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Abstract. Traditional electricity transmission line
detection methods usually rely on a single technical
means and lack multi-dimensional comprehensive
diagnosis, resulting in insufficient accuracy and
comprehensiveness in fault identification. This paper
constructs an electricity transmission line detection
model based on the insulator partial discharge acoustic
characteristics and image identification technology to
improve the accuracy and intelligence level of fault
detection. During model building, the acoustic
characteristics and image data of insulator partial
discharge are first obtained through the equipment. After
data preprocessing, it is input into the convolutional
neural networks (CNN) and recurrent neural networks
(RNN) for training. Through parameter optimization, the
model shows high efficiency and accuracy in electricity
transmission line fault detection. Experimental results
show that the model exhibits good efficiency and
accuracy in electricity transmission line fault detection
through parameter adjustment. According to the
experimental results, the detection accuracy of the
proposed model on various data sets is 93.40%, 91.50%,
and 89.20%, respectively, better than that of other control
models, and the processing time is 118 seconds, 182
seconds, and 238 seconds, respectively, also better than
that of control groups. In conclusion, the model
constructed in this paper provides a reliable and effective
method for electricity transmission line fault detection
and lays a foundation for the advancement of related
technologies.
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1. Introduction

Transmission line faults seriously affect the power
supply stability and safety of contemporary power
systems [1,2]. In the case of continuously increasing

power demand, the operating environment of
transmission lines becomes increasingly complex, with
increased types and frequency of faults. Although
infrared imaging, temperature monitoring, and vibration
analysis have been traditional methods of fault detection
widely used in early fault diagnosis, they have an
obvious limitation in the handling of diversified faults in
complicated environments. It is only hot spots that the
infrared imaging methods can identify via the
temperature distribution on the surface of the
transmission lines. However, its shortcomings lie in it
being able to monitor only the change in surface
temperature and cannot easily provide effective diagnosis
for deep-seated or potential faults. All the more, under
high-temperature or high-humidity environments, the
accuracy of temperature distribution will be disturbed
and lead to a misjudgment [3]. Temperature monitoring
is mainly dependent on the layout of sensors. Although it
can realize the real-time monitoring of equipment
temperature changes, the density of the temperature
sensor is normally not enough for the full coverage of all
transmission lines' potential failure points, while its
sensitivity against slight failures or localized problems is
so low, failing to afford thorough fault identification [4].
The vibration analysis method collects the mechanical
vibration signals and then deduces whether any
mechanical faults occurred. However, this method is
susceptible to interference from external vibration
sources, especially in windy conditions. It is difficult to
effectively distinguish between external vibration and
equipment fault signals, reducing the accuracy of fault
diagnosis [5]. Besides, the traditional methods have poor
ability in identifying fault types, especially under
complicated or variable operating conditions. It is
difficult to deal with hidden problems such as micro
discharges or potential faults that are difficult to detect.
Therefore, although these traditional methods have been
used in early diagnosis, they are still insufficient in terms
of accuracy, timeliness and adaptability of fault detection,
and cannot meet the needs of modern power systems for
efficient and intelligent fault detection [6,7]. As a typical
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fault precursor, the acoustic characteristics of partial
discharge have great potential in early fault diagnosis
[8,9]. The high-frequency acoustic wave signals
generated by partial discharge can provide effective early
warning through monitoring. However, fault detection
based on acoustic signals alone often reduces the
accuracy. First, partial discharge signals are of high
frequency and small amplitude, which is prone to the
effect of electromagnetic interference and mechanical
vibration noise. In particular, complex environments can
cause these noises to be mistaken for partial discharge
signals. Second, under different fault types, the
performance of partial discharge signals varies greatly;
hence, one acoustic feature can hardly distinguish
various faults with precision. In the process of
propagation, it will also be transformed into atmospheric
changes of temperature, humidity, and wind speed,
which will further reduce the accuracy of diagnosis.
Accordingly, in such complex environments, the
limitation of a single method of acoustic detection exists.
With a view to improve the accuracy of fault detection,
researchers have started to explore the method of
multimodal data fusion combined with other sensor data,
including image, temperature, and vibration signals,
which can improve the detection performance to a
certain extent in terms of accuracy and robustness
[10,11].

This paper integrates the detection scheme of partial
discharge acoustic characteristics of insulators with
image identification technology, overcomes the
limitations of traditional single technology, and improves
the accuracy and intelligence level of fault detection
through multi-modal data fusion. This paper will discuss
how partial discharge acoustic signals can be combined
with image identification technology for efficient and
comprehensive fault detection in transmission lines.
Besides promoting the development of smart power
monitoring technology and providing technical support
for the reliable operation of future power systems, this
research also provides a new method for the detection of
faults in electricity transmission lines.

This paper is innovative, especially in its unique
multimodal data fusion strategy. First, in terms of data
fusion, a weighted fusion method is designed to
effectively complement the acoustic signal and image
features, maximizing their respective advantages. It
superimposes the time-domain characteristics of the
acoustic signals with the spatial information of the image
data based on this, and comprehensively expresses the
fault characteristic more informatively to further enhance
the distinguishability of the model concerning the type of
fault. In particular, a deep learning algorithm has been
applied for joint learning on the multiple sensors in this
work to optimize the level of intelligence on feature
extraction and fault identification. By this fusion model,
the detected system can make automatic identifications
and classify the fault type in a far more effective way,
greatly improving the intellectualization level in fault
detection and meeting the requirements of intelligent
power monitoring technology developments.

Main contributions: This study proposes a multimodal
deep neural network method that combines the acoustic
characteristics of partial discharge of insulators with
image recognition, which significantly improves the
accuracy and robustness of transmission line fault
detection. The specific innovations are as follows: a
weighted fusion method is used to dynamically adjust the
weight coefficient, optimize feature contribution, reduce
modal interference, and enhance the recognition ability
of key features. Combining the multimodal architecture
of CNN and RNN, image spatial features and acoustic
temporal features are extracted respectively to achieve
comprehensive fault detection.

Comparative experiments verify the advantages of the
fusion model in different scale data sets, noise conditions
and detection speed. Under 2000, 5000 and 8000 data
sets, the detection accuracy of the experimental group is
93.40%, 91.50% and 89.20% respectively, the recall rate
is 91.10%, 89.20% and 86.50% respectively, and the
processing time is 118 seconds, 182 seconds and 238
seconds respectively, which are better than the control
group. The actual application evaluation showed that the
experimental group was ahead of the control group in
terms of user satisfaction, detection accuracy and ease of
use. The specific evaluation results were: ease of use 4.6
points, detection speed 4.8 points, detection accuracy 4.9
points, usage satisfaction 4.7 points, and ease of
operation 4.6 points.

2. Related Work

Recent studies have shown that the application of
traditional detection methods in modern complex power
systems is significantly limited, especially in changing
environments and high load conditions, where the
accuracy and stability of traditional methods are greatly
reduced [12,13]. For example, Jalil B pointed out that
infrared imaging technology has poor stability in extreme
climates and is easily disturbed by environmental factors
[14]. Zainuddin N M believes that temperature
monitoring methods cannot cope with temperature
changes caused by load fluctuations or equipment aging,
resulting in potential faults being difficult to accurately
identify [15]. Vibration analysis requires a larger fault
amplitude to be effectively detected, and early or minor
faults are difficult to capture in time [16]. These
limitations make it difficult for traditional methods to
meet the needs of real-time and comprehensive fault
detection in complex power systems. In contrast,
detection methods based on machine learning can
improve the accuracy and timeliness of fault detection by
integrating multiple data sources. Machine learning
algorithms can process high-dimensional and noisy data
and automatically identify potential fault modes, thereby
overcoming the shortcomings of traditional methods.
This makes the application of machine learning in
complex power systems, especially in early fault
detection and prediction, show great advantages.

With the rapid development of intelligent technology,



machine learning, image recognition and sound signal
analysis have been widely used in transmission line
defect detection [17-19]. Among them, CNN is used for
automatic detection of insulator cracks and corrosion due
to its advantages in feature extraction and image
processing, and can accurately capture key fault
characteristics [20]. RNN and its variants (such as LSTM)
perform well in analyzing the time series data of partial
discharge acoustic signals. By learning time series
patterns, early diagnosis of electrical faults can be
achieved [21]. In addition, the combination of CNN and
RNN further enhances the multimodal data processing
capability. By jointly analyzing images and acoustic
signals, it not only reduces the impact of noise
interference, but also improves the recognition accuracy
and intelligence level of complex faults.

Research on the fusion of images and acoustic signals
has attracted attention in recent years [22,23].
Multimodal fusion uses the physical fault information
provided by images and the electrical fault signs revealed
by acoustic signals to achieve more comprehensive fault
detection. However, existing fusion methods face
challenges in information extraction and integration
[24,25]. First, the modal differences between images and
acoustic signals make feature extraction and alignment
difficult. Second, traditional weighted fusion methods
cannot dynamically adjust feature weights, which easily
leads to the loss of important information. Finally, the
robustness and real-time performance of existing fusion

algorithms in complex environments are insufficient. To
solve these problems, research can introduce a dynamic
feature fusion framework based on deep learning, such as
using attention mechanisms and multimodal contrastive
learning to improve feature alignment and weight
allocation accuracy. In addition, optimizing the network
structure and adopting lightweight models can improve
real-time performance.

3. Construction of Electricity Transmission Line
Detection Model

A. Overview of Research Framework

1) Model Design Concept

This paper’s electricity transmission line detection model
overcomes the drawbacks of a single technology,
combines image identification technology with the
acoustic characteristics of partial discharge, and achieves
more precise fault diagnosis. The acoustic signals of
partial discharge can detect electrical faults at an early
stage, especially when there is no apparent external
damage. Image identification processes images of
insulator surfaces to identify physical faults such as
cracks and corrosion. The fusion model improves the
precision and intelligence level of fault detection through
the complementary effect of the two data sources. Figure
1 shows the specific design process:

Figure 1. Design process of the fusion model



Specifically, the acoustic and image data are first
preprocessed to extract their key features respectively.
Next, the acoustic characteristics and image features are
integrated into the model for training using a
multi-modal neural network architecture. In model
design, the key is to choose a suitable fusion strategy to
give full play to the advantages of the two types of data.
In addition, the model needs to consider the possible
heterogeneity and noise interference of different data
sources. Therefore, in the data fusion stage, it is
necessary to apply effective noise suppression and
feature selection methods to improve the model’s
stability and robustness.

2) Advantages of Multi-Modal Data

The core advantage of the multi-modal data fusion model
is that it integrates complementary information from
different data sources and overcomes the limitations of a
single data source. In electricity transmission line fault
detection, acoustic characteristics can sensitively reflect
electrical faults, especially in detecting early discharges
and minor electrical faults. Image data can effectively
identify physical faults such as cracks and corrosion on
the surface of insulators. Combining acoustic signals and
image data enables the system to provide a more
comprehensive and precise diagnosis under various fault
types.

During the fusion process, image data helps identify
potential problems other than electrical faults, such as
physical faults such as mechanical damage, corrosion,
and cracks. These problems may appear before electrical
faults occur, and image data can provide early visual
information to help the detection system identify these
hidden dangers. Acoustic signals can warn of potential
electrical faults through high-frequency sound waves
when electrical faults do not appear as physical damage.
Through multimodal data fusion, the system can extract
information from a wider feature space and improve the
accuracy of fault diagnosis, especially in complex power
environments, enhancing the robustness and reliability of
detection.

B. Data Collection and Preprocessing

1) Data Collection Process

In this paper, two main devices are used for data
collection. The partial discharge acoustic signals are
collected by high-sensitivity acoustic sensors and
industrial acoustic imagers to capture the discharge
phenomena on the insulator’s surface precisely. Image
data is acquired through high-resolution digital cameras
and infrared thermal imagers. The former is used to
collect physical damage, such as cracks and corrosion,
and the latter is used to detect abnormal overheating.

During the data collection process, 3,000 sets of samples
are collected. Each data set includes a complete

monitoring cycle, covering acoustic signals and image
data in different operating environments. Each
monitoring cycle lasts 5 minutes, and acoustic and image
data are collected synchronously to ensure the fault
features are fully reflected. The collected data is stored
for subsequent processing and model training, covering
changing conditions such as temperature and humidity to
enhance data diversity and the model’s generalization
ability.

2) Acoustic Characteristic Extraction

This study combines frequency domain and time domain
analysis methods to extract the acoustic characteristics of
partial discharge signals to fully utilize the advantages of
both. In time domain analysis, the waveform and
amplitude changes of the signal can reveal the temporal
characteristics of partial discharge events, which is
especially important for the identification of early faults
and signal mutations. Frequency domain analysis can
provide spectral information of the signal to help capture
high-frequency components, which are usually closely
related to the occurrence of electrical faults. By
combining time domain and frequency domain analysis,
the temporal and frequency characteristics of partial
discharge signals can be fully reflected, thereby
improving the accuracy of fault detection, especially for
accurate diagnosis of early faults in complex
environments.

This paper adopts the statistical feature extraction
method in the time domain analysis. The basic
characteristics of partial discharge signals are described
by calculating the signal’s peak value, mean value,
standard deviation, variance, and other statistical
quantities. Specifically, the peak value reflects the
maximum amplitude of the signal:

  Peak max x t (1)

In Formula (1),  x t is a time domain signal. The mean
and variance help describe the stability and volatility of
the signal. Their calculation formulas are as follows:
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The Fourier transform (FT) is adopted in this paper to
perform spectral analysis on the data, converting the time
domain signal into frequency domain information,
thereby helping to identify the main frequency
components and frequency changes in the signal [26].
The formula for the Fourier transform is:



    2e dj ftX f x t t 


  (4)

The frequency features of partial discharge signals have
significant regularity, and the frequency distribution and
energy distribution of different discharge signals vary
greatly. Therefore, different fault types can be
distinguished by extracting spectrum features such as
main frequency, bandwidth, and frequency peak. The
extraction formula for main frequency  mainf is as
follows:

 main argmaxf X f (5)

The bandwidth is calculated as follows:

max minBW f f  (6)

In Formula (6), maxf and minf are the maximum and
minimum frequencies in the frequency distribution,
respectively. Additionally, this paper applies the
time-frequency analysis method and uses wavelet
transform to process non-stationary signals. The formula
of continuous wavelet transform is:

   , dt bW a b x t t
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Finally, after the above analysis, this paper extracts the
following key acoustic characteristics: discharge
frequency, amplitude, discharge duration, transient
change spectrum, signal energy distribution, etc. These
characteristics provide an essential basis for subsequent
fault diagnosis, especially in identifying early electrical
faults, with high accuracy and sensitivity.

3) Image Preprocessing

Image preprocessing is the first step in image data
analysis, which aims to improve image quality, highlight
fault features, and remove noise interference. First, the
collected color image is grayscaled to convert into a
grayscale image to simplify subsequent analysis [27].
Grayscale is achieved through the following formula:

gray R G B0.2989 0.5870 0.1140I I I I      (8)

In Formula (8), RI , GI , and BI are the pixel values of
the image’s red, green, and blue channels, respectively.
After grayscale conversion, image processing is more
efficient and convenient for subsequent feature
extraction.

This paper chooses the Sobel operator for image edge
detection, mainly based on its good balance between
computational efficiency and noise suppression. The

Sobel operator calculates the gradient of the image in the
horizontal and vertical directions, which can not only
highlight the detailed features of the edge, but also has a
certain smoothing effect, which can effectively reduce
the impact of noise on the edge detection results. In
addition, compared with more complex edge detection
algorithms, the Sobel operator is simple to calculate and
has high efficiency, which is very suitable for processing
large-scale image data [28]. The Sobel operator retrieves
an image’s edge features by calculating each pixel’s
gradient. It uses two 3×3 convolution kernels to calculate
the gradient of the image in the horizontal and vertical
dimensions. The following are formulas for calculating
gradients:
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Through the convolution operation, the Sobel operator
calculates the horizontal and vertical gradients of each
pixel to obtain a gradient image, thereby extracting the
edge information of the image, especially structures such
as cracks and damage. This paper uses the histogram
equalization method to more clearly present the tiny
cracks or damage on the insulator’s surface to enhance
the image’s contrast and details. Considering the noise
interference, this paper uses Gaussian filtering to denoise
the image to further improve the image quality.

4) Data Fusion Preparation

In the data fusion preparation stage, this study adopted a
precise synchronization method based on timestamps to
ensure that acoustic data and image data are collected
and effectively matched within the same time window.
Specifically, during the data acquisition process, all
sensing devices are calibrated by a unified high-precision
time synchronization module to ensure that the time
reference of the acoustic sensor and the image
acquisition device is consistent. In actual operation, a
high-precision timestamp is attached to each frame of
image data, and the acoustic signal is sampled in real
time and segmented. Each acoustic signal is associated
with a corresponding timestamp. Subsequently, by
matching the timestamps of the image data and the
acoustic signal, a one-to-one correspondence between the
two is constructed to ensure that each frame of image
data accurately corresponds to the complete acoustic
signal within the acquisition period. This method
effectively avoids synchronization errors caused by
equipment time deviation or sampling frequency
differences, and provides a reliable basic guarantee for
subsequent data fusion.



Then, this paper applies the Z-score normalization
method to eliminate the dimensionality differences in the
data. This method transforms the data into a regular
normal distribution with a mean of zero and a standard
deviation of one to compare and fuse various
dimensional data on the same scale. Specifically, the
mean and standard deviation of the image and acoustic
data are determined respectively, and then a
normalization procedure is applied:

xZ 



 (11)

In Formula (11), the raw data is represented by x . The
data mean is represented by  . The data standard
deviation is represented by  . The normalized data is

represented by Z . The fused data is divided into a
training set and a validation set in a ratio of 8:2. When
dividing the data, the number of each type of fault should
be balanced to avoid adverse effects of data imbalance
on model training.

C. Electricity Transmission Line Detection Model
Architecture and Training

1) Model Architecture Design

The electricity transmission line fault detection model
designed in this paper adopts a multi-modal deep neural
network (DNN) architecture that combines CNN and
recurrent neural networks (RNN) [29,30]. Figure 2
presents its specific architecture:

Figure 2. Structure of the electricity transmission line detection model

The CNN module is mainly used to extract local details
and structural features from images and is the preferred
architecture for this task. This is because CNN can
efficiently capture local patterns such as edges and
textures of images through convolution operations, and
has parameter sharing and local connection
characteristics, which greatly reduces computational
complexity. Compared with traditional machine learning
algorithms, CNN does not need to rely on manually
designed features, but automatically learns low-level to
high-level feature representations through hierarchical
feature extraction, thereby capturing image information
more comprehensively and significantly improving the

accuracy and robustness of fault detection. In this study,
the CNN module consists of multiple convolutional
layers, pooling layers, and fully connected layers. The
first convolutional layer contains 16 convolution kernels
with a convolution kernel size of 3×3, a stride of 1, and
1-pixel zero padding (padding = 1), and uses the ReLU
activation function to capture basic edge and texture
features. Subsequently, the second and third
convolutional layers contain 32 and 64 convolution
kernels, respectively, and also use 3×3 convolution
kernels and ReLU activation functions to extract more
complex structural features. The formula for the
convolution operation is:



        , , , ,
m n

y i j f x i j f m n x i m j n      (12)

In Formula (12),  ,f m n is the convolution kernel,

and  ,y i j is the output feature map after the
convolution operation.

The output of each convolutional layer is then passed
through a maximum pooling layer for feature
dimensionality reduction, where the pooling window is
2×2 and the stride is 2. The maximum pooling operation
can be expressed by the following formula:

   
,

, max ,
m n

y i j x i m j n   (13)

After convolution and pooling, the feature map is
flattened and integrated into high-dimensional image
features through a fully connected layer, helping the
model learn the complex structure of the image at a
higher level.

The RNN module processes acoustic signal data and is
particularly good at capturing dynamic changes in time
series data. This study uses a gated recurrent unit (GRU)
structure to overcome the gradient vanishing problem of
traditional RNN in long sequence processing. GRU
dynamically controls the flow of information by updating
the gate and resetting the gate, selectively retaining or
forgetting information, thereby effectively capturing the
time dependency and long-term characteristics of the
local discharge signal. In the specific implementation,
each acoustic signal is represented as a time series and
input into the GRU module. The GRU module consists
of two hidden layers, each containing 128 hidden units,
and uses the Tanh activation function for learning
nonlinear features.

2) Feature Fusion Method

Fusing acoustic characteristics and image features is a
key step to improve the fault detection model’s
performance. This paper adopts a weighted fusion
method to give full play to the complementary
advantages of acoustic signals and image data. In this
method, different weights are assigned to different
features to ensure that each feature can play the greatest

role in subsequent learning according to its importance.
Specifically, the acoustic characteristic acF and the
image feature imgF are first processed and extracted,
respectively, and then weighted summed according to
predetermined weight coefficients  and 

 1   to form a fused feature vector fusedF . The
specific calculation formula is as follows:

fused ac imgF F F     (14)

In the weighted fusion process, the dynamic adjustment
of weight coefficients  and  is based on the
change of loss value in the model training feedback.
Specifically, after each round of training, the fusion
model will calculate the contribution of each modal
feature to the final output based on the feedback of the
loss function. When the feature of a certain modality
contributes more in the current training round, its
corresponding weight coefficient will be slightly
increased, while the weight of the modality with less
contribution will be appropriately reduced. The
adjustment process can be achieved through the
normalized gradient weighting method, the formula is as
follows:

1 1, t t
t t
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(15)

Through dynamic adjustment, the weight coefficients α
and β can effectively adapt to the impact of acoustic
signals and image features on model performance at
different stages, ensuring the balance of the fusion
process in data scale and information expression, thereby
improving the accuracy and robustness of fault detection.

3) Model Training and Optimization

In model training, this paper adopts a supervised learning
method and trains based on the data set processed in the
previous paper. The core goal of training is to optimize
the model’s parameters by minimizing the loss function
so that it can accurately predict electricity transmission
line faults under different input conditions. Figure 3
shows the training process:



Figure 3. Training process of the electricity transmission line detection model

The training process starts with the initialization of the
model, and the number of training epochs is 50. The data
is passed to each network layer through the feedforward
process to generate preliminary prediction results.
Subsequently, the error between the predicted value and
the actual value is calculated using the cross-entropy loss
function, and the error is passed back to each network
layer through the backpropagation algorithm to update
the model weights. After each training epoch, the model
updates the parameters according to the training data,
and the model performance under the current
hyperparameter configuration is evaluated through the
validation set. Through multiple epochs of iterations, the
model gradually reduces the prediction error and
eventually converges.

Since the task of this paper is a binary classification
problem, the cross-entropy loss function is selected as
the loss function. A popular indicator for classification
problems is the cross-entropy loss function. It determines
the overall loss by summing the log difference between
the true label and the expected probability value for each
sample. During training, the model gradually improves
parameters by minimizing the cross-entropy loss to
ensure continuous improvement in performance on the

training set.

This paper uses L2 regularization and dropout techniques
to improve the model’s generalization ability and prevent
overfitting. L2 regularization reduces model complexity
and the risk of overfitting by adding a penalty term of
squared weights to the loss function. The dropout
technique enhances model robustness and avoids
over-reliance on specific nodes by randomly discarding
some neurons. At the same time, this paper adopts the
Adam optimization algorithm to accelerate training and
avoid gradient disappearance or explosion. The
algorithm combines the momentum method and adaptive
learning rate to dynamically adjust the learning rate of
each parameter, thereby accelerating the convergence
process. After each training epoch, the model is
evaluated on the validation set, using accuracy and
training loss as indicators. The learning rate and other
hyperparameters are adjusted based on the evaluation
results to ensure the stability of the model on different
data sets.

In order to improve the efficiency and accuracy of the
model, this study used the grid search method to
optimize the hyperparameters. The specific steps include:



first, the adjustment range of the two key
hyperparameters, learning rate and batch size, is defined.
The adjustment range of the learning rate is from 10−5

to 10−1 , and the selection range of the batch size is 32,
64, and 128. Then, the grid search method is used to
perform an exhaustive search in these preset
hyperparameter spaces to evaluate the impact of each set
of hyperparameter combinations on model performance.

The grid search systematically traverses all possible
hyperparameter combinations, combines cross-validation
to evaluate the performance of the model, and finally
selects the best hyperparameters. After many
experiments, the learning rate 10−4 and batch size 64
that are most suitable for this study were determined,
thus ensuring efficient convergence of the model and the
best training effect.Figure 4 presents the training loss and
accuracy changes of the model with this configuration:

Figure 4. Model training loss and accuracy changes

In Figure 4, the model’s accuracy is close to 1 after 50
training epochs, indicating that the model achieves the
best performance with this configuration and the
accuracy stabilizes. As the training progresses, the loss
value gradually decreases, indicating that the model is
continuously optimizing and progressively converging.
The training process is in line with the expected
convergence trend. The changes further verify the
effective training of the model with the optimal
hyperparameter configuration, and the model’s fit
continues to improve with the increase in iterations.

4. Experimental Design and Results

A. Experimental Environment and Design

The experimental environment of this paper mainly relies
on a high-performance computing platform. The
operating system is Ubuntu 18.04. The deep learning
framework is TensorFlow 2.0. The Python version is 3.7.
All experimental data and models are stored on SSD hard
drives to reduce delays in data reading and model
training and ensure efficient operation of the experiments.
In the experimental environment, the external device
interface uses standard communication protocols to
achieve real-time connection with sensors, cameras and
data acquisition terminals. The interface design includes
data reception, protocol analysis and data transmission
modules, and the timestamp synchronization mechanism
is used to accurately align multi-source data to ensure

data integrity and timeliness.In addition, the experiment
uses CUDA version 10.2 to support graphics processing
unit (GPU) acceleration, which significantly improves
the efficiency of the training and inference processes.

In terms of experimental data, 15,000 sets of data are
re-collected and preprocessed to construct the
experimental data set of this paper to avoid overfitting.
In addition, this paper conducts a control experiment and
sets up four control groups, namely electricity
transmission line detection models based on support
vector machine (SVM) (control group 1), random forest
(RF) (control group 2), single CNN (control group 3),
and single RNN (control group 4), to thoroughly verify
the performance of the constructed detection model.
After training each control model, they are deployed
using the same configuration as the model in this paper
to avoid other factors affecting the experimental results.

B. Model Detection Effect and Efficiency Evaluation

2,000, 5,000, and 8,000 sets of data are extracted from
the experimental data set, respectively, to form small,
medium, and large-scale data sets to evaluate the actual
detection effect of the model. The experimental group
and control group models are used for testing. During the
experiment, the detection accuracy, recall, and
processing time of each group of models are recorded.
Table 1 lists the detection accuracy and recall of each
group:



Table 1. Model detection effect experiment

Data Set Size Group Accuracy Recall

2,000

Experimental Group 93.40% 91.10%
Control Group 1 (SVM) 86.70% 83.60%
Control Group 2 (RF) 85.50% 83.00%
Control Group 3 (CNN) 90.20% 88.30%
Control Group 4 (RNN) 89.70% 87.80%

5,000

Experimental Group 91.50% 89.20%
Control Group 1 (SVM) 84.30% 81.80%
Control Group 2 (RF) 83.60% 80.90%
Control Group 3 (CNN) 88.00% 86.10%
Control Group 4 (RNN) 87.50% 85.40%

8,000

Experimental Group 89.20% 86.50%
Control Group 1 (SVM) 82.10% 79.40%
Control Group 2 (RF) 80.30% 78.00%
Control Group 3 (CNN) 85.60% 83.20%
Control Group 4 (RNN) 84.70% 82.50%

According to the data in Table 1, under data sets of
different sizes, there are differences in the performance
of the experimental group and the four control groups
regarding detection accuracy and recall. First, the
experimental group performs well in all data set sizes,
with its accuracy and recall being higher than those of
control groups in each data set size. Specifically, in the
2,000 data sets, the accuracy of the experimental group is
93.40%, and the recall is 91.10%, significantly better
than 86.70% and 83.60% of the control group 1 (SVM),
85.50% and 83.00% of the control group 2 (RF), 90.20%
and 88.30% of the control group 3 (CNN), and 89.70%
and 87.80% of the control group 4 (RNN). Similarly, as
the size of the data set increases, the experimental
group’s performance remains ahead. In the 5,000 and
8,000 data sets, the accuracy and recall of the
experimental group are 91.50% and 89.20%, and 89.20%

and 86.50%, respectively, both better than other control
groups.

Specifically, in the comparison with the control groups,
the performance of the SVM and RF models is relatively
poor in all data set sizes, especially in large-scale data
sets, where both the accuracy and recall do not exceed
85%. Although the CNN and RNN models perform
better at certain scales, especially in small-scale data sets,
with the CNN model achieving an accuracy of 90.20%,
they still fail to surpass the experimental group on
large-scale data sets, and their recall rates are also
slightly inferior.

Figure 5 shows the detection time of each group under
different data sizes:

Figure 5. Results of the detection time of each group

Results in Figure 5 show that under data sets of different
scales, the processing efficiency of the experimental
group is significantly better than that of the control
groups. Specifically, when the data scale is 2,000, the
detection time of the experimental group is 118 seconds,
which is significantly lower than the detection time of

each model in the control groups. Especially in control
group 3 (CNN) and control group 4 (RNN), the detection
time is 179 seconds and 167 seconds, respectively, with
significant gaps. Although the detection time of control
group 1 (SVM) and control group 2 (RF) is slightly
shorter, it is still significantly higher than that of the



experimental group. As the data size increases, the
processing efficiency of the experimental group still
maintains an advantage. For the data sets of 5,000 and
8,000, the detection time of the experimental group is
182 seconds and 238 seconds, respectively. Although the
processing time of each group generally increases with
the increase in data volume, the experimental group
always maintains the lowest detection time. In particular,
compared with control group 3 (CNN) and control group
4 (RNN), the time gaps of the experimental group further
widen, indicating that the processing efficiency of the
experimental group under large-scale data is still

superior.

C. Model Robustness Evaluation

Three subsets of 5,000 data sets are randomly extracted
from the experimental data set to evaluate the robustness
of the model. In each extraction, different levels of noise
(low, medium, high) are added. Then, the three sets of
data are input into each model for detection, and each
set’s detection accuracy and recall are recorded. Table 2
shows the detection results:

Table 2. Experimental results of model robustness

Noise Level Group Accuracy (%) Recall (%)

Low-level Noise

Experimental Group 92.3 90.5
Control Group 1 (SVM) 84.5 81.7
Control Group 2 (RF) 83.2 80.4
Control Group 3 (CNN) 89.1 87.2
Control Group 4 (RNN) 88.5 86.8

Medium-level Noise

Experimental Group 89.1 86.3
Control Group 1 (SVM) 81.6 77.8
Control Group 2 (RF) 80.5 76.6
Control Group 3 (CNN) 85.5 83.1
Control Group 4 (RNN) 84.2 82

High-level Noise

Experimental Group 85.8 83
Control Group 1 (SVM) 75.9 72.3
Control Group 2 (RF) 74.2 70.5
Control Group 3 (CNN) 80.1 78.2
Control Group 4 (RNN) 78.9 76.5

The data in Table 2 shows that under different noise
conditions, the robustness of the experimental group is
always better than that of other control groups, especially
when facing medium-level and high-level noise, its
detection effect is still excellent. Under low-level noise
conditions, the experimental group achieves an accuracy
of 92.3% and a recall of 90.5%, which is the best
performance, much higher than all methods in the control
groups. Although the performance of each group is not
much different, the experimental group still shows stable
high performance. In a medium-level noise environment,
although the performance of all models declines, the
accuracy of the experimental group is 89.1%, and the
recall is 86.3%, which remains at a high level. In contrast,
the accuracy of the control group 1 (SVM) and the
control group 2 (RF) performs poorly, dropping to 81.6%
and 80.5%, respectively, and the recall also drops
significantly, indicating that these models are more
sensitive to noise. Although the control group 3 (CNN)
and the control group 4 (RNN) perform better under
medium-level noise, they are still inferior to the
experimental group. The experimental group generally
performs significantly better than other control groups
under low-level, medium-level, and high-level noise
conditions. Especially when the noise intensity increases,

the decrease in its accuracy and recall rate is relatively
small, demonstrating its strongest robustness.

D. Users’Actual Application Evaluation

In order to evaluate the effect of the model in practical
application, this study invited 50 power maintenance
personnel from a power company to participate in the
experiment. In the experiment, the participants used the
experimental group and control group models to detect
faults on the transmission lines. After the detection,
questionnaires were distributed to the participants to
collect their evaluation of the experience of using each
model. The questionnaire design includes multiple
evaluation dimensions, such as the ease of operation of
the model, fault detection accuracy, response time, model
stability, etc., aiming to fully reflect the subjective
feelings of maintenance personnel on the performance of
the model. Participants scored each indicator using a
Likert scale (1-5 points), with 1 indicating very
dissatisfied and 5 indicating very satisfied. In addition,
suggestions and opinions from participants on model
improvements were collected. Finally, the results of the
collected questionnaires were statistically analyzed to
obtain the evaluation data, as shown in Table 3 below:



Table 3. Results of users’ evaluation

Evaluation Dimensions
(Out of 5)

Experimental
Group

Control Group 1
(SVM)

Control Group 2
(RF)

Control Group 3
(CNN)

Control Group 4
(RNN)

Ease of Use 4.6 4.1 4 4.3 4.2
Detection Speed 4.8 4.3 4.2 4.4 4.5
Detection Accuracy 4.9 4.2 4.1 4.4 4.3
Satisfaction with Use 4.7 4 3.9 4.2 4.1
Ease of Operation 4.6 4.2 4.1 4.3 4.2

According to the data in Table 3, the participants’
evaluation of each model shows that the experimental
group is better than control groups in all evaluation
dimensions. Regarding ease of use, the experimental
group scores 4.6, significantly higher than other models,
indicating that its interface and interaction design are
more in line with user needs and provide a better user
experience. Regarding detection speed, the experimental
group scores 4.8, better than all control groups, reflecting
its efficient real-time fault detection capability.
Regarding detection accuracy, the experimental group
scores 4.9, significantly better than other models,
indicating that it has apparent advantages in identifying
electricity transmission line fault features. Regarding
satisfaction with use, the experimental group scores 4.7,
reflecting the participants’ high recognition of its overall
performance. Finally, the experimental group scores 4.6
in ease of operation, ahead of the control groups,
indicating that its operation is more intuitive and easy to
use, reducing the difficulty of user operation.

5. Conclusion

This paper constructs an electricity transmission line
detection method based on the fusion of insulator partial
discharge acoustic characteristics and image
identification technology. A multi-modal deep neural
network architecture is designed by combining partial
discharge acoustic signals with image data, effectively
improving the accuracy and efficiency of electricity
transmission line fault detection. This method adopts
CNN to extract spatial features in images and uses RNN
to analyze the temporal characteristics of acoustic signals,
thereby achieving efficient monitoring of electricity
transmission lines.

Experimental results show that the fusion algorithm
performs well in multiple data sets and different noise
environments. Especially in high-level noise conditions,
its detection accuracy and robustness are better than
traditional single models. In tests on data sets of different
sizes, the experimental group also significantly
outperforms the control groups in detection speed and
accuracy. By comparing the application effects of
different models, the experimental group shows higher
ease of use, detection speed, and accuracy, and the users
are more satisfied with the use, proving the advantages
of this method in practical applications.

Although this study has achieved certain results, there
are still limitations. First, model training is highly
dependent on labeled data, which may increase the cost
of data preparation in practical applications. Future
research can focus on exploring semi-supervised learning,
self-supervised learning, or weakly supervised learning
methods to reduce the demand for labeled data by
utilizing a large amount of unlabeled data or introducing
generative models. Secondly, although this study showed
good robustness under a variety of noise conditions, its
performance in extremely complex environments still
needs further verification and optimization. Future
research plans to conduct experiments in more practical
application scenarios, and design more targeted
optimization strategies for complex environments such
as multi-source interference or dynamically changing
scenarios, so as to further improve the applicability and
stability of the method.
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