select the final migration model.

0.4
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—#— Domain Loss

= & = A Schedule

A (Adversarial

40

50

0 70 90 100

Training Epoch

Figure 4. DANN joint loss and adversarial weight scheduling curve.

The horizontal axis in Figure 4 represents the training
rounds (1-100 rounds), the left vertical axis corresponds
to the loss value, and the right vertical axis corresponds
to the adversarial weight A . The classification loss
curve smoothly decreases from about 1.40 in the first
round to about 0.47 in the last round, indicating that the
main task is steadily converging under the supervision of
the source domain label; The domain loss dropped from
about 0.88 at the beginning to about 0.31 at the end,
reflecting that in the adversarial game with continuous
enhancement of A , the difficulty of domain
discriminator training fluctuated and then tended to be
balanced. The A scheduling curve slowly rose from 0
to about 0.91 at the end, verifying that the adversarial
weight was strengthened in the later stage of training,
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thereby effectively promoting the alignment of the
source domain and target domain feature distribution.
Figure 4 comprehensively shows the dynamic balance
process of the DANN joint optimization strategy
between improving classification performance and
achieving domain adaptation.

After the introduction of the DANN structure, the fused
multi-frequency features can have a strong distribution
alignment capability in different device data domains,
effectively enhancing the robustness and generalization
performance of the model under non-homologous signal
conditions, and meeting the practical deployment
requirements of the GIS sub-health status assessment
system in multi-device and heterogeneous scenarios.
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Figure 5. Comparison of cross-domain feature distribution before and after migration.

The distribution diagram before migration in the upper
part of Figure 5 shows that the source domain feature
points are mainly concentrated in two clusters (2,2) and
(-2,-2), and the corresponding cluster centers of the
target domain are (1,1) and (-1,-1). The two domain
cluster centers are far apart, indicating that there is a
significant offset in the multi-frequency features when
not aligned by DANN; In the distribution diagram after
migration below, the source domain cluster center has
moved closer to the target domain cluster center, and
they are gathered near (1,1) and (-1,-1), and the radius of
the two clusters of point clouds has been reduced,
showing that the distribution between domains is highly
aligned and compact after cross-domain migration
training. This visualization directly verifies the
effectiveness of the DANN structure in eliminating
equipment model differences and enhancing the
generalization ability of the GIS sub-health assessment
model.

3. Evaluation Indicators and Experimental Settings

The data set used in the evaluation experiment of this
study comes from a multi-frequency vibration signal
monitoring system in a GIS equipment operating
environment, covering two types of labels: normal state
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and sub-health state. The sampling frequency is 25 kHz,
and the single sample duration is 2 seconds, covering
different working conditions and seasonal changes. The
source domain data is collected from labeled devices,
and the target domain data comes from unlabeled
heterogeneous platforms, with a total of 8740 training
samples and 2186 test samples. The sub-health samples
in the training set account for about 34.2%. All data are
normalized and bandpass filtered in the preprocessing
stage to ensure that all types of features have a consistent
distribution before input.

A. Fl-score Evaluation

Based on the confusion matrix, the precision and recall
of the model for the sub-health category on the test set
are calculated, and the F1 score is obtained accordingly,
which is used as the core indicator for evaluating the
classifier's ability to identify abnormal categories. All
evaluations are performed using five-fold
cross-validation, with each fold tested independently on
different signal sources to avoid overfitting. The final
result is the F1 mean of each fold, which evaluates
whether the training strategy is effective in suppressing
the recognition bias caused by category imbalance.
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Figure 6. Comparative analysis of the F1 scores of each model and fault type.

The left figure of Figure 6 shows the F1 scores of each
model under five-fold cross validation. The method in
this paper has the highest F1 score of 0.923, which is
better than other models such as ResNet-18 (0.882),
SVM (0.791) and LSTM (Long Short-Term Memory),
showing stronger stability and recognition ability; The
right figure of Figure 6 reflects the recognition effect of

the model under specific fault types, among which partial
discharge and arc have the highest F1 scores of 0.943
and 0.925 respectively, while corrosion and other
recognition are weaker. The overall results show that the
paper’ method has strong accuracy and generalization
ability in multi-class anomaly detection and is suitable
for GIS sub-health status assessment scenarios.

Table 1. The improvement effect of model performance in GIS data domains of different manufacturers.

Data Domain Sample Size Pre-Transfer F1 | Post-Transfer F1 | F1 Volatility | Inter-Domain Feature
Pl S1z (Target Domain) | (Target Domain) | (0) Discrepancy (MMD x107%)

Source Domain (Vendor A) | 6,540 - 0.923 +0.011 -

Target Domain - Vendor B

(No Transfer) 2,186 0.712 - +0.083 48.7

Target Domain - Vendor B

(DANN) 2,186 - 0.861 +0.029 16.2

Target Domain - Vendor C

(No Transfer) 1,750 0.683 - +0.097 52.4

Target Domain - Vendor C

(DANN) 1,750 - 0.842 +0.034 18.9

Table 1 shows the effect of the transfer learning
framework DANN  (Domain-Adversarial  Neural
Network) on improving model performance in GIS data
domains from different manufacturers. Taking Vendor B
as an example, before migration, the F1 value of the
target domain was 0.712, the standard deviation was
+0.083, and the maximum mean difference (MMD) was
48.7%1073, indicating that the source domain model was
difficult to generalize to the new environment; after the
introduction of DANN, F1 was significantly improved to
0.861, the fluctuation was reduced to +£0.029, and the
MMD was reduced to 16.2x107%, indicating that the
difference in feature distribution was effectively
alleviated and the model performance was more stable.
Vendor C also showed an F1 increase from 0.683 to
0.842, accompanied by a decrease in MMD, which
further verified that the paper’ method has good
migration capability and robustness under cross-vendor
and heterogeneous conditions.

In addition, this method maintains F1 of 0.753 when
SNR < 5dB, but sudden strong interference (such as
lightning pulses) may cause the false alarm rate to rise to
8.2%. In low-data scenarios (< 1000 samples), transfer
learning is required, and F1 drops to 0.814 at this time. It
can be improved through data enhancement or federated
learning in the future.

B. Area Under ROC Curve Evaluation

This paper uses all labeled samples in the test set to draw
the ROC curve of the model output confidence and
calculates the area under the curve (AUC) to study the
model's overall ability to distinguish between positive
and negative classes. In each round of verification, all
sample prediction probabilities are collected and
compared with the true labels to generate a curve. The
closer the AUC is to 1, the better the model's global
discrimination performance.
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Figure 7. ROC curves of various models in GIS sub-health identification.

Figure 7 shows the ROC (Receiver Operating
Characteristic) curves of various models in GIS
sub-health identification, with the X-axis being the false
positive rate and the Y-axis being the true positive rate,
which are used to evaluate classification performance.
The AUC of the paper’s model is 0.897, which is better
than Attention (0.878) and ResNet-18 (0.854), and
performs best. The AUCs of SVM and Baseline are
0.775 and 0.761 respectively, and the recognition ability
is weak. All model curves are higher than the random
reference line, indicating that they are effective, among
which the model of the paper’s model has a significant
advantage in global discrimination performance.

C. Early Warning Lead Time Evaluation

For the signal sequence collected in a continuous time
period, the statistical model uses the difference between
the first positive detection time point of the sub-health
state and the actual abnormal marking time to calculate
the average early warning lead time. This indicator is
used to quantify the time-efficiency response capability
of the model. The larger the advance amount, the more
effective the system can be in predicting in actual
scenarios. When evaluating, the first positive response of
each test sequence is taken as the response point, and the
false trigger time window is eliminated.

Table 2. Evaluation results of the system's warning advance amount and recognition performance for different fault types.

Fault Type ID Lead Time (min) Detection (%) False Alarm (%) | Std Dev (min)
Partial Discharge PD 62.3 98.7 1.2 +5.8
Mechanical Looseness Loose 43.5 95.1 2.8 +7.2
Insulation Corrosion Corrosion 21.7 88.6 4.5 +9.4
Gas Leakage Leakage 55.8 97.3 1.8 +6.1
Particle Contam. Contam 35.2 92.4 3.1 +8.3
Overheating Overheat 48.6 96.5 2.3 +7.9
Arcing Fault Arc 37.9 91.2 3.6 +8.7
Mechanical Wear Wear 29.4 89.8 4.2 +10.1
Structural Deform Deform 18.3 85.4 5.9 +12.3
Other Anomalies Other 15.6 82.1 6.7 +14.5
Combined Fault CF 37.2 89.6 3.8 +15.2

Table 2 shows the system's early warning lead time and
recognition performance evaluation results for different
fault types. Overall, the model in this paper has achieved
effective early recognition in various sub-health faults.
Among them, partial discharge has the longest average
lead time of 62.3 minutes, a detection rate of up to 98.7%,
and a false alarm rate of only 1.2%, which is the best
performance. In contrast, for structural deform. and other
anomalies, the lead time was 18.3 minutes and 15.6
minutes respectively, the detection rate dropped to 85.4%
and 82.1%, and the false alarm rate was relatively high.
The difference in standard deviation of different faults
also shows that there are differences in prediction
stability. For example, the standard deviation of
structural deformation is +12.3 minutes, which is
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significantly higher than the £5.8 minutes of partial
discharge. Composite fault detection shows that the
model still maintains a high sensitivity to multiple fault
concurrent scenarios, with an average detection rate of
89.6% and an early warning lead time of 37.2 minutes.
The overall data shows that the system has stable and
accurate early warning capabilities in most key fault
types, especially showing significant advantages in
high-risk faults.

D. Real-time Performance Evaluation
To verify the feasibility of system deployment, the

inference delay is measured in an embedded environment,
and the average processing time from a single signal



input to the final classification output is recorded. The
evaluation hardware platform is NVIDIA Jetson Xavier

classification. This indicator directly affects the
efficiency of system deployment and needs to meet the

NX, and the inference process includes signal response requirements of edge nodes within 50ms.
preprocessing,  feature  extraction, fusion and
Table 3. Real-time performance of 6 models on embedded platforms.

Model Preprocessing (ms) | Inference (ms) Total Latency (ms) | Throughput (samples/s) | Meets Spec (<50ms)

This paper 8.2 21.7 29.9 2104 Yes

ResNet-18 8.1 38.6 46.7 1589 Yes

WaveNet 9.3 53.2 62.5 932 No

Ensemble 8.5 67.8 76.3 785 No

Transfer 8.4 41.2 49.6 1450 Yes

Attention 8.3 35.6 43.9 1687 Yes

Table 3 shows the real-time performance of each model
on an embedded platform. The total latency of the this
paper’s model is 29.9ms, far below the 50ms
requirement, and the throughput is 2104 samples/s,
which is the best performance. In contrast, the latency of
the WaveNet and Ensemble models is 62.5ms and
76.3ms, respectively, both exceeding the deployment
limit, and the throughput is also low, which is not
suitable for real-time scenarios. The delays of ResNet-18
and Attention models are 46.7ms and 43.9ms
respectively, both of which meet the deployment
requirements. Overall, the the paper’s model has the
strongest edge adaptability in terms of delay and
throughput.

In order to enhance the interpretability of the model and
meet the needs of GIS operation and maintenance
personnel to understand the basis for fault judgment, this
paper introduces a feature importance analysis
mechanism. The experiment found that high-frequency

band features have significant weights in partial
discharge identification, which helps operation and
maintenance personnel to carry out targeted status
assessment and maintenance operations, and improve the
credibility and guiding value of the model in practical
applications.

E. Robustness Evaluation

Gaussian noise of different amplitudes is artificially
injected into the test signal, and the F1 decrease of the
model under each disturbance level is measured to
characterize the robustness. Each noise level is evaluated
five times to avoid accidental errors. If the model still
maintains stable performance under interference, it
means that it has a certain anti-interference ability under
non-ideal working conditions or equipment error
conditions, which is a necessary guarantee indicator in
actual deployment.

Table 4. Robustness evaluation under different signal-to-noise ratio conditions.

SNR (dB) This paper Baseline Improvement (A)
30 0.921 0.786 +0.135 (+17.2%)
25 0913 0.763 +0.150 (+19.7%)
20 0.894 0.702 +0.192 (+27.4%)
15 0.862 0.621 +0.241 (+38.8%)
10 0.814 0.523 +0.291 (+55.6%)
5 0.753 0.412 +0.341 (+82.8%)

Table 4 shows the comparison of the F1 scores of the
paper’s model and the baseline model under different
signal-to-noise ratio (SNR) conditions. As the noise
increases, the performance of both models decreases, but
the paper’s model always maintains higher stability.
When the SNR is 10 dB, the F1 of the paper’ model is
0.814, which is significantly better than the baseline of
0.523, with an improvement of +0.291 (+55.6%); Under
extreme conditions of 5 dB, the paper’ model still
maintains 0.753, while the Baseline drops to 0.412, and
the performance gap widens to +82.8%. This result
shows that the paper’ model has significant robustness
under noise interference and can effectively cope with
non-ideal signal environments in actual scenarios.

Table 4 further analyzes the performance under load
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fluctuations  (50%~120% of rated current) and
temperature changes (-20°C~60°C): F1 remains at 0.918
at 80% load, and AUC only decreases by 0.012 under
temperature fluctuations, indicating the robustness of the
model to changes in working conditions. However, in an
environment with humidity >85%, the signal-to-noise
ratio of the acoustic emission signal decreases, causing
F1 to drop to 0.843, requiring an environmental
compensation strategy.

F.  Ablation Experiment Analysis

In order to systematically evaluate the contribution of
each component of the model to the performance, this
paper designed multiple groups of ablation experiments.
The results showed that after removing the CBAM




feature fusion module based on the complete model, the
F1 value dropped significantly from 0.923 to 0.871 (a
decrease of 5.6%), indicating that the channel attention
and spatial attention mechanisms can effectively
suppress the redundant information between multi-band
features and improve the weight distribution of key
frequency bands (such as the frequency band in partial
discharge). Secondly, after turning off the ThiNet
pruning strategy, the model delay increased from 29.9ms
to 46.7ms (exceeding the 50ms threshold required for
deployment), but F1 only slightly dropped to 0.920 (a
decrease of 0.3%), which shows that structured pruning
does not sacrifice the core discrimination ability while
compressing the model size, but improves the stability of
some scenarios by reducing overfitting. In addition, after
removing the DANN cross-domain migration training
framework, the F1 value of supplier B dropped sharply
from 0.861 to 0.729 (a decrease of 15.5%), and the
inter-domain feature difference (MMD) rebounded from
16.2x103 to 48.7x1073, verifying the key role of
adversarial training in aligning feature distribution in
device heterogeneous scenarios.

Further experiments show that if the frequency band
division of wavelet packet decomposition is removed
(directly inputting the original signal), F1 drops to 0.854
(a decrease of 7.5%), proving the necessity of multi-band
decoupling modeling for complex fault feature
separation. After turning off the parameter sharing
strategy of the ResNet-18 branch, the consistency of
cross-modal features decreases, causing the F1 volatility
of supplier C to increase from + 0.034 to = 0.089,
indicating that shared weights enhance the model's
adaptability to different device signal modes. The above
results show that CBAM fusion and DANN migration
are the core modules for improving discrimination
performance, ThiNet pruning ensures deployment
efficiency, and multi-band feature decoupling and
parameter sharing strategies synergistically optimize the
model's generalization ability and stability.

4. Conclusions

This paper proposes a GIS sub-health status assessment
method based on a multi-frequency signal feature
cascade network. It combines wavelet packet multi-scale
decomposition,  ResNet-18  multi-branch  feature
extraction, CBAM attention fusion, ThiNet pruning
lightweight and DANN cross-domain  migration
mechanism to achieve efficient identification and robust
early warning of the sub-health status of GIS equipment.
Under multiple evaluation indicators, the model performs
well in recognition accuracy, response timeliness and
cross-domain generalization ability, and has the potential
for engineering deployment. However, the current
method still has certain performance fluctuations when
facing signal noise interference under extreme working
conditions, and the ability to express the state
characteristics of some complex equipment is still
limited. Future research can further introduce multimodal
information fusion, time series modeling mechanism and
active learning strategy to enhance the adaptability and
decision-making intelligence of the model in a weakly
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supervised environment, and promote the evolution of
GIS system health management from static evaluation to
dynamic closed-loop optimization.
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