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Abstract. This paper proposes a probabilistic available
transfer capacity (ATC) calculation method by
integrating a broad learning system (BLS) with Gaussian
mixture model-based clustering. The key feature of this
method is the development of a surrogate model for ATC
calculation based on BLS. First, the deterministic ATC
problem is formulated as an optimal power flow problem
aimed at maximizing transmission power. Second, the
joint probability distribution of uncertain renewable
power generation and loads is modeled based on Copula
theory, which is a powerful tool to capture their
correlations. Third, an improved Gaussian mixture
model-based clustering method, which combines kernel
density estimation with a Gaussian component reduction
strategy, is employed to generate high-quality training
samples. It overcomes numerical issues encountered
when using GMM to generate a sufficiently large
number of training samples, which are then used to
construct the BLS-based surrogate model for ATC
calculation. Finally, a large number of ATC samples are
efficiently generated through Monte Carlo simulation on
the BLS-based surrogate model, from which the
probability distribution and statistical characteristics of
the ATC are derived. The proposed method is validated
on the 118-bus, 300-bus, and 1354-bus systems with
integrated wind and photovoltaic generation, and
compared with surrogate models based on polynomial
chaos expansion (PCE) and Gaussian process regression
(GPR). For the 118-bus and 300-bus systems, the
proposed method reduces distribution function errors to
less than 50% of those from PCE and GPR methods,
while maintaining high computational efficiency similar
to the GPR method. For the 1354-bus system, the PCE
method fails to train the model due to memory
constraints, and the GPR method produces large errors.
In contrast, the proposed method remains accurate and
efficient, demonstrating strong scalability for large-scale
probabilistic ATC problems.
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1. Introduction

A Vailable transfer capability (ATC) [1] is a key metric
for assessing the security margin of power systems. It
provides crucial information for power market
participants to develop trading strategies. However, the
increasing integration of renewable energy [2] and the
growing electrification of energy end-use sectors [3,4]
have introduced significant uncertainties to power
systems, leading to variations in ATC [5,6]. In this
context, probabilistic ATC (PATC) calculation [7] has
emerged as a quantitative method to evaluate ATC under
the influence of these uncertainties. The objective of
PATC is to determine the probability distribution and
statistical characteristics of ATC. However, PATC
calculation remains a challenging task, particularly for
large-scale power systems, due to the complex
probability distributions of renewable energy generation
and the strong nonlinearity of the ATC calculation model
[8].

As defined in [9], ATC represents the maximum
transmission power that satisfies security constraints,
either between two regions or along a transmission path,
minus existing transmission commitments (ETC),
capacity benefit margin (CBM), and transmission
reliability margin (TRM). This maximum transmission
power is also referred to as the total transfer capacity
(TTC). The PATC calculation to obtain the probability
density function (PDF) of ATC is proposed in [2] to
account for uncertainties arising from equipment
unavailability. Hourly load uncertainties are considered
in [3] to evaluate the PATC using statistical indices such
as the expectation and percentiles. Monte Carlo
simulation (MCS) is the most widely used method for
PATC calculation, as presented in [2] and [3]. However,
MCS requires a large number of deterministic ATC
evaluations, leading to a substantial computational
burden. This is because a single deterministic ATC
evaluation is time-consuming, regardless of whether the
repeated power flow [10], continuation power flow
[11,12], or optimal power flow (OPF) [13,14] method is
used.
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To mitigate the computational burden of PATC,
researchers have explored surrogate model-based
simulation methods [15,16]. In these methods, a
surrogate model of deterministic ATC calculation is
established, and MCS is then performed on the surrogate
model [17]. A variety of surrogate models, such as
polynomial chaos expansion (PCE) [18], Gaussian
process regression (GPR) [19], and low-rank
approximation (LRA), are available off-the-shelf in the
open-source uncertainty quantification software [20]. Ref.
[15] applies PCE to calculate the PATC in power
systems integrated with wind and photovoltaic power
generation, where ATC is represented using a spectral
expansion of orthogonal polynomials. Ref. [16] employs
LRA to calculate the PATC in wind power-integrated
power systems, where ATC is approximated as the sum
of a limited number of rank-one tensors. Similarly, the
GPR-based surrogate method can be used to calculate
PATC by representing ATC as a statistical interpolation
based on Gaussian processes.

While the PCE model accurately approximates ATC, the
number of its coefficients increases exponentially with
the input dimension. Therefore, establishing the model
becomes computationally demanding when the number
of uncertain variables is large. The LRA model provides
a solution to overcome the curse of dimensionality, but
its accuracy is lower than that of PCE when calculating
PATC in a small system with low-dimensional uncertain
variables. The GPR model presents a moderate
computational burden for high-dimensional problems,
but it also faces scalability challenges due to its lower
accuracy in higher-order statistical characteristics. We
observe that the expectation of ATC obtained by GPR
consistently maintains high accuracy, but the errors in
variance and other statistical characteristics increase
significantly as the dimension of uncertain variables
grows.

This paper aims to overcome the scalability limitations
of existing methods by designing a broad learning
system (BLS)-based surrogate model for PATC
calculation. The main contributions of this paper are
summarized as follows:

1) We develop a BLS-based surrogate model to calculate
PATC in power systems, accounting for uncertainties in
renewable energy generation and power loads. The BLS
offers strong nonlinear representation capabilities and
high efficiency, balancing computational burden and
accuracy, even in large-scale systems.

2) We combine kernel density estimation with a density-
preserving component reduction algorithm to enhance
Gaussian mixture model (GMM)-based clustering. This
method overcomes numerical issues that arise when
applying GMM-based clustering to generate a large
number of clusters for producing sufficient training
samples to construct the BLS-based surrogate model.

The rest of the paper is organized as follows: Section 2
formulates the mathematical model for ATC calculation.
Section 3 presents the uncertainty models of renewable

energy generation and load demands in power systems,
while Section 4 introduces the BLS-based PATC
calculation method. Case studies are provided in Section
5, followed by conclusions in Section 6.

2. Mathematical Formulation for Available Transfer
Capacity

The deterministic ATC evaluation serves as the
foundation for PATC calculation. In this study, the OPF-
based method is employed to evaluate ATC, where the
problem is formulated as follows:
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where iV and i , and jV and j are the magnitudes and
angles of nodal voltages at bus i and j , respectively;

ijG and ijB are the real and imaginary parts of the
element in the thi row and thj column of the nodal
admittance matrix, respectively; iP and iQ are the active
and reactive nodal power injections at bus i ,
respectively; G,iP , WT,iP , and PV,iP are the active power
outputs of conventional, wind turbine (WT), and
photovoltaic (PV) power generation at bus i ,
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respectively, while G,iQ , WT,iQ , and PV,iQ are the
corresponding reactive power outputs, L,iP and L,iQ are
the active and reactive power loads at bus i , respectively;

init
G, fP and init

G , fQ are the active and reactive power outputs
of conventional power generation at bus f in the base
state, while G, fP and G, fQ are the adjustments in the
active and reactive power of conventional power
generation at bus f to balance the increased power load
in the receiving region; init

L,tP and init
L,tQ are the active and

reactive power loads at bus t in the base state;  is the
set of all buses in the power system, and  and  are
the sets of buses in the sending and receiving regions,
respectively,  is the set of all branches in the power
system;  is the load increase factor in the receiving
regions, when 0  corresponds to the base state; U

G, fP ,
L

G, fP and U
G, fQ , L

G , fQ are the upper and lower limits of

G, fP and G , fQ , respectively; U
iV , L

iV and U
i , L

i are
the upper and lower limits of iV and i , respectively,
where U L

refi i    when i is the reference bus; ( )ijh 
is the function to calculate branch current magnitude at
branch ij , U

ijI and L
ijI are the upper and lower limits of

the current magnitudes at branch ij .

The objective function is to maximize the incremental
transmission power from the sending region to the
receiving region, based on the ETC (i.e., the base state),
where the decision variables are  , G, fP and G, fQ .
Constraints (2) - (5) represent the nonlinear power flow
equations based on polar coordinates. Constraints (6)-(9)
describe the increased power load in the receiving region
and the corresponding power generation adjustments in
the sending region. Constraints (10)-(14) are the security
constraints of the power system. The optimal value of the
objective function represents the ATC without
consideration of CBM and TRM. In this study, the
IPOPT [21], an open-source primal-dual interior-point
method solver, is used to solve the nonlinear
optimization problem.

3. Probability Models of Renewable Power
Generation and Load Demand

In this study, we aim to a probabilistic assessment of
ATC under the influence of uncertainties in renewable
power generation and load demand. Accurate
probabilistic modeling of these uncertainties is a
prerequisite for PATC calculation. Notably, the
correlation among these uncertain variables cannot be
overlooked, because it has a significant impact on system
states. Therefore, in this section, we first model the
marginal distributions of individual uncertain variables
and then construct their joint probability distribution
using Copula theory.

A. Marginal Probability Distribution

Wind speed is the primary source of uncertainty in WT
power generation. Let iv denote the wind speed of the
WT power generation at bus i , and let v denote the
vector comprising all iv . The uncertainty of iv is
commonly described by a Weibull distribution, whose
PDF is given by:
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where i and i are the scale and shape parameters,
respectively.

Solar irradiation is the primary source of uncertainty in
PV power generation. Let i denote the solar irradiation
of the PV power generation at bus i , and let  denote
the vector comprising all i . The uncertainty of i is
commonly described by a Beta distribution, whose PDF
is given by:
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where ia and ib are the parameters representing the
minimum and maximum values of i , ir and is are the
shape parameters, and  B  is the Beta function.

Let L,iP denote the active power of load demand at bus i ,
and let LP denote the vector comprising all L,iP . The
uncertainty of L,iP is commonly described by a Gaussian
distribution, whose PDF is given by:

     2 2
L,

L

2
L,

1 e
2π

i i iP
P i

i

f P  


 

 (17)

where i and i are the mean and standard deviation,
respectively.

B. Copula-Based Joint Probability Distribution

The uncertain variable vector is denoted as u , which is
formed by the wind speed vector v , solar irradiation
vector  , and the load vector LP . The marginal
probability distributions of the uncertain variable vector
x are established in (15)-(17). To further describe their

correlation, the joint cumulant distribution function
(CDF) is established based on Copula theory, as given
below:
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      1 1 1, , , ,n n nF u u C F u F u  (18)

where 1 2, , , nu u u represent the elements of u , i.e.,

  T T T
1 2 L, , , ,nu u u     u v P , ( )F  represents CDF,

and ( )C  is the Copula function. Thus, the joint PDF of
u is derived as:

          1 1 1 1 1, , , ,n n n n nf u u c F u F u f u f u      (19)

where ( )c  is the Copula density function. In this study,
the Gaussian Copula function is used.

The parameters of the Copula function and the marginal
distribution functions are determined using the maximum
likelihood estimation method with historical data, the
detailed steps can be found in [20].

4. Probabilistic ATC Calculation

In this section, the definition of PATC and its
simulation-based calculation method are reviewed. Then,
a broad learning system-based surrogate model for ATC
calculation is developed. Next, an improved GMM-based
clustering method is designed to generate high-quality
training samples for constructing the ATC surrogate
model. Finally, the complete PATC calculation process
is presented.

A. Definition and Simulation-Based Calculation
Method for PATC

The transformations from wind speed iv to WT,iP and
from solar irradiation i to PV,iP can be obtained based
on WT and PV power models [22], respectively. Due to
the uncertainties in wind speed and solar irradiation, the
variables WT,iP and PV,iP are uncertain. Recalling
problem (1)-(14), changes in WT,iP , PV,iP , and L, IP lead
to variation in the optimal objective function value, ATC.
Therefore, ATC becomes an uncertain variable
influenced by these input uncertainties. The goal of
PATC calculation is to determine the probability
distribution and statistical characteristics of ATC.

Let Y and Ŷ denote the ATC without and with
consideration of CBM and TRM, respectively. Figure 1(a)
and Figure 1(b) illustrate the PDFs of Y and Ŷ ,
respectively. Since CBM and TRM are fixed margins
determined by system operators, and their determination
methods are not standardized, this study focuses on
accurately obtaining the probability distribution and
statistical indices of ATC without incorporating CBM
and TRM. Once CBM and TRM are specified, further
PATC-related calculations, whether for the PDF or
statistical indices, can be carried out by simply
subtracting CBM and TRM. The relationships between
the PDF and statistical characteristics of Y and those of
Ŷ are provided in (20)-(23).

Figure 1. PDFs of ATC without and with CBM and TRM.

    ATCATC
ˆ ˆ TRM CBMf Y f Y   (20)

   ˆ TRM CBME Y E Y   (21)

   ˆStd StdY Y (22)

   ˆ TRM CBMq Y q Y    (23)

where ( )f  , ( )E  , Std( ) , and ( )q  are probability
density, expectation, standard deviation, and  -
percentile functions, respectively.

Let WTP , PVP , and LP denote the vector comprising all

WT,iP , PV,iP , and L,iP , respectively. The corresponding

reactive powers are assumed to be controlled by constant
power factors. The ATC is expressed as the optimal
value function  WT PV L, ,Y   P P P , where ( ) 

represents the solution to the optimization problem (1) -
(14) . Since the function ( )  is nonlinear and lacks a
closed-form expression, deriving the PDF of ATC
directly from the given joint PDF of the uncertain
variable vector u is challenging. Therefore, the MCS
method is employed to estimate the PATC. For each
realization of the uncertain variables, solving the OPF
problem (1) - (14) yields a corresponding realization of
the uncertain ATC. Based on these ATC samples, the
PDF and statistical characteristics of ATC are estimated.
However, the computational burden of performing a
large number of MCS on the OPF-based ATC
calculation model is significantly heavy.
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B. BLS-Based Surrogate Model for ATC Calculation

The broad learning system [23,24] is a novel neural
network that focuses on increasing the breadth rather
than the depth. The BLS exhibits remarkable
computational efficiency and generalization ability in
high-dimensional nonlinear representations. The
effectiveness of BLS in regression tasks has been
demonstrated in existing literature [25-28]. Therefore,

we introduce it to establish the surrogate model of ATC
for PATC calculation. Figure 2 illustrates the neural
network structure of the BLS-based surrogate model of
ATC. The input X is the nodal active power injection
vector associated with the uncertain powers from WT
power generation, PV power generation, and load
demands, while the output Y is the ATC. The hidden
layer consists of two parts: 1) a feature mapping layer,
and 2) an enhancement layer.

Figure 2. Neural network structure of the BLS-based surrogate model of ATC.

The feature mapping layer consists of gN groups of
feature mapping units. For the thk mapping unit, an fN -
dimensional feature is mapped from input X by:

 , ,k F k F k F XW B (24)

where ,F kW and ,F kB are the linear mapping coefficient
vectors, randomly generated between -1 and 1, and ( ) 
is a nonlinear mapping operator, which is an implicit
function based on a sparse autoencoder [29]. Specifically,
the sparse autoencoder is implemented by solving the
following problem:

 
,

2

, , , , ,ˆ 2 1
ˆ ˆarg min ,

F K
F k F k F k F k F k     W

X B W XW B W (25)

where ,
ˆ
F kW is the decision variable, and  is the

regularization term coefficient. This problem represents
the least squares solution ,

ˆ
F kW of the

equation  , , , ,
ˆ, F k F k F k F k    X B W XW B with an L1

regularization term. The alternating direction method of
multipliers algorithm is used to solve this problem, and
the detailed iteration steps can be found in [29].
Therefore,  , , , ,

ˆ,k F k F k F k F k      F XW B X B W . This
represents the sparse and compact features obtained by
applying the implicit function ( )  , which is realized by
solving the problem (25) to fine-tune the features

obtained from the randomly linear mapping
, ,F k F kXW B .

The enhancement layer contains eN enhancement nodes,
and their input is the concatenation of the mapped
features 1 2, , ,

gN
 
 F F F , denoted as F . For the thl

enhancement node, its output lE is mapped from F as:

 , ,l E l E l E FW B (26)

where ,E lW and ,E lB are linear mapping coefficient
vectors randomly generated in the same way as ,F kW
and ,F kB , and ( )  is a nonlinear mapping function
designed as:

  2

2 1
1 e xx  


(27)

Based on the outputs of the feature mapping layer and
the enhancement layer, the final output Y (i.e. ATC) of
the BLS is calculated as:

 , OY  F E W (28)

where  1 2 Ne, , , E E E E , and OW is the weight
coefficient vector that maps F and E to the output Y .
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Training the BLS-based ATC surrogate model only
requires determining the coefficient vector OW , since

,F kW , ,F kW , ,E lW , and ,E lB are generated randomly and
remain fixed. The training of OW is formulated as the
following optimization problem:

2

2
arg min

O
OW Y 

W
H (29)

where H represents the sample matrix of the hidden
layer output  ,F E when the training samples X are

used as input, and Y is the corresponding target output
samples of the ATC model used for training. This
problem can be efficiently solved using the pseudo-
inverse operation:

†
O   W H Y (30)

where †H is the pseudo-inverse operation of H .

C. GMM-Based Clustering for Generating Training
Samples

The selection of training samples is crucial for
constructing an accurate surrogate model. The GMM-
based clustering is a powerful method that identifies
clusters based on the probabilistic distribution of the data.
Therefore, we adopt GMM-based clustering to generate
high-quality training samples. However, in this context,
the number of required training samples is typically on
the order of 100-1000, which is significantly larger than
the number of clusters in conventional clustering tasks.
When attempting to estimate the parameters of a GMM
with such a large number of components using the
classical expectation-maximization (EM) algorithm,
numerical ill-conditioning issues often arise. To address
this challenge, we propose an improved GMM-based
clustering approach that incorporates kernel density
estimation (KDE) and a component reduction strategy.

First, tN samples of input X are generated based on
(19) and the power generation models of WT and PV,
where tN is a large number. These samples are denoted
as 1{ }, , , ,

tk N X X X , which will be used to perform
MCS on the BLS-based surrogate model to generate Nt
ATC simulation samples.

Second, based on the input samples 1{ }, , , ,
tk N X X X ,

the joint PDF of X is estimated using KDE with a
Gaussian kernel function, which is expressed as:

   KDE
1

1 tN

k
k

f K
N 

  HX X X (31)

where ( )K H is the Gaussian kernel function, and H is
the bandwidth matrix, which is determined by
Silverman’s rule of thumb, as stated below:
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d D
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h N d D 
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 



H
(32)

where diag( ) is the operator that transforms a vector
into a diagonal matrix, D is the dimension of input X ,
and d and dIQR are the standard deviation and
interquartile range of the samples of input X in the thd
dimension, respectively.

The joint PDF obtained by KDE is treated as the base
GMM, which is given by:

          
1

N ,
bK

b b b b
k k k

k
f 



 X X  (33)

where bK is the number of Gaussian components,  b
k ,

 b
kμ , and  b

k are the weight coefficient, mean vector,
and covariance matrix of the thk component,
respectively, N( ) is the joint PDF of the Gaussian
distribution, and the symbol b indicates that the
parameters belong to the base GMM. According to the
parameters in (31), the parameters in (33) are obtained as
follows: b tK N ,  b 1k tN  ,  b

k kμ X , and  b
k  H .

Next, a density-preserving component reduction
algorithm is developed to obtain a simplified GMM with

 r r b tK K K N  Gaussian components. The
simplified GMM is denoted as:

          
1

N ,
rK

r r r rf 


    


X X  (34)

where rK is the number of reduced Gaussian

components,  r ,  rμ , and  r are the weight
coefficient, mean vector, and covariance matrix of the

th component, respectively. The density-preserving
component reduction problem for obtaining (34) is
formulated as:

      
   

    
, ,
max E lnb

r r r

r
f

f





 
 

  
 X

(35)

where χ represents the virtual samples following the
probability distribution in (33) . The decision variables
are the parameters  r ,  rμ , and  r of (34), and the
objective function is to maximize the log-likelihood of
χ under the simplified GMM. This problem is solved

using the variational approximation method. The detailed
derivation can be found in [30], and the iterative
calculation also involves E-step and M-step. To avoid
numeric overflow due to the large number bK , an
improved E-step [31] is adopted. The calculation
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expressions for the E-step and M-step are presented as
follows:

E-step:

            
      

T 1

, 11 2
tr ln





   
          

b r r b r
k k

k
r b r

k

   



 

 
(36)

 ,min , rarg min ,  1, 2, ,k k l
l

l l K    (37)

   
   
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,min

r
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r
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exp

exp
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l k l i ll
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


   
   

 

 (38)

M-step:

   r b
1
bK

k kk
z 


  (39)

       r r b b
1

1 bK
k k kk
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
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1
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r b

k k k k k
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z 

 

           


    (41)

where kz  ( b r{1,..., }, {1,..., }k K K  ) is the variational
parameter, tr( ) is the trace operator for a matrix, and m
is the number of virtual samples χ , which is typically
set to 10 bK , as in [30] and [31].

Finally, all the density centers of each component of
 ( r )f X are collected as the training samples for the

input X , i.e.,
r

(r ) (r ) (r )
1[ ],..., ,..., K μ μ μX 

 . For each

training sample in X , the corresponding ATC is
obtained by solving the OPF-based ATC model (1)-(14),
i.e.,

r1[ ,..., ,..., ]KY Y YY 
   .

D. Solution Procedure

Step 1: Establish the joint PDF of the uncertain variable
vector u in the power system, according to the method
presented in Section 3.

Step 2: Generate tN samples of the uncertain variables
based on their joint PDF using a low-discrepancy
sequence. Transform these into power vector samples

WT,1 WT, WT,{  }, , , ,
tk N P P P , ,1 , ,{ }, , , ,

tPV PV k PV N P P P ,

and ,1 , ,{ }, , , ,
tL L k L N P P P based on the WT and PV

power models [22].

Step 3: Convert the power vector samples into input

samples 1{ }, , , ,
tk N X X X for the BLS-based ATC

surrogate model. Specifically, for the thk input samples:

, , ,   k WT k PV k L k  X P P P .

Step 4: Generate rK training samples of input X and
corresponding output Y for training the BLS-based ATC
surrogate model, using the improved GMM-based
clustering method proposed in Section 4.C. The obtained
training samples are

r

(r ) (r ) (r )
1[ ],..., ,..., K μ μ μX 

 and

r1[ ,..., ,..., ]KY Y YY 
   , corresponding to the input and

output, respectively.

Step 5: Establish the BLS-based ATC surrogate model
using the training samples

r

(r) (r) (r)
1[ ],..., ,..., K μ μ μX 



and
r1[ ,..., ,..., ]KY Y YY 

   , following the method proposed
in Section 5.B.

Step 6: Generate ATC simulation results
1  { }, , , ,

tk NY Y Y  by performing MCS on the BLS-
based ATC surrogate model using the input samples

1{ }, , , ,
tk N X X X .

Step 7: Estimate the PDF of ATC using the simulation
samples 1  { }, , , ,

tk NY Y Y  and KDE. Calculate
statistical indices such as the expectation, standard
deviation, and percentiles.

5. Case Studies

The 118-bus, 300-bus, and 1354-bus power systems [32],
integrated with WT and PV power units, are used to
evaluate the performance of the proposed method. Six,
twelve, and sixty-five WT power units are connected to the
118-bus, 300-bus, and 1354-bus systems, respectively, with
installed capacities of 200 MW, 40 MW, and 200 MW per
unit. Similarly, six, twelve, and sixty-five PV units are
integrated into the corresponding systems, with installed
capacities of 100 MW, 20 MW, and 60 MW per unit.

The uncertainties of WT and PV power units, as well as all
loads, are taken into account. The results obtained by the
MCS using the original OPF-based ATC calculation model
and a low-discrepancy sequence are used as benchmarks,
whose number of simulation samples is 10000. The
performances of the PCE-based and GPR-based surrogate
models are compared against that of the proposed BLS-
based surrogate model. The PCE and GPR methods are
implemented using the UQLab toolbox [20]. For BLS-
based, PCE-based, and GPR-based surrogate model method,
the number of training and simulation samples is set to 1000
and 10000, respectively.

The proposed method is developed in MATLAB 2020a,
and all simulations are carried out on a desktop computer
equipped with an Intel i5-8400 2.8 GHz CPU and 32 GB of
RAM.
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A. Comparison of Probability Distribution Function
Accuracy

Figures 3-5 show the PDFs and CDFs of ATC in the
118-bus, 300-bus, and 1354-bus systems obtained by
different methods, respectively. The results obtained by
the BLS method closely match those obtained by the
MCS method and outperform those from the PCE and
GPR methods. The dimensions of the uncertain variables
in the 118-bus, 300-bus, and 1354-bus systems are 111,
224, and 803, respectively. It is observed that the GPR-
based ATC surrogate model tends to output the mean
value as the dimensionality of the problem increases. In

particular, the PDF of ATC in the 1354-bus system
contains an impulse at the mean, indicating that the GPR
model loses its ability to represent distributional features.
As a result, the accuracy of the PDF and CDF generated
by the GPR method decreases significantly with
increasing system scale. In contrast, the PDF and CDF
accuracy of the PCE method does not deteriorate as
noticeably when the system scale increases, as can be
observed by comparing the results for the 300-bus and
118-bus systems. However, an out-of-memory error
occurs during the training of the PCE model in the 1354-
bus system. Therefore, Figure 5 does not include the
PDF and CDF of ATC obtained using the PCE method.

Figure 3. PDFs and CDFs of ATC in 118-bus system obtained by different methods.

Figure 4. PDFs and CDFs of ATC in 300-bus system obtained by different methods.

Figure 5. PDFs and CDFs of ATC in 1354-bus system obtained by different methods.

Table 1-Table3 show the PDF and CDF errors of ATC
obtained by different methods, with error indices
including root mean square error (RMSE), mean absolute
error (MAE), and weighted absolute percentage error
(WAPE). These errors are statistically evaluated based
on 200 uniformly sampled points within the domain of
their definition. In all three systems, the PDF and CDF
errors of the proposed BLS method are less than 50% of
those of the PCE and GPR methods. It is worth noting

that, since the PDF calculated by the GPR method is an
impulse function, its PDF error is not measured in the
1354-bus system. Meanwhile, the construction of the
PCE model fails in the 1354-bus system, making it
unable to complete the PATC calculation. In contrast, the
proposed BLS method is capable of accurately obtaining
the PDF and CDF even in large-scale systems, thereby
overcoming the scalability limitations encountered by the
PCE and GPR methods in PATC calculations.
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Table 1. Errors of probability distribution functions of atc in the 118-bus system obtained by different methods.

Method PDF Error CDF Error
RMSE MAE WAPE RMSE MAE WAPE

PCE 1.38E-1 9.15E-2 14.31% 1.50E-2 9.19E-3 1.84%
GPR 1.32E-1 8.77E-2 13.72% 1.58E-2 1.01E-2 2.02%
BLS 3.49E-2 2.20E-2 3.44% 3.15E-3 1.96E-3 0.39%

Table 2. Errors of probability distribution functions of atc in the 300-bus system obtained by different methods.

Method PDF Error CDF Error
RMSE MAE WAPE RMSE MAE WAPE

PCE 1.22E-1 8.59E-2 10.73% 1.31E-2 9.16E-3 1.83%
GPR 1.01E+0 6.00E-1 75.07% 8.52E-2 5.48E-2 10.97%
BLS 5.42E-2 3.78E-2 4.72% 5.50E-3 3.64E-3 0.73%

Table 3. Errors of probability distribution functions of atc in the 1354-bus system obtained by different methods.

Method PDF Error CDF Error
RMSE MAE WAPE RMSE MAE WAPE

PCE - - - - - -
GPR - - - 1.58E-1 9.22E-2 18.44%
BLS 1.87E-2 1.27E-2 3.65% 4.80E-3 2.98E-3 0.60%

B. Comparison of Statistical Index Accuracy

Table 4-Table 6 show the statistical indices of ATC
obtained by different methods. The errors in the mean for
all methods are small, indicating that calculating the
mean is not a challenging task. However, the errors in
the standard deviation and percentiles obtained by the
GPR method increase significantly as the system scale
grows. This is because the GPR model tends to output
the mean value when the system scale increases,

resulting in accurate mean estimation but poor
performance in capturing higher-order statistical indices.
The PCE method achieves significantly higher accuracy
in statistical indices compared to the GPR method, but it
fails to compute PATC in the 1354-bus system due to
memory limitations. In contrast, the proposed BLS
method yields more accurate statistical indices in most
cases than both the PCE and GPR methods. This
improvement is attributed to the high accuracy of the
PDFs and CDFs produced by the BLS method, as
demonstrated in Figures 3-5.

Table 4. Statistical indices of atc in the 118-bus system obtained by different methods.

Method Mean
(MW)

Standard Deviation
(MW)

5th Percentile
(MW)

95th Percentile
(MW)

MCS 154.50 19.45 125.70 189.17
PCE 154.56 18.45 125.62 186.72
GPR 154.52 17.94 126.40 185.95
BLS 154.57 19.51 125.04 189.15

Table 5. Statistical indices of atc in the 300-bus system obtained by different methods.

Method Mean
(MW)

Standard Deviation
(MW)

5th Percentile
(MW)

95th Percentile
(MW)

MCS 248.74 15.54 224.30 274.66
PCE 248.71 14.06 225.80 271.94
GPR 248.51 6.72 237.41 259.81
BLS 248.95 15.06 223.78 274.08

Table 6. Statistical indices of atc in the 1354-bus system obtained by different methods.

Method Mean
(MW)

Standard Deviation
(MW)

5th Percentile
(MW)

95th Percentile
(MW)

MCS 851.13 35.77 795.23 914.27
PCE - - - --
GPR 851.02 11.23 849.14 851.85
BLS 851.55 35.05 795.78 912.35
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C. Comparison of Computational Efficiency

Figure 6(a)-Figure 6(c) show the computation time for
PATC using different methods in the three test systems.
The speedup ratio is evaluated by comparing each
method with the benchmark based on the MCS method.
Since the PCE method fails to complete the PATC
calculation in the 1354-bus system due to an out-of-
memory issue, Figure 6(c) does not include the
computation time for the PCE method. In the 118-bus
system, the parameter estimation time for the BLS model
is longer than that for the PCE and GPR methods. Hence,
the speedup ratio of the BLS method is slightly lower

than that of the PCE and GPR methods. However, the
parameter estimation time for the PCE model increases
rapidly with system scale. Consequently, the PCE
method yields the lowest speedup ratio in the 300-bus
system and even fails to perform PATC calculations in
the 1354-bus system due to memory limitations. As the
system scale increases, the speedup ratio of the proposed
BLS method improves and becomes comparable to that
of the GPR method. In the 1354-bus system, the
difference in speedup ratios between the GPR and BLS
methods is minimal. Overall, the BLS method
demonstrates significant advantages in efficiency and
accuracy for PATC calculation, particularly in large-
scale systems.

Figure 6. Comparison of computation time among different methods.

6. Conclusion

This paper proposes a PATC calculation method by
integrating a BLS with GMM-based clustering. A BLS
model is designed to serve as a surrogate for the OPF-
based ATC calculation model. An improved GMM-
based clustering approach, derived by reducing the
number of Gaussian components of the kernel density
estimation model, is developed to generate high-quality
training samples. Subsequently, PATC can be calculated
by implementing MCS on the BLS-based ATC surrogate
model rather than the original OPF-based ATC
calculation model. The 118-bus, 300-bus, and 1354-bus
power systems are used to evaluate the performance of
the proposed BLS method and compare it with the PCE-
based and GPR-based surrogate model methods. On the
118-bus and 300-bus systems, the distribution function
errors obtained by the proposed method are less than
50% of those produced by the PCE and GPR methods,
while a comparable speedup to the GPR method is also
maintained. On the large-scale 1354-bus system, the
proposed method overcomes the scalability challenges
faced by both the PCE and GPR methods. In future
research, we will focus on extending the BLS-based
PATC calculation method to incorporate the
uncertainties arising from the transmission line and
equipment failures.
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