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Abstract. The problem of hidden danger identification in
power dispatch duty logs is that professional text
semantics are complex and expert annotations are scarce,
resulting in insufficient recognition accuracy. This paper
proposes an optimization method based on multi-round
RLHF (Reinforcement Learning from Human Feedback).
The reward model is trained through interactive expert
feedback to drive the fine-tuning of the BERT model,
and active learning is combined to screen high-value
samples to achieve continuous improvement in the
accuracy of hidden danger identification. A
multi-dimensional reward function based on semantic
similarity and hidden danger severity is designed. The
reward model is trained using real-time expert scoring of
the model output to quantify the recognition accuracy.
With the reward model as the optimization target, the
PPO (Proximal Policy Optimization) algorithm is used to
fine-tune the pre-trained BERT model for multiple
rounds. Active learning combines uncertainty sampling
and diversity sampling strategies to give priority to log
texts with low model prediction confidence and large
semantic differences. Expert annotation data, reward
model output, and active learning samples are jointly
included in the training cycle to gradually improve
model performance. Experiments show that the
multi-round RLHF optimization framework significantly
improves the precision and recall of hidden danger
identification, can effectively deal with the scarcity of
expert annotations, and shows a high coverage rate in
long-tail hidden danger identification, demonstrating
strong professional text semantic understanding
capabilities and practical value.

Key words. Power dispatch, Duty log, Hidden danger
recognition, Multiple rounds of human feedback,
Reinforcement learning from human feedback
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Table 1. Abbreviations.

Abbreviation | Full Name

RLHF Reinforcement Learning from Human
Feedback

BERT Bidirectional Encoder Representations from
Transformers

PPO Proximal Policy Optimization

s Cr | Biiond e ShoTerm Money -

CDF Cumulative Distribution Function

KL Kullback-Leibler Divergence

MSE Mean Squared Error

SGD Stochastic Gradient Descent

Table 1 summarizes the key technology abbreviations
and full English names involved in this paper, covering
core terms in natural language processing, optimization
algorithm and statistical analysis.

1. Introduction

The power dispatch duty log is the core record of power
grid operation monitoring, carrying key information such
as equipment status, operating instructions, and abnormal
events [1,2]. Efficient and accurate recognition of
potential safety hazards from the log is of great
significance for preventing power grid failures and
ensuring power supply safety [3,4]. However, the current
automated hidden danger recognition of power dispatch
logs still faces significant challenges. Log texts are
highly professional and contain a large number of
industry terms, abbreviations, and unstructured
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descriptions, making it difficult for general natural
language processing models to accurately understand
their semantics [5,6]. The safety standards of the power
system are strict. Hidden danger recognition requires not
only the discovery of explicit anomalies but also the
inference of potential risks based on industry knowledge
[7,8], which places higher demands on the domain
adaptability of the model. More importantly, the expert
annotation resources in the power field are extremely
limited [9,10]. Since log analysis requires deep industry
experience, the training cycle of qualified annotators is
long, and the cost is high, making it difficult to obtain
large-scale high-quality annotated data; Specifically,
although expert annotation resources have professional
capabilities, they still face practical challenges: log
analysis needs to be combined with real-time operation
scenarios and historical experience, and the annotation
process needs to check the equipment status, operation
associations and potential chain risks one by one, which
is extremely time-consuming. For example, a complete
evaluation of a single complex log may take 20-30
minutes, and the average daily log volume exceeds
10,000, making it difficult for experts to cover
large-scale data needs even if they are full-time
annotation. In addition, under high-load operation and
maintenance tasks, the deployment of experts to
participate in annotation will directly affect the
efficiency of real-time monitoring of the power grid,
further increasing labor costs [11,12]. Existing
supervised learning methods rely heavily on the scale of
labeled data and often perform poorly when samples are
insufficient, especially for the recognition of “long-tail
hidden dangers” that occur infrequently but are highly
harmful [13,14]. Although such hidden dangers do not
account for a large proportion of historical data, once
missed, they may trigger a chain reaction and cause
major safety accidents. Traditional methods usually use
rule matching or static machine learning models, which
lack a continuous optimization mechanism and cannot
adapt to the dynamic changes of log data [15,16]. It is
also difficult to make full use of limited expert
knowledge for iterative improvement. Existing
automated recognition systems often have a balance
problem between false positives and false negatives
[17,18]. Overly strict screening may cause a large
number of normal logs to be misjudged as hidden
dangers, increasing the burden of manual review; while
overly loose filtering misses real risks and weakens the
warning effect [19,20]. This contradiction is particularly
prominent in power logs with strong professionalism and
complex semantics. Therefore, how to build a hidden
danger recognition framework that can continuously
learn and adaptively optimize with limited expert
participation has become a key issue in improving the
level of intelligent power dispatching. This study is
aimed at this demand, exploring how to gradually
improve the model’s recognition accuracy for complex
hidden dangers through a human-machine collaborative
reinforcement learning mechanism, guided by a small
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amount of expert feedback, and especially enhance the
detection capability for long-tail and rare risk patterns.

The core goal of this paper is to build an intelligent
hidden danger recognition framework for power dispatch
logs. Through the deep collaboration of reinforcement
learning and human expert feedback, the bottlenecks of
natural language processing in professional fields are
broken through: the professionalism of semantic
understanding, the scarcity of labeled data, and the
recognition effectiveness of long-tail distribution.
Different from the static supervised learning paradigm,
this study applies the multi-round RLHF mechanism into
the field of power text analysis. Its innovation is
reflected in multiple dimensions: at the modeling level, a
composite reward function that integrates domain
knowledge is designed to quantify the accuracy of
hidden danger recognition as a weighted score of
semantic matching and risk severity, so that the
reinforcement learning process can simultaneously
optimize text representation and risk rating. Compared
with the traditional single-dimensional reward design,
this scheme realizes the joint modeling of power
professional terminology understanding and safety level
evaluation. In terms of algorithm architecture, based on
the dynamic fine-tuning strategy of PPO, an incremental
optimization target is constructed through the real-time
scoring of model output by experts. Although the
existing BERT-based power text analysis method has
made breakthroughs in semantic understanding, it is still
limited by static annotated data and a single optimization
goal. The framework in this paper transforms expert
feedback into dynamic reward signals through the RLHF
mechanism, achieving continuous alignment of domain
knowledge and model capabilities. This method breaks
through the limitations of static fine-tuning of the BERT
model and enables the pre-trained language model to
continuously adapt to the language evolution and new
hidden danger patterns of power logs. In terms of system
efficiency, a hybrid active learning strategy was
developed to enable the model to actively mark emerging
operational risks; actual accident reports were introduced
as feedback signals during the training process, and a
reward function was constructed in combination with
expert scores to achieve accurate response to real
accident scenarios. This solution focuses expert feedback
on log segments where the model’s cognition is
ambiguous and the representation differences are
significant, thereby improving the performance gain
brought by unit annotation investment. This mechanism
is particularly suitable for scenarios in the power sector
where the annotation cost is high, and provides a feasible
path for continuous optimization of models in small
sample environments. The industrial value of the
research lies in the establishment of a scalable hidden
danger recognition enhancement system. Its core
innovation is to transform the domain cognition of
human experts into quantifiable reinforcement signals,
and to achieve a gradual improvement in model
capabilities through multiple rounds of interaction.



2. Related Work

For the recognition of hidden dangers in power logs,
existing studies mainly use three types of methods:
rule-based methods, traditional machine learning
methods, and deep learning methods. The rule engine
[21,22] relies on expert experience to construct regular
expressions and logical rules. Although it is highly
interpretable, it is difficult to adapt to the semantically
variable log representation, resulting in a low recall rate.
Shi X proposed a structured representation method for
assembly process planning based on knowledge graphs,
using a Bidirectional Long Short-Term Memory
Conditional Random Field (BiLSTM-CRF) model for
named entity recognition, which improved the accuracy
of recognition and extraction in power safety and
verified the effectiveness of the method [23]. Sequence
annotation models such as BiIiLSTM-CRF [24,25]
improve recognition effects by capturing contextual
dependencies, but their generalization ability for
professional terms is insufficient, and their performance
drops sharply when there is insufficient annotated data.
In recent years, the BERT pre-trained language model
[26,27] has achieved certain breakthroughs through
fine-tuning. Jiamiao Y proposed a method for automatic
risk rating of power grid field operation based on the
BERT model, combining text enhancement and error
rating correction strategies to effectively improve the
accuracy of risk rating. This method performed well in
processing risk classification tables and actual operation
texts, and had more semantic understanding advantages
than traditional models [28]; however, its optimization
relied on statically labeled data and could not be
dynamically adjusted using real-time feedback from
experts. More importantly, rule-based methods cannot
proactively identify emerging operational risks and lack
dynamic adaptability. Machine learning improves
generalization capabilities through data-driven methods,
but is limited by static labeled data and lacks the ability
to proactively discover new risks. None of the above
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methods effectively solves the long-tail distribution
problem. Existing studies have attempted to alleviate
data imbalance through oversampling or cost-sensitive
learning, but they cannot fundamentally improve the
model’s ability to recognize rare patterns.

To deal with the problems of scarce annotations and
long-tail distribution, some studies have begun to explore
interactive learning methods. Active learning [29,30]
selects samples with large amounts of information
through uncertainty sampling to reduce annotation costs,
but only optimizes the data selection strategy and does
not change the model training mechanism.
Reinforcement learning [31,32] optimizes the model
through reward signals in text analysis, but relies on
preset rules to design reward functions, which makes it
difficult to adapt to the complex semantics of power logs.
RLHF [33,34] has been demonstrated in dialogue
systems that human feedback can significantly improve
model alignment capabilities. Shi H reviewed
data-enabled smart grids and discovered and proposed a
large-scale language model using RLHF to accelerate the
large-scale application of smart grids [35]. However,
when it is directly applied to professional fields, it faces
problems such as single reward function design and low
feedback efficiency. In contrast, the multi-round RLHF
framework constructed in this paper innovatively
combines three aspects: 1) a multi-dimensional reward
function that integrates semantic similarity and hidden
danger severity; 2) a multi-round reinforcement
fine-tuning mechanism based on the BERT model; 3) an
expert feedback optimization guided by active learning.
This comprehensive solution can overcome the
limitations of existing methods in professional
terminology understanding, long-tail hidden danger
recognition, and annotation efficiency.

3. RLHF-Based Hidden
Optimization Framework
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Figure 1. RLHF-based hidden danger recognition optimization framework.



Figure 1 shows the multi-round RLHF power dispatch
log hidden danger recognition optimization framework,
which contains three coupled subsystems at its core: the
pre-trained BERT encoder processes the original log to
generate initial predictions, forming the basis for
semantic understanding; experts drive reward model
training through multi-dimensional scoring and use the
PPO algorithm to implement BERT reinforcement
fine-tuning to form the RLHF core optimization loop; the
active learning module selects high-value samples
through uncertainty sampling and diversity screening
strategies to maximize the utility of expert feedback. The
framework triggers iterative optimization through the
precision/recall rate indicators of the performance
evaluation module to form a closed-loop learning
mechanism. The entire framework realizes a continuous
enhancement cycle from initial prediction — expert
feedback — model optimization — sample selection,
providing a scalable and intelligent solution for power
dispatch log analysis.

A. Expert  Feedback-driven Reward  Model

Construction

A multi-dimensional reward function based on semantic
similarity and hidden danger severity is designed, and the
reward model is trained through real-time scoring of the
model output by experts to quantify the accuracy of
hidden danger recognition.

1) Multi-dimensional Scoring  Mechanism  for
Semantic Similarity and Severity Evaluation

The expert feedback output and the model prediction
results are first encoded into vector representations. The
vector cosine similarity is used to measure the closeness
of the two in the semantic space:

eexp . epred

represents the encoding output of

Veem = (1)
e

exp

e

pred

In the formula, e

exp

the expert’s manually annotated text, and e

pred
represents the encoding output of the model for the same
text; the numerator is the dot product of the two vectors,
and the denominator is the product of their norms. This
dimensional score reflects the degree of fit between the
model judgment and the expert judgment at the
contextual semantic level.

For different types of hidden dangers in the log, a
severity weight S is attached. This value is determined
by the industry manual and the accident level standard
and mapped to the interval [0,1]. The final reward score
is obtained by combining the following formula:

r=Ar

1" sem

+4,5 (2)
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In the formula, 4, and A, are the semantic similarity

and severity weight coefficients, respectively, satisfying
A +A, =1, which are fixed after expert calibration to

ensure that the composite score reflects both the model’s
language understanding effect and the importance of
high-risk events.

2) Training Process of Reward Model Driven by
Real-time Expert Scoring

Experts record the log hidden danger judgment given by
the model in a discrete grade evaluation (0-5 points) on
the interface, and these annotated data are entered into
the training set together with the corresponding text
features. The reward model adopts a multi-layer
feedforward neural network architecture. The network
input is the expanded and spliced text feature vector r.

sem
and the severity weight S , and the output is the
normalized composite score. The training goal is to
minimize the mean square error between the model
output and the manual score. The update rule adopts
stochastic gradient descent optimization; the batch size is
set to 32; the learning rate is adjusted according to the
exponential decay method.

After each round of feedback is completed, the system
automatically selects several samples with the largest and
smallest errors in this round, and summarizes them into
the expert review queue to ensure that extreme cases are
confirmed twice. The confirmed sample labels are used
together with the original training set for the next round
of model update, and the number of iterations is
dynamically determined according to the convergence of
the verification set indicators. In the online environment,
the reward model weight is deployed to the fine-tuning
process after each round of update, so that the
subsequent hidden danger judgment scores are more in
line with the expert experience, so as to continuously
improve the overall recognition precision.

B. Multiple Rounds of Reinforcement Fine-tuning of
the BERT Model

Taking the reward model as the optimization target, the
PPO algorithm is used to perform multiple rounds of
fine-tuning on the pre-trained BERT model to
dynamically adjust the model’s ability to capture
professional terms and long-tail hidden dangers.

Figure 2 shows the process of reinforcement fine-tuning.
Experts score the output hidden danger recognition
results in real-time and quantify them around multiple
dimensions such as term accuracy and risk judgment, and
the scoring results are directly involved in the
construction of the reward function after aggregation.
The reward function generates a reward signal based on
semantic similarity and hidden danger severity, driving
the strategy optimization module to iteratively adjust the
model parameters. The updated BERT re-enters the next
round of recognition process to form a closed-loop



reinforcement mechanism. Expert scores are not only
used for result evaluation but also embedded in the
model update path as a key feedback signal to ensure that
the fine-tuning process continues to optimize the ability
to capture professional terms and perceive long-tail
hidden dangers, thereby achieving a dual improvement in
semantic precision and risk identification capabilities.
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Figure 2. Reinforcement fine-tuning process.

1) Strategy Update @ Mechanism  Guided

Reinforcement Learning Signals

by

The initial state of the model comes from the BERT
encoder after the general language modeling task has
been completed. The structure is not modified, and only
the strategy probability distribution generator is applied
in the output layer. After each result is generated, the
aforementioned reward model score is used as
environmental feedback to form a reinforcement signal.
The policy optimization process adopts the clipping
probability ratio policy adjustment method to constrain
the change range between the current policy and the old
policy to prevent the policy collapse problem caused by
too large a step length. The core update target is defined
as follows:

EPPO=Et|:min(pt"4z’cnp(pt’l_ 71+ )Ar):| (3)

my(a,ls,)

T[Hold (af |S’)
probability ratio of the current policy and the old policy
to select action «, under state s,; € (Epsilon) is the

In the formula, represents the

P =

clipping threshold; 4, is the advantage function, which

is used to measure the superiority of the current action
compared with the average policy, and is specifically
composed of the reward value and the state value
function estimate. The core intention of this formula is to
balance the policy improvement range and behavior
stability, and maintain the continuity and effectiveness of
the policy behavior during fine-tuning.
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The policy iteration adopts batch sampling to
dynamically select a subset of samples containing
professional terms and rare hidden danger descriptions in
the training set to improve the responsiveness to the
long-tail characteristics of the domain. After each
sampling, the current policy is used to generate an output
sequence and is linked with the expert scoring system to
obtain an instant scoring result; then, the scoring
feedback is mapped to a reward scalar to guide the policy
gradient calculation. The optimization direction is
completely determined by the reward function to ensure
that the update path is close to the domain goal. The
strategy distribution, reward score, and historical strategy
of all sampled samples are recorded synchronously for
the next iteration to prevent training from falling into
local optimality.

2)

Parameter Fine-tuning Path Control under
Multi-round Interactive Feedback

To avoid bias on high-frequency words or template
structures during training, a normalization control
module is applied after each round of parameter update
to recalibrate the word vector distribution. This module
uses the drift degree of the semantic distribution center in
each round as the adjustment factor to reverse the
direction of over-convergence and ensure that the model
still has sufficient responsiveness to rare terms in the
input text. In terms of specific implementation, a
multi-head attention adjustment channel is embedded
between the word-level embedding layer and the output
layer, so that the attention weight obtained by
low-frequency words in high-reward samples can be
explicitly retained, thereby increasing their participation
intensity in gradient updates.

At the end of each round of training iteration, the
parameter state is uniformly sent to the sliding window
evaluation area, and combined with the fluctuation trend
of the historical five-round fine-tuning indicators, it is
automatically determined whether to enter the strategy
freezing stage. When the cumulative change rate is lower
than the set threshold, the model stops actively updating
and only retains the passive response weight to samples
with significant rating deviations, forming a local
self-stabilization mechanism to slow down the
overfitting trend. The loss function form during training
is adjusted as follows:

Etota] = ‘CPPO + IBX KL [ngold ||n‘9:| (4)

Among them, the second term is the KL
(Kullback-Leibler) divergence between the old strategy
and the current strategy, and the coefficient S, controls
the strategy convergence speed to avoid deviating too far

from the original behavior strategy range and causing a
decrease in generalization ability.



During the training process, all professional terminology
samples, abnormal structure sentence samples, and
historical feedback misjudgment samples are set as
priority weight items, and their gradients participate in
parameter updates at twice the rate during back

propagation, strengthening the model’s ability to
recognize a small number of high-risk categories. The
final output strategy significantly improves the

recognition accuracy of long-tail categories, and the
semantic generation is more in line with the expert
language habits and hidden danger expression paradigm.
By continuously strengthening the training path to
converge to expert logic, BERT is guided to build a more
discriminating language recognition model in the field of
safety hidden dangers.

C. High-value Sample
Learning

Screening under Active

Combining uncertainty sampling and diversity sampling
strategies, log texts with low model prediction
confidence and large semantic differences are prioritized
to maximize the information gain of expert feedback.

D

Uncertainty-driven Candidate Text Screening

Using the output probability distribution of the model in
the log text classification task, the distribution entropy
index is calculated for each log to measure the model’s
cognitive ambiguity of the sample. Assuming that for the
j -th log, the model outputs the category probability
vector p!/) = [Pl(j),pgj),-“,p(cj)
the total number of hidden danger categories. The
entropy value is defined as follows:

] , where C represents

H(J') _ _Zilp/_(j) lnp[(j) (5)

In the formula, pl.(j ) represents the probability that the

model judges the j -th log as category i ; the natural
calculates the amount of

information; the higher the entropy H ) value, the
stronger the uncertainty of the log inside the model. For
the entire unlabeled log pool, each iteration selects the
log with the highest entropy value to form an uncertainty
candidate set. This step focuses on a few samples that are
easily confused by the model, ensuring that each
feedback from the expert can focus on the most valuable
fuzzy area, thereby accelerating the location and
correction of the long-tail hidden danger pattern.

logarithm function In

After the candidate set is generated, the system
automatically records the entropy value and predicted
label confidence interval corresponding to each log, and
pushes it to the expert together with the original log text
and the intercepted key fields. Experts score and correct
these high entropy samples in the manual interface, and
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the feedback obtained is marked as high-information
samples for subsequent training. This screening strategy
effectively avoids repeated labeling of low-value,
high-confidence samples, saves expert resources, and
enables the model to obtain more targeted training
examples when facing rare or complex expressions.

2) Sample
Diversity

Selection with FEnhanced Semantic

Based on the uncertainty candidate set, the text
embedding space is further used to measure the diversity
distance to ensure that the selected samples are evenly
distributed at the semantic level. For each selected log, a

vector representation s calculated, which comes
from the output of the model’s intermediate layer or a
specially trained domain embedder. The semantic
distance is defined as the complement of the cosine
similarity:

djk :l_w (6)

(*)
SOL®

(1) . ,(%)

In the formula, v"’-»""/ is the inner product operation;

|| || represents the vector norm; the larger d, s, the
more significant the difference between the j -th and

k -th logs in the semantic space. The initial diversity
seed set selects several logs with the highest dispersion
as the first batch of annotation objects. Subsequently, a
greedy algorithm is used to iterate: at each step, the
sample with the largest minimum distance value among
the logs that have not yet been selected is included in the
set until the preset number is reached.

Finally, the uncertainty ranking and diversity score are
linearly fused to construct a composite priority index:

() mind,
_H +(l-a)—=— :
max A max m1§1 d,

! 1 se

Score”) = o

(7

Among them, o controls the uncertainty and diversity

weights; the denominators max #"') and max mi? d,
! ! se ;

are used for normalization. The system finally selects

samples in descending order of Score”)  to ensure that
the logs submitted to the experts in each round reflect
both the model’s doubt areas and different clusters in the
semantic space, maximizing the feedback value. This
strategy not only ensures the labeling efficiency but also
enhances the representativeness of the training set in the
expression of professional terms and long-tail hidden
dangers, and promotes the model to continuously
optimize the recognition performance in a scarce data
environment.



In order to improve the real-time performance and
situational awareness of log analysis, this paper explores
the integration mechanism of dispatch logs and SCADA
(Supervisory Control and Data Acquisition) systems. By
constructing a cross-modal association framework, the
log text description (such as equipment status changes,
abnormal operation records) and the power grid
operation indicators collected by SCADA (such as load
imbalance, voltage sag and other numerical data) are
timestamp aligned and feature fused to achieve dynamic
mapping of text insights and power grid parameters. For
example, when the "main transformer overload" is
mentioned in the recognition log, the system will
synchronously retrieve the load data of the corresponding
period to verify the accuracy of the hidden danger
description and supplement the quantitative evaluation.
In addition, the study also designed a multi-source
information fusion module based on the attention
mechanism, which enables the model to automatically
capture the potential correlation between text clues and
power grid indicators, thereby improving the
interpretability and response speed of risk judgment.

D. Iterative Optimization Mechanism of Feedback
Loop

The high-value samples corrected by experts and the
original unlabeled logs form the initial training pool. The
reward model gives a composite score 7  to each

sample as the basis for calculating the sample weight.
Assuming that the expert annotation indicator is e, ,

when the i -th sample carries a manual score, e, =1,
otherwise e, =0 ; the annotation quality function g,

represents the consistency of the expert score, which is
calculated by the difference in scores of the same log in
adjacent rounds. The final weight of the sample is
defined as:

w, =ae + fr,—yq, (8)

Among them, o and S are the weight coefficients of

manual annotation and reward score, respectively,
satisfying a+f=1; y is the consistency penalty
coefficient, which is used to reduce the impact of
repeated information on model updates. The weight w,

acts on the loss function, allowing the model to give
priority to the gradient contribution of high-value
samples during back propagation, and organically couple
expert knowledge with reward signals.

After each round of fine-tuning, the system automatically
merges the latest expert annotations and the active
learning screening samples of this round into the training
set, and updates the weight configuration of all samples
at the same time. The merging strategy follows the
principle of “small batch-high frequency”: new samples
are injected in small batches, not exceeding 5% of the
total number of samples each time, to ensure that the
model can perceive new information each time it is
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updated, rather than swallowing a large amount of
untested data in one go. In addition, the weight of
historical samples is adjusted in an exponential decay
manner as the round increases, and the weight decay
formula is as follows:

W(t+1) _ W(t) %< 5N

i i

(€))

In the formula, wl)

.’ represents the weight of the i -th
sample in the ¢ -th round; A¢ represents the interval
from the last time the sample is reviewed by experts to
the current round; A is the weight decay factor, which
ranges from O to 1. This mechanism allows newly
labeled and high-reward samples to be learned first,
while avoiding expired samples from occupying an

excessive proportion in long-term training.

The training process incorporates the reward model
output, active learning sample feedback, and validation
set indicators into the monitoring system. Assuming that

the validation set accuracy is P , and the missed

detection rate is F, , the comprehensive performance

index is calculated for each round update:

M, =P, —(1-w)F, (10)

t

Among them, o is the performance trade-off

coefficient, ranging from [0,1]; an increase in M, value

represents an increase in comprehensive ability. If the

M, increases by more than the preset threshold

compared with the previous round, the cycle continues; if
the improvement threshold is not reached, the
retrospective sample re-evaluation phase is triggered, and
several samples with the worst performance in the
threshold round are fed back to the expert for review.

After the retrospective sample review is completed, its
weight is recalculated and added to the next round of
training set, and the training process is restarted. If the

M, increase for three consecutive rounds is lower than

the preset threshold, the model enters the “strategy freeze”
state, and the update sub-process is activated only when
a new abnormal log is detected. This sub-process uses
the reward model accumulated by the accumulated
expert feedback to prioritize the screening of new
samples to avoid the model being trapped in the
“micro-oscillation” range for a long time.

This closed-loop architecture adaptively adjusts the
sample weight and injection quantity in each training
iteration. The expert feedback, reward signal, and active
sampling work together to continuously improve the
performance of the model in the task of recognizing
hidden dangers in power dispatch logs, effectively
improving the ability to capture professional terms and
long-tail hidden dangers.



4. Method Effect Evaluation

In view of the unstructured characteristics of the dispatch
log, the domain dictionary-enhanced word segmentation
technology (such as Jieba word segmentation combined
with the power terminology library) is used, and
irrelevant noise is filtered through regular expressions.
Subsequently, the domain adaptive pre-training based on
BERT (continued to be fine-tuned on the power corpus)

strengthens the semantic representation of professional
terms. Key anomaly detection is achieved in two steps: 1)
the rule template preliminarily screens high-risk
keywords; 2) the semantic similarity model compares the
log content with the predefined hidden danger
description library to distinguish between routine
operations and safety incidents. Table 2 lists the key
experimental parameters used in the multi-round RLHF
optimization framework of this paper and their value
ranges and applicable scopes.

Table 2. Enhanced training strategy parameter configuration table.

Parameter Name Value/Range Application Scope
Learning Rate Initial: Se.—S BERT fine-tuning

Exponential -
Batch Size 32 Reward model training, BERT fine-tuning
Policy Clipping Threshold (¢) [0.1,0.2] Reinforcement learning optimization
Sliding Window Length 2 rounds Training stability assessment
KL Divergence Coefficient [0.1,0.3] Preventing policy deviation
Advantage Estimation Window Width 32 Policy gradient calculation
Gradient Amplification Factor 2 Increasing update weight for key samples
Weight Decay Factor 0.95 Dynamic sample weight adjustment
Performance Trade-off Coefficient 0.6 Model iteration decision-making
Consistency Penalty Coefficient 0.8 Sample weight calculation
Uncertainty Entropy Threshold >1.5 Active learning candidate selection
Diversity Distance Threshold >0.7 Diversity sampling

A. Impact of Semantic Similarity and Hidden Danger

Severity Weight on Scoring and Rewards

150 hidden danger inspection records from a large
energy company from 2020 to 2023 are collected,
covering three types of typical accident hazards:
electrical, mechanical, and environmental. Each hidden
danger is submitted by front-line operators and then
reviewed and annotated with severity levels by safety
supervision experts to ensure the accuracy and actual
representativeness of data annotation. The output results
of the hidden danger recognition model on multiple real
cases are combined with the real-time scoring records of
each hidden danger description by the expert group. The
experimental simulation platform uses Python 3.8
(PyTorch framework) to implement BERT model
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training and RLHF optimization, and the reward model
training and data analysis are assisted by Matlab R2022a.
Each data includes the semantic similarity value
calculated by the model and the subjective evaluation
score of the expert for the severity of the hidden danger.
The semantic similarity is obtained by calculating the
cosine similarity after vectorizing the hidden danger text,
reflecting the accuracy of the model’s semantic matching
of the hidden danger. The expert score is assigned
according to the preset severity grading standard.
Different severity weight settings are achieved by
adjusting the weighting coefficient in the reward function
to simulate the model’s response to hidden danger
recognition under different focus points. The semantic
similarity output by the model is combined with the
expert score to generate a multi-dimensional reward
score for statistical analysis and visualization.

(b) Reward Score Distribution with Increasing Severity
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Figure 3. Impact of semantic similarity and hidden danger severity weight on scoring and rewards.
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Figure 3 shows the impact of semantic similarity and
hidden danger severity weight on scoring and rewards:

Figure 3(a) shows the relationship between semantic
similarity and expert scores. The overall distribution
shows a positive correlation trend, that is, the higher the
semantic similarity, the larger the corresponding score,
indicating that the model is easier to be recognized by
experts on the basis of reasonable similarity judgment.
However, there is still a certain degree of discreteness in
the scatter points. This score fluctuation may be due to
the fact that although individual samples are semantically
close, there are slight differences in the context, which
leads to subjective deviations in the perception of risk
representation by experts during evaluation. This
phenomenon suggests that although semantic similarity
is an important influencing factor in scoring, it is
difficult to fully represent the actual severity of the
hidden danger description, so it is necessary to integrate
more dimensions to regulate the reward function.

Figure 3(b) presents the reward distribution
characteristics under different severity weights from a
global perspective. It can be observed that with the
increase of severity weight, the concentration of reward
scores is significantly enhanced; the box height gradually
shrinks; the number of extreme values is relatively
reduced. This change shows that after giving a higher

weight to severity in model judgment, expert scores
become more consistent, and the score distribution
becomes more stable. This centralization trend stems
from the fact that high-severity samples usually have
clearer feature representations, and experts are more
consistent in their recognition judgments, which
effectively reduces the subjective fluctuations in the
scoring system. This result verifies that the reasonable
application of severity factors in the reward function of
the model can enhance the controllability and
discrimination efficiency of the score, and has practical
significance for improving the stability of model
training.

B. Uncertain Entropy Value Distribution

Based on the initial original log text collected from large
energy companies, after text cleaning, word
segmentation, and vectorization processing, it is input
into the current fine-tuned BERT model. The model
outputs a multi-category probability distribution for each
log and then calculates its predicted entropy value. The
higher the entropy value, the more uncertain the model is.
150 samples with low prediction confidence are selected
and sorted, and finally, the uncertain entropy value
distribution is generated, reflecting the uncertainty area
of the model in the current recognition of heterogeneous
hidden dangers.
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Figure 4. Uncertainty entropy distribution of log samples.

Figure 4 shows the distribution of uncertainty entropy
values of 150 log samples under multi-category
prediction, reflecting the difference in the confidence of
the model in judging each sample. The horizontal axis is
the sample number sorted from high to low according to
the entropy value, and the wvertical axis is the
corresponding entropy value, which is used to quantify
the information uncertainty of each log under the current
classification system. From the overall distribution trend,
it can be seen that the entropy value of the first section
samples is higher, indicating that the model has a greater
judgment ambiguity on these samples; the output
category probabilities are closer; a clear tendency
prediction cannot be formed. Such high entropy samples
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often contain long-tail events, complex semantic
structures, or implicit professional terms, and are the key
objects that should be screened first in active learning.
As the entropy value gradually decreases, the model
shows a clearer judgment tendency, indicating that it has
good generalization ability on most regular logs or
samples with stable structures. The difference in entropy
values comes from the diversity of the semantics of the
samples themselves and the learning bias of the model
for atypical patterns, highlighting the key role of
uncertainty evaluation in screening representative
samples. The overall results provide a quantitative basis
for triggering the expert feedback mechanism, allowing
high-value samples to be quickly located, effectively



improving the information density of the supervision
signal, and accelerating the model’s adaptation process
to rare hidden danger types.

C. Cumulative  Probability  Distribution and

Prediction Residuals

Based on the collected hidden danger inspection records,
the training sample set is constructed in combination
with the annotation results of industry experts. Each
sample data includes a text description of the hidden
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danger, an expert’s score (1-5 discrete values), and a
corresponding severity level label (low, high). After
repeated training through the reinforcement learning
framework, the model outputs the reward result,
compares it with the expert score to calculate the residual,
and forms a residual distribution; the reward values of
different severity levels are calculated using the
cumulative distribution function (CDF) to calculate their
cumulative probability distribution. All processing
processes are completed in matlab and visualized by
drawing.
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Figure 5. CDF comparison and prediction residual analysis.

Figure 5 shows the cumulative probability distribution and prediction residual:

Figure 5(a) is a comparison of the cumulative probability
distribution of the reward score. The horizontal axis is
the comprehensive reward score, and the vertical axis is
the cumulative probability, which reveals the response
trend of the model in distinguishing different hidden
danger severity levels. The distribution of reward scores
corresponding to low severity is overall biased to the left,
while the distribution of reward scores for high severity
is shifted to the right, indicating that the model can
output higher incentive values when facing more critical
hidden dangers. This distribution structure reflects the
synergy between the semantic similarity term and the
severity weighted term in the reward function,
effectively widening the score range of low- and
high-risk scenarios, and helping the model to achieve
risk prioritization in subsequent learning.

Figure 5(b) shows the residual distribution between
expert scores and model prediction rewards. The
horizontal axis is the hidden danger score directly
evaluated by experts, and the vertical axis is the

difference between model prediction and expert
judgment. The residuals are concentrated around zero,
between -0.03 and 0.03, indicating that the reward model
can stably approach manual evaluation in most cases.
The scatter points do not show a trend of drastic
fluctuations with the increase in scores, which indirectly
verifies that the multi-dimensional reward function also
maintains strong prediction consistency in high-scoring
areas. The small deviation of the scatter points comes
from the misjudgment of fuzzy expressions by semantic
matching items, suggesting that the context processing
ability of semantic embedding needs to be further
optimized. Overall, the cumulative probability
distribution and prediction residuals jointly verify the
design rationality of the reward model structure in terms
of robustness and discriminability, and provide
theoretical and empirical support for subsequent strategy
optimization.

D. Strategy Stability and Term Recognition Accuracy
Evolution in Multiple Rounds of Fine-tuning

Table 3. Training sample priority and category distribution design.

Weight Training Frequency . oy .
Sample Type Adjustment Ratio Typical Feature Description Reinforcement Focus
Domain-Specific Industry-specific terms and | Precision in recognition and
2.0% 15% I . .
Terms abbreviations semantic understanding
Long-Tail Hidden o Low-frequency but high-risk | Anomaly detection and risk
L 2.0% 10% : .
Danger Descriptions hidden danger expressions coverage
Common Samples 1.0x 75% Standard hlqden danger reports Overall. quel stability and
and conventional patterns generalization
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Table 3 presents the refined design of weight adjustment,
frequency configuration, and reinforcement direction of
different types of samples during the training process. To
improve the model’s ability to recognize domain-specific
terms and low-frequency high-risk hidden dangers,
Domain-Specific Terms and Long-Tail Hidden Danger
Descriptions samples are given a weight of 2.0 times
respectively to enhance their participation in the same
training cycle. Among them, Domain-Specific Terms
samples account for 15% of the total training data,
mainly covering industry abbreviations and technical
expressions, emphasizing precise semantic capture;
Long-Tail Hidden Danger Descriptions samples account
for 10%, focusing on rare but potentially
high-threatening sentences, aiming to improve the
model’s perception of boundary risks. The remaining
regular samples maintain the default weight, accounting
for 75% as the training subject, to ensure that the model
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maintains stable generalization ability when dealing with
common hidden dangers. This sample allocation
mechanism forms a high-value sample guidance strategy
in enhanced training, laying the foundation for model
semantic transfer and structural robustness.

Based on the constructed reward model and the BERT
output log after multiple rounds of fine-tuning, after each
round of fine-tuning, the values of the three stability
indicators, KL divergence, policy entropy, and € clipping
threshold, during the strategy update process are
recorded to generate a strategy stability trend. The term
recognition accuracy is obtained by statistically
analyzing the accuracy changes of five types of
high-frequency professional terms in the test set. All
indicators take the average of multiple verifications to
ensure that the trends reflected by the data are
representative and consistent.
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Figure 6. Evolution of policy stability and term recognition accuracy in multiple rounds of fine-tuning.

Figure 6 shows the evolution of policy stability and term
recognition accuracy in multiple rounds of fine-tuning:

Figure 6(a) shows the trend of policy stability changing
from round to round during the fine-tuning process,
including three indicators, & clipping threshold, KL
divergence, and policy entropy. As the optimization
rounds progress, the three indicators all show a
consistent convergence trend, indicating that the model
strategy gradually stabilizes. Among them, the gradual
contraction of the & value reflects the gradual reduction
of exploration behavior, that is, the model’s dependence
on high-confidence strategies continues to increase; the
decrease in KL divergence indicates that the distribution
difference between the new and old strategies continues
to shrink, which means that the policy update is more
robust; the decrease in policy entropy indicates that the
uncertainty of the policy output is reduced, and the
model gradually establishes a preference for high-value
behaviors in multiple rounds of optimization. The above
phenomenon comprehensively reflects that under the
reward-driven mechanism, the strategy tends to be
deterministic and convergent, reflecting the effectiveness
of PPO optimization in guiding the improvement of
model stability.

Figure 6(b) reflects the changes in the recognition
accuracy of five key professional terms in multiple
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rounds of model fine-tuning. The overall trend is a
steady improvement and tends to be stable in the later
period. In the 10th round of fine-tuning, the recognition
accuracy of  Overload, RelayTrip,  BusFault,
BreakerFailure, and OverVoltage is 89%, 84%, 80%,
83%, and 81%, respectively, showing that the model has
gradually  mastered the semantic  distribution
characteristics and contextual dependencies. The terms
are improved rapidly in the early stage, reflecting that
their contextual semantic features are more significant
and easy for the model to capture; the terms with low
initial recognition are mainly limited by semantic
ambiguity or sample sparseness, which can be effectively
compensated by strategy tuning after multiple rounds of
fine-tuning. The data trend reveals the significant role of
the dynamic adjustment mechanism in improving the
terminology learning ability, indicating that the
multi-round optimization strategy guided by rewards can
effectively enhance the model’s semantic sensitivity and
generalization ability in professional contexts.

E. Comparison of Precision and Recall

In multiple rounds of strategy iteration, the BERT model
continuously adjusts the strategy parameters through the
PPO mechanism to make its output closer to the expert
evaluation criteria. In the process of active sample
selection, the system prioritizes the selection of log texts



with low confidence and significant semantic differences
to increase the proportion of high-value samples in the
training set. The labels and reward feedback corrected by
experts are integrated into the training set to build a
closed-loop update mechanism to achieve progressive
optimization of model accuracy and recall. In the
evaluation stage, the accuracy and recall of each hidden
danger category are calculated by comparing the unified

(a) Precision per hidden danger category

predicted output with the true label, and the standardized
bar chart method is used for visualization analysis to
ensure that the results are interpretable and reproducible.
At the same time, the differences between this paper’s
multi-round RLHF optimization framework and
BiLSTM-CRF, traditional BERT fine-tuning, and rule
engine are compared.

(b) Recall per hidden danger category
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Figure 7. Comparison of precision and recall on different hidden danger categories.

Figure 7 shows the precision and recall performance of
various models on different hidden danger categories.
Overall, the constructed multi-round RLHF optimization
framework achieves high indicators in most types of
hidden dangers, with an average precision of about
88.3% and an average recall of 90.0%, showing strong
hidden danger recognition capabilities. This advantage
mainly comes from the use of expert feedback to guide
the model to continuously adjust during the training
process, which improves the capture effect of complex
professional terms and hidden dangers. In contrast, the
traditional BILSTM-CRF and baseline BERT fine-tuning
models show certain performance bottlenecks. Especially
in the hidden danger categories with high semantic
complexity, both the precision and recall rates have
decreased, reflecting the model’s lack of sensitivity to
fine-grained information. In addition, the performance of
the rule engine is significantly behind in all categories
because the rule method has limited adaptability to
abnormal changes and is difficult to cover diverse and
dynamic hidden danger manifestations.

Further analysis shows that the balance between
precision and recall reflects the model’s ability to control
false positives. The high recall rate of the multi-round
RLHF framework shows its comprehensive capture
ability of hidden dangers, while the improvement in
precision reflects the effective suppression of
misjudgments. This phenomenon shows that the model
successfully uses the reward mechanism to adjust the
strategy during the training process and strengthens the
ability to distinguish hidden danger characteristics. The
performance differences of different hidden danger
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categories also reveal the limitations of the model’s
adaptability. Some hidden dangers still require more
detailed feature mining due to their rarity and complex
expressions. The overall trend shows that the training
process that integrates expert feedback and dynamic
optimization is of great significance to improving the
practical value of the hidden danger recognition system.

F. Quantitative Indicators of Expert Feedback
Efficiency

Multiple rounds of iterative training are performed under
the same expert feedback frequency and feedback sample
size. After each round of training, the model calculates
the accuracy on the validation set and records the
difference between the accuracy of the current round and
the previous round as the accuracy increment of the
round. This process continues until the 60th round to
capture the dynamic trend of model performance
improvement. A fixed time window is used to ensure that
the accuracy increment of feedback per unit time is
comparable. The multi-round RLHF optimization
framework, BILSTM-CREF, traditional BERT fine-tuning,
and rule engine are executed separately under the same
data and training strategy to eliminate external
interference. The results reflect the response speed and
effect of each model to expert feedback information,
especially the significant improvement of the
multi-round RLHF optimization framework in the early
rounds and the stable convergence state in the later stage,
verifying its adaptability and iterative efficiency in an
environment with scarce annotations.



Table 4. Comparison of accuracy increment driven by expert feedback.

Model 10th Round 20th Round 30th Round 40th Round 50th Round 60th Round
Multi-round RLHF Framework | 0.041 0.038 0.035 0.03 0.018 0.009
BiLSTM-CRF 0.021 0.018 0.015 0.012 0.008 0.004
Traditional BERT Fine-tuning 0.027 0.024 0.02 0.016 0.01 0.005
Rule Engine 0.009 0.007 0.005 0.004 0.002 0.001

Table 4 reflects the change trend of the accuracy
increment of different models in multiple iteration stages
after receiving expert feedback. The multi-round RLHF
optimization framework shows significant performance
gains in the first 30 rounds, and the accuracy increment
remains at 0.035 and above, indicating that it is more
responsive to expert information in the early stages. In
contrast, the traditional BERT fine-tuning and
BiLSTM-CRF models show a smaller increase under the
same feedback conditions, and the increment slows down
significantly after 40 rounds. Since the rule engine does
not have the ability to learn, its increment always
remains at a low level, and it is close to the plateau in the
early stage. The accuracy increments of all models
gradually converge in the 50th and 60th rounds,
indicating that under the continuous effect of expert
feedback, the model enters a learning saturation state.
Overall, this comparison process effectively reveals the
potential of the multi-round reinforcement feedback
mechanism in improving data utilization efficiency and
adapting to environments with limited annotation
resources.

G. Recognition
Dangers

Coverage of Long-tail Hidden

To evaluate the coverage of each model in the
recognition of long-tail hidden dangers, a low-frequency
category set is constructed, and the hidden danger types
that appear less than 5 times in the log are selected as
evaluation objects. Relying on the expert-annotated
dataset, the results generated by each model are
compared with the real labels one by one. The number of
samples correctly recognized in each type of
low-frequency hidden danger is counted, and the ratio is
calculated with the total number of samples that actually
exist to obtain the coverage index. The above process is
performed on a unified sample to ensure input
consistency and reduce interference factors beyond the
model’s capabilities. The coverage data is all derived
from the model’s inference results on a unified
low-frequency sample set, which reflects its ability to
capture long-tail patterns and the difference in
generalization level.

Figure 8 shows the comparison of the recognition
coverage of the four models on the low-frequency hidden
danger category, covering the recognition coverage of a
variety of long-tail hidden dangers including rare leakage,
minor corrosion, signal noise, intermittent faults, and
voltage fluctuations. These hidden dangers have
extremely low occurrence frequencies, which poses a

80

great challenge to the model’s generalization ability and
recognition  stability. The  multi-round RLHF
optimization framework shows a relatively superior
coverage effect in all categories, demonstrating its strong
ability to capture the characteristics of rare hidden
dangers. The recognition coverage of rare leakage, minor
corrosion, signal noise, intermittent faults, and voltage
fluctuation long-tail hidden dangers reaches 0.95, 0.94,
0.93, 0.96, and 0.95, respectively. The model uses
continuous reward signals to drive the fine-tuning
process, which effectively enhances the sensitivity to
professional terms and complex hidden danger patterns,
thereby improving the recognition accuracy of
low-frequency samples. In contrast, BILSTM-CRF and
traditional BERT fine-tuning perform slightly worse in
some hidden danger categories, mainly because they
learn the frequently occurring hidden danger samples
more fully during training, but the features of
low-frequency samples are insufficient, resulting in a
decrease in recognition coverage. The rule engine has the
most limited performance because it relies on manually
set rules and lacks the ability to adapt to complex hidden
danger changes. This also reflects the limitations of pure
rule methods when facing long-tail risks.
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Figure 8. Coverage of low-frequency hidden dangers.

The performance fluctuations of the model in different
hidden danger categories are partly due to the scarcity of
data in the low-frequency categories themselves and the
significant differences in features, which increases the
difficulty of learning. Overall, the multi-round RLHF
optimization framework significantly improves the
model’s adaptability and coverage of long-tail hidden
dangers through the combination of multi-stage
reinforcement learning and expert feedback, providing



more robust technical support for hidden danger
management in complex industrial environments.

H. Comparison of False Positive Rates and

Consistency of Scores by Different Experts

Each model is inferred separately, and the number of
samples in its output that are inconsistent with the actual
labels but are predicted to be high-severity hidden

dangers is recorded, and the false positive rate is
calculated accordingly. All models are trained and
evaluated under the same distribution. The RLHF model
applies expert feedback for semantic adjustment after
each round of reinforcement fine-tuning, and finally, a
unified test comparison is performed after the 60th round
of model stabilization. False positive samples are
reviewed by multiple experts to eliminate human label
errors and ensure the consistency and objectivity of the
evaluation process.

Table 5. Comparison of false positive rates of different models in high-severity hidden danger recognition.

Model Type High-Severity Samples | False Positives | False Positive Rate (%) | Common Causes of False Positives

Rule Engine 120 9 7.5 Inflexible rule scope; struggles
with linguistic variation

SFatlc _ BERT 120 7 583 Mlscl_as51ﬁcat10n under vague

Fine-tuning wording

BiLSTM-CRF 120 8 6.67 leltgd coptext extraction; poor
handling of inter-sentence cues

Multi-round RLHF Domain-specific phrasing

120 2 1.67
Framework underrepresented

Table 5 shows the false positive rate performance of
different models in the high-severity hidden danger
recognition task, reflecting the reliability differences of
the models in handling key risk events. The false positive
rate of the rule engine is 7.50%, which is mainly limited
by the rigidity of the rule template. When faced with
semantic changes or undefined expressions, it cannot be
effectively adapted, resulting in false triggering of risk
labels. The false positive rates of the BILSTM-CRF and
static BERT models are 6.67% and 5.83%, respectively.
Although they are better than the rule method in
semantic modeling, they still have a tendency to
misjudge when dealing with samples with drastic context
changes or fuzzy semantic boundaries, especially the
lack of deep understanding of term ambiguity and event
context. In contrast, the false positive rate of the
multi-round RLHF optimization model is only 1.67%. Its

significant advantage comes from the continuous
correction and strengthening of the model’s semantic
representation ability under multiple rounds of expert
feedback, and it has a higher sensitivity to professional
terms, fuzzy expressions, and contextual signals. Even in
the face of rare expressions, the model can combine the
context to achieve more precise judgment and avoid
mislabeling, but there is still room for improvement in
the recognition of domain-specific wording. Most false
positives are concentrated on new terms or unstructured
expressions that are not covered by the training samples,
which further proves the core role of active learning and
feedback mechanisms in controlling false positives in
serious scenarios. Building an expert feedback
closed-loop can significantly improve the accuracy and
credibility of high-risk text recognition.

Table 6. Consistency analysis of different experts’ scores on log samples.

Sample Type g;;?;r of y;:?;n?eatmg Krippendorff’s a E;iﬁreement Model Handling Strategy

Highly Consistent 15 0.02 0.89 Very Low Direct inclusion in training
Generally Consistent 15 0.07 0.78 Acceptable Weighted training instance

Mild Disagreement 15 0.13 0.61 Moderate Label determined by majority vote
Clear Disagreement 15 0.25 0.42 High Expert consensus re-evaluation
Hard-to-correct Sample | 15 0.31 0.33 Severe Excluded from training set

Table 6 systematically quantifies the consistency of
expert ratings in different types of log samples, using
Krippendorff’s a coefficient as the main indicator,
combined with the score variance to reflect the degree of
disagreement in the subjective judgment of the sample.
Under the premise that the number of experts is fixed at
15, the typical consistent sample reaches 0.89, indicating
that the label reliability is extremely high and can be
directly used as high-confidence training data; although

81

there are slight differences in general consistent samples,
they are still in an acceptable range, so they are weighted
when included to control the impact of noise. For
samples with mild and obvious disagreements, the model
uses majority voting and consensus review mechanisms
to ensure label accuracy. For samples with extremely low
consistency and difficult to reach consensus, the model
actively removes them to avoid training deviation. The
overall strategy reflects the robustness and fine-grained



response ability of the model design to label quality
control under the heterogeneity of expert opinions.

5. Conclusions

The hidden danger recognition system for power
dispatch logs constructed in this paper, relying on
multi-dimensional reward function design and
multi-round RLHF fine-tuning process, effectively
enhances the model’s ability to capture industry terms
and rare hidden danger patterns. The closed-loop of
high-value samples selected by the active learning
strategy and expert scoring enables continuous tracking
and correction of long-tail risks in an environment with
limited annotation resources. The reward and punishment
signals and strategy updates run in parallel, which
enables the model’s judgment accuracy and coverage
depth to be improved simultaneously, significantly
optimizing the limitations of traditional static fine-tuning
and rule-driven methods in dynamic log analysis
scenarios. After 10 rounds of fine-tuning, the recognition
accuracy of five categories of terms such as "overload"
reached more than 80%, the average accuracy of six
types of hidden dangers was 88.3%, and the recall rate
was 90.0%; the accuracy increment in the first 30 rounds
of iterations exceeded 0.035, and the coverage rate of
rare hidden dangers exceeded 0.93, demonstrating
excellent long-tail recognition capabilities and expert
response capabilities. This achievement provides a
replicable optimization path for small sample semantic
analysis in the power industry, and lays a theoretical and
practical foundation for the subsequent collaborative
application of cross-domain expert feedback mechanisms
and deep language models. Future research can focus on
the adaptive adjustment of reward and punishment
design and the deployment of larger-scale real-time
feedback systems to further improve model robustness
and operational efficiency.
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