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Abstract. In view of the problem that the current power
grid dispatching voice interaction system is not adaptable
enough to the terminology specific to the power grid
dispatching field and is easily disturbed by
environmental noise, resulting in command recognition
errors and missing keywords, this paper constructs a
deep fusion model based on Wav2Vec 2.0 self-supervised
pre-training and Conformer structure, aiming to achieve
Automatic Speech Recognition (ASR) and optimize
accuracy. First, based on the Wav2Vec 2.0 model, the
original dispatching voice signal is self-supervised
pre-trained to extract features and capture its low-level
time domain and frequency domain expressions. Then,
the extracted voice features are input into the Conformer
structure fine-tuned by the dispatching field corpus to

achieve high-precision modeling of long-distance context.

Finally, the power grid professional terminology
dictionary is embedded in the decoding stage, and the
spectrogram  enhancement and background noise
synthesis mechanism are combined to achieve
end-to-end joint optimization. The results showed that
the accuracy, recall, and F1 score of the speech
recognition model in this article were 92.3%, 89.1%, and
90.7%, respectively, with an average of Word Error Rate
(WER), Character Error Rate (CER), Weighted WER
were 10.8%, 5.7%, and 13.8%, respectively; The F1
score for term recognition reached 90.7%; The
recognition rate of Top-3 is above 0.75, and the complete
recognition rate of instructions reaches 84.6%. Under
extreme low signal-to-noise ratio conditions of -5dB, its
WER control is 42.1%. The conclusion shows that the
method proposed in this paper can effectively improve
the accuracy and scene adaptability of ASR, provide
reliable support for high-precision voice interaction in
power grid scheduling, help improve the safety and
reliability of power facility operations, and reduce work
delays caused by misoperation or poor communication.
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1. Introduction

With the rapid development of power systems and
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intelligent dispatching technology, the dispatching and
operation mode of power grids has changed from manual
operation to intelligent human-computer interaction and
voice control [1,2]. As an important interface for efficient
human-computer collaboration, voice interaction systems
play an increasingly important role in dispatching
automation, job instruction execution, and emergency
processing [3]. In recent years, ASR technology,
especially hybrid acoustic model frameworks, have made
significant progress driven by deep learning. But its
complexity and computational cost limit its application
scope. The currently widely used general ASR model
still faces the problems of low recognition precision,
casy loss of keywords, and semantic errors in power
dispatching scenarios facing special vocabulary, fixed
instruction format, and multi-source complex voice input,
which seriously affects the stability and reliable
operation of the system in the actual dispatching
environment. Improving the ASR system’s modeling
ability for dispatching instruction language and its
adaptability in practical applications are the core issues
that need to be urgently solved to realize the in-depth
application of voice interaction technology in the power
industry.

Wav2Vec2.0 can effectively extract contextual
information in voice without manual labeling and has
good transfer learning ability [4]. Conformer combines
the local modeling capability of the Convolutional neural
network (CNN) with the global attention mechanism of
the Transformer. It has great advantages in temporal
modeling and semantic representation and is particularly
suitable for processing long-distance related complex
voice instructions [5,6]. This paper combines Wav2Vec
2.0 with the Conformer to study the optimization method
of power grid dispatch ASR. Through self-supervised
learning, the unlabeled voice features are deeply encoded,
and the Conformer network is integrated to improve the
semantic model of remote instructions. At the same time,
the language model and joint optimization mechanism
built based on the dispatch corpus are applied to improve
the system’s recognition precision of industry terms and
instructions, which has important theoretical value and
practical significance for promoting the evolution of
human-machine collaboration in smart grids and



improving the efficiency and response capabilities of
power grid operations.

This article aims to optimize the recognition accuracy of
the power grid dispatch voice interaction system based
on Wav2Vec 2.0 and Conformer model. By improving
the existing Wav2Vec 2.0 and Conformer architecture,
the recognition accuracy of power grid dispatch related
terms and instructions can be improved, ensuring that the
system can maintain high-precision recognition
performance under different environmental noise
conditions. The innovation of this article lies in: 1) fully
utilizing the self supervised learning ability of Wav2Vec
2.0, combined with the Conformer temporal modeling
mechanism, to achieve joint optimization of speech
feature extraction and contextual information acquisition.
Based on Wav2Vec 2.0, rich feature representations are
extracted from a large amount of unlabeled audio data,
and combined with the local and global information
processing capabilities of the Conformer model, attention
to local details is retained while capturing long-distance
dependencies, achieving accurate understanding of the
context of the overall dialogue, as well as accurate
recognition of individual commands and keywords,
improving its recognition accuracy and robustness in
power grid scheduling; 2) the professional-oriented
attention mechanism is applied to enable it to have the
ability to dynamically focus on keywords, improving its
recognition accuracy and recall rate; 3) in view of the
complex and changeable characteristics of power grid
dispatching scenarios, the noise adaptation mechanism
based on pre-training characteristics and structural
optimization is used to achieve recognition capabilities
under extremely low signal-to-noise ratio conditions,
thereby improving the system’s stability and reliability.

2. Related Works

The existing research on power grid dispatching ASR
systems mainly focuses on command automation parsing
and voice-to-text accuracy improvement [7,8]. Zhihua
Wang proposed a power dispatching voice interaction
model based on deep convolutional Generative
Adversarial Networks (GANs). Based on GAN,
convolutional layers and conditional information were
added, and conditional information was used to generate
high-quality voice. The results showed that compared
with methods such as spectrum subtraction, the proposed
model could achieve better voice enhancement [9]. Chen
Lei proposed an ASR model based on BERT
(Bidirectional Encoder Representations from
Transformers). According to the characteristics of power
grid dispatching language, semantic features, keyword
features, and named entity features were extracted from
dispatching sentences to improve the adaptability of the
model to power grid dispatching language. The example
results showed that the proposed model had a relatively
obvious advantage in ASR accuracy [10]. To make the
professional vocabulary in the field of power grid
dispatching computable, Hao Feng proposed a word to
vector technology based on historical corpus in the
dispatching field. The actual example analysis results
showed that this method improved the accuracy of ASR
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technology in the field of power grid dispatching [11]. To
verify the correctness of dispatching instructions, Sun
Lili proposed to build a dispatching authentication
system based on voiceprint recognition, using CNN to
extract voiceprint identity features from short-term voice
and integrating the identity authentication method based
on dynamic passwords to solve the problem of incorrect
dispatching instructions in dispatching scenarios. The
results showed that the proposed method system could
efficiently respond to user requests and improve the
safety and quality of dispatching work [12]. Existing
research has achieved the recognition and response of
basic commands in specific scenarios, but most systems
rely on general ASR models, lack end-to-end modeling,
and still cannot meet the high reliability requirements in
terms of long-distance dependency understanding.

The mature development of Wav2Vec 2.0 and Conformer
provides more possibilities for end-to-end modeling and
long-distance  dependency understanding [13-15].
Wav2Vec 2.0 and Conformer models are powerful tools
for handling speech recognition tasks. The professional
terminology and commands in the power industry are
highly specialized and complex. Wav2Vec 2.0 can
extract rich acoustic features from unlabeled data
through a self supervised learning mechanism [16,17].
The Conformer model integrates CNN and self attention
mechanisms, making it very suitable for handling
complex dialogue scenarios in power grid scheduling
[18,19]. Compared with other technologies, choosing
Wav2Vec 2.0 and Conformer not only maintains high
performance but also has relatively low computing
resource requirements. Using them as infrastructure not
only saves development time but also reduces project
risks. Zhao Jing developed and analyzed a series of
wav2vec pre-trained models for ASR of low-resource
languages, used phoneme-level recognition tasks in
fine-tuning, and extracted similarities from different
transformer layers. The pre-trained representations were
applied to end-to-end and hybrid systems, and the good
performance of the proposed model was verified through
experimental analysis [20]. Deng Bin proposed an ASR
technology based on the Conformer model, applied a
convolutional module into the Transformer model to
improve the model’s ability to learn subtle features, and
then input the power grid dispatch language for feature
extraction. Finally, through experimental verification, the
proposed model had high accuracy in power grid
dispatch ASR, and the word error rate on the validation
set was reduced by 11.23% and 21.76%, respectively
[21]. Sang Jiangkun proposed a compression
optimization strategy for an end-to-end ASR model
based on Conformer, which adopted three compression
optimization strategies: model quantization, structured
pruning based on weight channels, and singular value
decomposition. At the same time, the model quantization
was improved, and these strategies were combined to test
on different devices. Compared with the baseline, its
long-distance dependency understanding error was less
than 3% [22]. Existing research has effectively enhanced
the ability to model end-to-end and capture the semantics
of long sequences. However, in dealing with variable
voice speed, terminology ambiguity, and noise



interference in dispatching scenarios, existing models
still face the problem of insufficient adaptability to
exclusive terminology and voice style.

This article draws on the successful applications of
Wav2Vec 2.0 and Conformer models, and conducts
targeted optimization based on them. The Wav2Vec 2.0
model proposed by Facebook AI Research is adopted as
the basic architecture, and feature representations are
extracted from a large amount of unlabeled audio data
through self supervised learning to improve the
performance of speech recognition tasks; Considering
the complex acoustic conditions in the power dispatch
environment, the Conformer model was integrated into

the system design, combining the advantages of CNN
and self attention mechanism to more effectively capture
long-distance dependencies and local detail information.

3. Optimization Design of Power Grid Dispatching
Voice Recognition Based on Wav2Vec 2.0 and
Conformer

A. Architecture of Power Grid Dispatching Voice
Interaction System

The architecture of the power grid dispatch voice
interaction system is shown in Figure 1:
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Figure 1. Architecture of power grid dispatching voice interaction system.

From the overall architecture of Figure 1, the power grid
dispatch voice interaction system consists of five
modules: voice acquisition terminal, ASR engine,
language understanding and decoding module,
instruction control interface module, and backend
scheduling mechanism. The voice acquisition terminal
mainly collects the voice signals sent by dispatchers and
improves the voice quality through preprocessing
measures such as noise reduction and gain control; The
ASR engine is based on this and uses a joint model based
on wav2vec 2.0 and Conformer as the ASR engine; In
the language understanding and decoding module, the
BERT model is used as the core component of semantic
understanding. The semantic understanding part is
mainly responsible for semantic parsing of text content
and combining it with a rule engine to achieve semantic
inference of text content; The instruction control
interface is responsible for transmitting the parsed
instructions to the backend scheduling information
system and initiating the relevant workflow; The
backend scheduling mechanism provides feedback
through instructions. The speech recognition engine and
language understanding module work together through a
unified interface. After the speech recognition engine
converts the input speech into text, the language
understanding module performs semantic parsing on it
and generates structured scheduling instructions. Under
normal workflow, dispatchers wear or carry audio
devices, and the system converts voice information into
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structured text, which corresponds to the semantic
instructions of the power grid operation control system,
thus achieving closed-loop management.

B.  Wav2Vec 2.0 and Conformer Fusion Model

The current system has limited ability to capture and
learn complex voice features, which easily causes key
instruction content to be intercepted or misjudged. The
coverage of power grid-specific vocabulary is
insufficient, resulting in low recognition precision of
professional terms, which seriously restricts the accurate
execution of dispatch instructions. This paper aims to
improve the accuracy and robustness of voice interaction,
integrates Wav2Vec2.0 and Conformer structure, and
establishes a recognition optimization framework that
integrates feature encoding-structure
modeling-professional semantic adaptation-robustness
enhancement. Based on the logical integrity of the entire
system, the analysis is carried out from three main
modules: voice signal input and preprocessing,
self-supervised feature encoding and structure modeling,
and domain knowledge adaptation and robustness
enhancement.

1)  Voice Signal Input and Preprocessing

This paper takes the voice dialogue of dispatchers in the
interactive system and the power grid dispatch voice data



collected by the sampling device of the dispatch terminal
as input. Since they are very different in sampling rate,
number of channels, and file format, in order to make the
input data Dbetter adapt to the standardization
requirements of the pre-training model, the original voice
format is uniformly converted and unified into a mono
and WAV format.

Since the training performance of Wav2Vec2.0 is best at
a sampling rate of 16kHz, all audio signals are resampled
to 16 kHz and frequency converted using FIR (Finite
Impact Response) anti-aliasing filters. Its parameter
design is shown in Table 1:

Table 1. Filter parameter design.

Parameter Specification Description

Filter type Kaiser window FIR filter | Anti-aliasing filtering to avoid spectral distortion

Original sampling rate range | 8kHz-48kHz Source device sampling rate distribution

Target sampling rate 16kHz Consistent with the training environment of the main model
Passband cutoff frequency 6.8kHz Ensuring that the main frequency band of the voice is fully preserved
Stop-band attenuation > 65dB Ensuring effective suppression of high-frequency noise

In view of the large amount of non-task information such
as silent waiting and background conversation in the
dispatch call, the silent segments are detected and
cropped. The short-time mean energy and zero-crossing
rate joint gating algorithm are used to realize the silent

segment detection. Given a voice frame x,(n) , the

definition of its short-term energy £, 1is shown in

Its zero crossing rate  Z, is shown in formula (2):

1 -
=N ;V:ll |sgn (x,. (n))— sgn (x,. (n+ 1))| )
The silence thresholds are setto 7, and T, , marked as

a silent segment when the frame length is more than 300

formula (1): milliseconds when E, <7, and Z, <7, , and cropped.
Table 2 lists the silence detection parameter settings:
N 2
Ei =Zn—]xi (f’l) (1)
Table 2. Silence detection parameter settings.

Parameter Specification Description

Frame length 25ms Standard frame length

Frame shift 10ms Prevent information loss

T 20% of the global energy mean Dynamically adapt to different voice intensities

T, 0.08 Standard for silent and weak voice boundary recognition

Cut minimum length 300ms Avoid accidentally cutting non explicit voice content

Based on silence detection, spectral subtraction and
Wiener filter are used to achieve two-stage denoising. In
the first stage of spectral subtraction, in the frequency
domain, the voice signal of each frame is expressed as
formula (3) [23,24]:

Y(k)=S(k)+N (k) ()

In formula (3), Y (k) represents the observed spectrum;

N (k) represents the estimated noise spectrum; S (k)

represents the pure voice spectrum. By estimating
N(k) and subtracting it from Y (k) , the initial

denoised spectrum S (k) is obtained.

Use the Minimum Statistics method to estimate
background noise. Use the minimum value of the
short-time spectrum to approximate the power spectral
density of background noise. Assuming the frequency

spectrum of the input signal is X (k) , the background
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noise N (k) can be estimated by formula (4):

N (k

= min
1€ty t,+T]

= X (ko) @
The speech signal S (k)

background noise from the total signal, as shown in
formula (5):

is obtained by subtracting

S(k)=X(k)-N(k) (5)

The second stage introduces the Wiener filter gain
function G(k), as shown in formula (6):

NG

[S GO +[v ()

G(k)= 6)

By smoothing the spectrum, the impact of unstructured
background noise on the voice signal is reduced without




affecting the overall integrity of the voice.

After the denoising is completed, all segments are
screened for effectiveness. Segments below 0.5 seconds,
fuzzy pronunciation areas, and abnormal spectral energy
segments are removed, and only valid sentences with real
dispatching semantics are retained. On this basis, the
dynamic range normalization of Root Mean Square
(RMYS) is used to solve the problem of training gradient
fluctuations caused by different volumes, as shown in
formula (7):

_ x(n)
Ty e

In formula (7), x,,,,(n) is the normalized signal value,

(7

xnorm (n )

€ 1is a decimal to avoid division by zero, and the value is
107,

2) Self-supervised Feature Encoding and Structural
Modeling

After completing the preprocessing of the voice signal,
the standardized voice signal is input into the feature
modeling module. In view of the lack of unlabeled data,
the supervised learning acoustic model is difficult to
generalize. The professional terminology of power grid
dispatching voice is dense and complex. The Wav2Vec
2.0 model is used for self-supervised feature learning to
achieve high-level semantic expression of the original
voice from both the time domain and the frequency
domain, reducing the dependence on a large number of
annotations. Combined with the contextual semantic
modeling of the Conformer structure, taking into account
both local acoustic characteristics and global context
information, a two-stage semantic alignment mechanism
is adopted to achieve accurate recognition of power grid
dispatching sentences with system-level semantics and
long-range dependencies, as shown in Figure 2.
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Figure 2. Self-supervised feature encoding and structural modeling mechanism.

In Figure 2, the self-supervised voice representation
learning based on Wav2Vec2.0 learns the high-level
semantic features of the input voice signal. Wav2vec 2.0
is responsible for extracting high-dimensional feature
representations from raw speech signals, which are then
input into Conformer for further time series modeling.
Feature fusion modules are introduced in each layer of
Conformer to concatenate the features extracted by

wav2vec 2.0 with the intermediate features of Conformer.

Wav2Vec2.0 consists of a feature encoder, a context
network, and a vector quantization module [25]. This
paper adopts the Wav2Vec 2.0 BASE model that has
been pre-trained on large-scale general voice data and
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fine-tunes it on the local power grid dispatch voice
corpus to achieve task adaptation. In the model selection,
this article chose the BASE version of Wav2Vec 2.0,
which contains about 95M parameters. Compared with
LARGE and XLS-R, its computational complexity is
significantly reduced, making it more suitable for
deployment in power grid scheduling scenarios.

First, the feature encoder receives the normalized voice

waveform xeR" (T represents the number of time
steps) and inputs it into a one-dimensional
one-dimensional convolutional network. Then, the signal



is converted into a potential frame-level feature

expression, as shown in formula (8) [26]:
z=fo (x)eR™ (8)

In formula (8), f,.

and d is a feature dimension. This processing can
capture the local spectral pattern of voice and provide
input for subsequent context modeling.

is the feature encoder, 7' <« T ,

On this basis, the vector quantization module is used to
geR™ | and the
Gumbel-Softmax mechanism is used to approximate the

z  values to construct a pseudo-supervised target
[27,28].

discretize some =z values

During the learning process, a mask operation is used to

mask

replace part of z, with a masked tag z™" , which is

then input into the Transformer context network to
output a context vector expression, as shown in formula
(9) [29-31]:

¢ = fu (2™ )€ RY (9)

In formula (9), f,, is the context network. To learn

effective context dependencies, based on the contrastive

learning objective function, ¢, and the true quantized

expression ¢, have the greatest similarity, while the

negative sample at other time steps has the smallest
similarity. Its loss function is defined as formula (10):

exp(sim(c,.q,)/x)

L
e exp(sim(ct,qt )/K')

contrastive

X lorss (10)

In formula (10),

represents the temperature parameter; M represents the

masked position set; N, represents the negative sample

sim(-) is the cosine similarity; &

set. Self-supervised learning is then used to extract the
dynamics of voice sequences, pronunciation patterns,
and contextual information of pronunciation units in the
unlabeled case, thereby enhancing the robustness to
non-standard pronunciation, intonation changes, and
stress changes.

Based on the Wav2Vec
high-dimensional context vector expression c,

2.0 pre-training, the
output

by it is further modeled to extract the structured
instructions and semantic hierarchy of the dispatching
voice. Based on Conformer, by integrating the local
modeling of convolution and the global modeling of
Transformer, the logical relationship between hidden
instructions and the semantic features of the task are
extracted from the voice data.

Conformer uses Conformer Block as the basic building
block. It adds a lightweight convolution module to the
standard Transformer framework and decomposes the
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Feedforward Neural Network (FNN). Its

structure is:

specific

(1) Feedforward network module

Using the residual structure, the FNN is divided into two
parts, the front and the back, and each part contributes
half to the residual. The input is set to as shown in

formula (11):

X

n >

1
X =X, +—FNN, (x,) (D
In formula (11), x,,

is the input feature vector. FNN,
is the feedforward submodule of the front part.

(2) Multi-Head Self-Attention (MHSA)

Relative positioning encoding is applied to enhance the
modeling ability of the context within the voice
framework,as shown in formula (12):

x, = x, + MHSA(LayerNorm (x, )) (12)

In formula (12), x, is the weighted sum of the residuals
of the first feedforward module and the input; x, is the

weighted sum of the second feedforward module and the
input residual.

(3) Convolutional module

Gated linear units and depthwise separable convolutions
are used to capture local correlations and improve the
model’s ability to model short-term structures.

For the gating mechanism, as shown in formula (13):
z, = GLU (ConvID(x,)) (13)

Batch standardization and activation are shown in

formula (14):
& = BN (DepthwiseConv(z, )) (14)

Swish activation and output projection are shown in
formula (15):

x, = x, + ConvOut (Swish z, )) (15)

In formulas (13)-(15), ConvlD is a standard
one-dimensional convolution used for local context
modeling; GLU is a gated linear unit; 2z, is the
intermediate feature output by the convolution module;
DepthwiseConv is a depthwise separable convolution
that slides only within each channel; BN is batch
standardization; x; is the sum of the output and input
ConvOut is the

t

residuals of the convolution module;



linear projection used to restore the output of the
convolution module to the input dimension.

(4) Second feedforward network and normalized output,
as shown in formula (16) and formula (17)

X, =X, +%-FNN2 (x) (16)

vy = LayerNorm (x4 ) a7

In formula (16), FNN,
in the latter part; x, is the final feature. On this basis,

is the feedforward submodule

multiple Conformer Blocks are stacked together to form
a deep acoustic representation network. The output

sequence Y :[yl, Yoottt yT] expresses the complex
temporal structure and its semantic dependence on the

input voice, and on this basis, the input voice is analyzed
for association.

Based on the two-stage semantic alignment strategy,
structured semantic units are aligned and recognized.
First, the CTC (Connectionist Temporal Classification)
loss function L. 1is used to construct an implicit

alignment between the input and target label sequences
to solve the problem of inconsistency between voice and
text, as shown in formula (18):

~log ZﬂeB’l(}’)p (zfx) (18)

Lere = —10gp(y|X):

In formula (18), B is the mapping function between
compressed repeated labels and blank characters, and =

represents the possible path sequence. p( y|X ) is the
probability of generating the target label sequence y
for a given speech input X . p (n|X ) is the probability

of the path sequence w.

Aligned at the frame level, the autoregressive decoder
with attention mechanism is applied to generate
structured semantic output step by step. According to the

output Y =[y,,»,,---,y;] of the encoder, the decoder

predicts the structured text sequence S ={[s;,s,,++,5y] .
Its attention weight calculation ¢,, is expressed as

formula (19) [32]:

en(a k)

ity (19
% Zjexp(q?,kj)

In formula (19), &, is the key vector corresponding to
the i -th time step, and ¢, is the decoder query vector

for the current time step; The context vector update is
expressed as formula (20):

¢, = zia”. -y, (20)
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In formula (20), ¢, is the weighted sum obtained from

the encoder at the ¢ -th time step.The output word
prediction is expressed as formula (21):

P(st |s<t,Y) = soft max (Wo [q,;ct ]) @n

In formula (21), P(St |s Y ) is the probability of

<t?

predicting the next word s, based on the previous

output s_, and encoder context Y . W, is the weight
matrix of the decoder output layer.

3) Domain Knowledge Adaptation and Robustness
Enhancement

For multiple domain-specific instructions, device names,
and symbolic words such as “main transformer”,
“decoupling”, “busbar”, “220 kV”, and “double-circuit
switching” in the power grid dispatching instructions, the
professional terminology dictionary is embedded in the
decoding process. By correcting the probability space of
the decoder language model, the recognition probability
and priority of key terms are improved.

The set of professional terms is defined as

D={w,w,,--,w,} , and the conditional probability
distribution of the decoder output vocabulary y, 1is

expressed as formula (22):

P(y,|y..X)=softmax (W, [g,:c,]) (22)

In formula (22), y, is the predicted word for the ¢ -th
time step.

During the decoding process, before the softmax
calculation, for all y, € D, the term weighted bias term

is applied, as shown in formula (23) [33,34]:

P’(y,

y<,,X) = soft max (Wo [9,:¢, ]+ 6 ) (23)

In formula (23), P'(yt

VX ) is the final prediction
probability after introducing the term bias term. &, is
the weighted bias term for professional terminology.

Among them, there is shown in formula (24):
S, = 7'1{}1@9} 24)

By statistically analyzing historical speech data, calculate
the frequency and contextual importance of different
vocabulary in actual use. Words that appear frequently in
emergency situations are given higher priority scores.
¥ >0 is the domain term enhancement coefficient; l{_}

is the indicator function. The composition and
classification of the professional term dictionary are
shown in Table 3:



Table 3. Composition and classification of professional term dictionary.

. . Priority (enhancement | Application
Type Term Part of voice | Applied context coefficient 7 ) scenarios
Voltage Commonly ~ seen in Trigger  warnin,
& 110kV, 220kV Nouns/Units | device recognition and | 1.2 e8er &
level . . mechanism
operation instructions
Main  transformer, High frequency words for
. . . . . . emergency
Device busbar, knife switch, | Noun operation dispatching | 1.4
. . . . measure
lightning arrester instructions
Operation Closing, tripping, Verb Action recognition, key 16 Condition
Action closing, isolating instruction judgment ’ monitoring
Status Normal, Abnormal, | Adjectives/ Key recognition in fault . qulpmen.t
. 1.3 identification and
judgment Fever, Alarm Status words | context .
operation
Direction Left side, Secondary Electrical . diagram Equipment control
. A AR Noun understanding and | 1.1 . .
and position | circuit, Main wiring N . instructions
positioning scenarios

To improve the robustness of the model in complex and
changeable voice environments, the spectrogram
enhancement is combined with the background noise
synthesis mechanism to achieve modeling of voice
changes in dispatching scenarios. First, the signal
spectrum of Wav2Vec2.0 is processed by time domain
masking and frequency masking. The input spectrum

tensor is represented by S e R™" where T represents
the number of frames at the moment and F represents

the dimension of the frequency. [t,t+a)] and

[ f,f +h] are used to define the time domain masking

area and the frequency domain masking area. The result
after conversion is shown in formula (25):

(25)

i,J

0, if ie[t,i+a]orje[f,f+h]
- S, j» otherwise

In formula (25), S/,

occlusion. On this basis, the background noise is
synthesized to construct a set of background noise sets

Nz{n,,nz,---,nm} , from which a set of noise n~ N

is the spectral value after

is randomly selected, and the SNR (Signal-to-Noise
Ratio) is used to control the mixing ratio to obtain
enhanced samples, as shown in formula (26):

B[]

xX'=x+a-n, with a =

(26)

In formula (26), x' is the speech sample after adding
noise, and « is the scaling factor that controls the
mixing ratio.

Based on input enhancement and domain adaptation, a
joint optimization learning framework is established. The
training objective is not just to rely on the traditional
cross entropy loss, but on this basis, CTC loss and
semantic prediction loss of the language model are
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applied to jointly form the end-to-end optimization
objective, as shown in formula (27):

Etotal = j'l‘aCTC + ﬂ2‘Catm + /’{3[’domain (27)

In formula (27), A4,,4,,4, are loss weights, which are

selected by the hyperparameter optimization method.
Among them, L. is the optimization target of the

frame sequence during the alignment process; L

attn is
the cross entropy loss of the autoregressive decoder;
L is to determine the term recognition loss, which

‘domain

is defined as formula (28):

T
= _thll{yre }

L

‘domain

log P'(3,|y..X) (28)

In formula (28), 1{y,ep} is the indicator function, which

is 1 when the predicted word y, belongs to the

terminology dictionary D , and 0 otherwise. Using the
joint optimization method, the robust expression of
multi-noise environment, the priority recognition of
domain vocabulary, and the semantic modeling of
context are learned simultaneously during the training
process.

4. Power Grid Dispatching ASR Evaluation
A. Experimental Setting

The experimental data in this paper comes from a total of
37,144 dispatching voice calls and terminal samples
collected by a municipal power grid dispatching center
from 2021 to 2023. The collected original call data is
about 260 hours, and the dispatching instructions cover
six operating scenarios: accident handling, device
switching, maintenance operations, switching operations,
power generation planning, and issuance and information
feedback. In terms of data preprocessing, the collected
voice signals are uniformly converted into single-channel
WAV with a sampling rate of 16 kHz; the signal is



downsampled using a FIR anti-aliasing filter; the silent
segments are removed by joint detection of short-time
energy and zero-crossing rate. On this basis, a two-stage

denoising is achieved through spectral subtraction and
Wiener filter, and the dynamic range of the audio is
normalized. Its parameter settings are shown in Table 4:

Table 4. Preprocessing parameter settings.

Classification Parameter Specification
Short-t threshold 0.01
Silent detection threshold X erm. average cloey eswo
Zero-crossing rate threshold 0.1
Noise reduction SNR improvement target 15dB
Mini length 0.5
Effective fragment screening 1n1.m um engt - > -
Maximum mute ratio Not exceeding 30%
RMS Normalize target value -26 dBFS

By preprocessing the data, 186,437 voice clips are
obtained, and combined with manual annotation
technology, a text alignment corpus containing 9532
professional terminology entities is established. In order
to verify the generalization ability of the model and
supplement the limitations of a single dataset, this paper
further uses a synthetic dataset for experiments. Write
scripts covering different operational scenarios (such as
accident handling, equipment switching, etc.) using
knowledge and practical operation processes in the field
of power grid dispatching. Generate simulated dialogue
audio using text to speech (TTS) technology to ensure
the inclusion of specialized terminology specific to
power grid dispatch. In order to enhance data diversity,
pulse noise is introduced as an extreme noise condition,

and four background noise environments are simulated:
transformer buzzing, wind and rain noise, walkie talkie
noise, and impact noise. Create different acoustic scenes
through the pyroacoustics library and embed the
generated speech into them to form the final synthesized
audio, applying the same preprocessing steps as the
original data to these synthesized audio.

To verify the effectiveness of the method proposed in
this article, evaluations were conducted from several
dimensions, including overall speech recognition
accuracy, instruction completeness, terminology
adaptation ability, noise environment adaptation ability,
model efficiency, and ablation experiments. The specific
parameter settings are shown in Table 5:

Table 5. Algorithm parameter settings.

Classification Parameter Specification
Feature encoder One-dimensional convolution
Masking ratio 0.065
Masking width 10 frames
Wav2Vec 2.0 Gumb.el softmax t?mperature 2.0
Negative sample size 100
Learning rate (fine tuned) 1.00E-04
Batch size 32
Fine tune the number of rounds 50
Conformer block layers 16
Hidden layer dimension 512
Multi head attention head count 8
Feedforward layer dimension 2048
Conformer Convolutional kernel size 31
Dropout ratio 0.1
CTC weight coefficient 0.3
Language model predicts loss weights 0.2
Joint optimization of total loss weight ratio Attention: CTC: Language model = 0.5:0.3:0.2

The Conformer architecture design adopts 12 Conformer
blocks and a convolution kernel size of 31. During the
training process, a masking rate of 0.065 was used. This
choice is based on the results of experimental tuning, and
the parameter settings in this section enable the model to
achieve the best balance between performance and
efficiency. In the sensitivity analysis of weight
coefficients, a joint loss function was used to observe the
changes in model performance by fixing two weights and
adjusting the third weight. Taking into account the
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experimental results, we ultimately chose Attention: CTC:
Language model = 0.5:0.3:0.2 as the default weight
configurations. This configuration achieves a good
balance between recognition accuracy, terminology
recognition ability, and convergence speed, which can
meet the requirements of the power grid dispatch voice
interaction system.

To present the experimental results, the following models
are selected for comparison:




DNN-HMM (Deep Neural Network - Hidden Markov
Model): a classic hybrid acoustic model framework that
uses a deep feedforward neural network to establish the
state of the HMM.

DeepSpeech2: an end-to-end ASR model based on CNN
and bidirectional recurrent neural network, which applies
CTC loss for optimization and is robust and practical.

Transformer ASR: using its own attention mechanism, a
complete sequence model is built to achieve end-to-end
ASR, which can obtain remote context information and

A
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has strong semantic modeling capabilities.
B. Experimental Results
1)  Overall Voice Recognition Accuracy

This paper uses WER and CER as the main evaluation
indicators, selects 20% of the original corpus from 6
dispatching scenarios as test samples, and compares the
overall recognition accuracy of each model. The results
are shown in Figure 3:

I DNN-HMM

30 - I DeepSpeech?

[ ITransformer

25 I W av2 Vee 2.0-Conformer

CER (%)

1 2 3 4 ) 6

Dispatching scenario

Figure 3. Recognition accuracy comparison. Figure 3A shows the WER result; Figure 3B shows the CER result.

From Figure 3, the model based on Wav2Vec 2.0 and
Conformer structure proposed in this paper shows
significant advantages in WER and CER results in 6
types of power grid dispatching scenarios. In Figure 3A,
the average WER of this model in the dispatching
scenario reaches 10.8%, while the average WER of
DNN-HMM, DeepSpeech2, and Transformer ASR
reaches 22.0%, 18.0%, and 14.9%, respectively.
Compared with the comparison model, the average WER
of this model is reduced by 11.2%, 7.2%, and 4.1%,
respectively. In Figure 3B, the average CER of this
model is 5.7%, while the average CER of DNN-HMM,
DeepSpeech2, and Transformer ASR is 14.1%, 10.7%,
and 8.4%, respectively. Compared with the comparison
model, the average CER of this model is reduced by
8.4%, 5.0%, and 2.7%, respectively.

This result shows that the proposed model has higher
accuracy in overall semantic recognition. In the
pre-training stage, Wav2Vec2.0 is used to fully explore
the contextual information in the original audio and
improve its representation ability, so that it can still have
high accuracy in complex dispatching environments. The
Conformer structure improves the model’s perception of

local voice changes. In comparison, the DNN-HMM
model is difficult to adapt to unstructured voice
instructions due to its weak feature representation ability;
DeepSpeech2 and Transformer have strong modeling
depth, but still face generalization bottlenecks when
processing highly domain-specific terms.

To more precisely reflect the accuracy of the model for
high-risk voice instructions in power grid dispatching,
the Weighted Word Error Rate (W-WER) indicator is
applied. For voice instructions with greater operational
significance and stronger safety, such as “tripping”,
“load”, “main transformer”, “decoupling”, and “busbar”,
high penalty weights are given to reflect their “semantic
priority” in actual dispatching. In the experimental set,
2,368 corpora containing at least one type of key voice
instructions are selected. According to the importance of
voice instructions in the dispatching process, High-Risk
instruction (weight set to 3.0) and Medium-Risk
instruction (weight set to 2.0) are divided into two
categories. On this basis, the W-WER of each model is
calculated and compared with the traditional WER, as
shown in Table 6.

Table 6. Comparison of different models in standard WER and weighted WER.

High-Risk instruction | Medium-Risk instruction
Model WER (%) W-WER (%) rec%)gnition rate (%) recognition rate (%)
DNN-HMM 22.0 284 71.2 79.5
DeepSpeech2 18.0 23.6 76.8 82.3
Transformer ASR 14.9 19.1 83.4 86.7
Wav2Vec2.0-Conformer | 10.8 13.8 91.5 92.6
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From Table 6, the proposed model is significantly better
than other models in both standard WER and weighted
WER, which are 10.8% and 13.8%, respectively, and the
recognition rate of High-Risk instruction is 91.5%.
DeepSpeech2 and Transformer ASR are 23.6% and
19.1% in W-WER respectively, which shows that the
model still has the problem of insufficient semantic
concentration when processing High-Risk instruction.
The weighted word error rate of the DNN-HMM model
is 28.4%, indicating that the model has weak recognition
ability for key instructions and has a large risk of
misrecognition and missed detection. Overall, the
proposed model can more accurately extract the features
of voice instructions and can better improve the system’s
overall recognition accuracy.

2) Instruction Completeness

To evaluate the model’s ability to understand and restore
complete dispatching statements, the instruction
completeness recognition rate is used as a measurement
indicator. Combined with the average real-time factor
(RTF) for comprehensive evaluation, the model’s
accurate recognition ratio of complete dispatching
instructions containing key terms is analyzed. A total of
1,573 complete dispatch instruction samples containing
at least two key terms are selected from the dataset. Each
instruction contains a subject (device name), a predicate
(operation action), and additional conditions (voltage
level, time limit). The comparison results are shown in
Table 7.

Table 7. Instruction completeness comparison.

Model Complete recognition rate (%) | RTF Complete recognition of high-risk instruction numbers
DNN-HMM 63.8 0.21 521
DeepSpeech2 71.5 0.24 658
Transformer ASR 77.2 0.28 743
Wav2Vec2.0-Conformer | 84.6 0.17 817

As can be seen from Table 7, the complete recognition
rate of the DNN-HMM model is the lowest, only 63.8%,
which indicates that the model cannot extract the
complex relationship between multiple instructions well
and is prone to misrecognition. Although DeepSpeech2
and Transformer ASR have improved on this indicator
compared with DNN-HMM, with complete recognition
rates of 71.5% and 77.2%, respectively, they are still
inferior to the model in this paper. The complete
recognition rate of the model in this paper reaches 84.6%,
and the RTF is 0.17, which is better than the other three
models. It can more completely recognize the logical
relationship between consecutive words based on
real-time interaction needs.

3) Terminology Adaptation Ability

The terminology adaptation ability test analyzes the
adaptation ability of different models to professional
terms through three dimensions: term recognition
precision, recall rate, and F1 value. The evaluation
corpus is based on the existing vocabulary alignment
corpus. By aligning the recognition results of each model
with the existing labeled vocabulary, the number of
correctly recognized terms, missed detections, and
misrecognitions are counted, and the evaluation
indicators are calculated based on these data. The final
results are shown in Table 8:

Table 8. Terminology adaptation evaluation.

Model Precision (%) Recall (%) F1 Score (%)
DNN-HMM 81.2 75.6 78.3
DeepSpeech2 86.7 82.1 84.3
Transformer ASR 88.4 84.5 86.4
Wav2Vec2.0-Conformer 92.3 89.1 90.7

From the evaluation results in Table 8, compared with
the control model, the proposed method has greatly
improved in precision, recall, and F1 value, with specific
results of 92.3%, 89.1%, and 90.7%, respectively, and
improved by 3.9%, 4.6%, and 4.3%, respectively
compared with the second-best Transformer ASR. The
DNN-HMM model scores the lowest in the three
indicators, with an F1 value of only 78.3%, indicating
that the model has certain limitations in its ability to
extract professional terms in complex scenarios.

The DNN-HMM model is difficult to achieve efficient
modeling of complex semantic relationships and has

poor adaptability to term deformation and non-standard
voice, resulting in low precision and recall. Although
DeepSpeech2 has shown some advantages in the
end-to-end framework, the generalization performance of
vocabulary expression is still insufficient in the absence
of training samples. Transformer ASR has good
modeling capabilities, but due to the lack of voice feature
perception modules, its advantages in capturing local
phoneme information are not obvious enough. This paper
combines Wav2Vec2.0 with Conformer to extract rich
expression information from massive unlabeled voice
data in a self-supervised manner and uses Conformer to
deeply model high-dimensional scenario expressions, so
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that it has stronger modeling adaptability in power grid
dispatching corpus with high concentration of
professional terms.

To further evaluate the model’s real adaptability in the
case of fuzzy pronunciation of key terms in each scenario

or the presence of oral variants, the professional term
Top-K recognition rate is further compared. The
coverage is calculated by extracting the Top-3 candidate
outputs corresponding to each voice and comparing them
with the term label words. The final result is shown in
Figure 4:
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Figure 4.Top-3 recognition rate comparison. Figure 4A is the accident handling recognition rate; Figure 4B is the device switching
recognition rate; Figure 4C is the maintenance operation recognition rate; Figure 4D is the switching operation recognition rate;
Figure 4E is the power generation plan recognition rate; Figure 4F is the issuance and information feedback recognition rate.

As can be seen from Figure 4, the model in this paper has
the highest recognition rate in each dispatching scenario,
and the error is small, which means that it has good
adaptability. From Figure 4A, Figure 4B, Figure 4C,
Figure 4D, Figure 4E, and Figure 4F, the Top-3
recognition rate of the term in each dispatching scenario
of the model in this paper is above 0.75. This is because
Wav2Vec2.0 has the ability of self-supervised learning,
which can better mine the deep features of voice and
improve the contextual understanding and recognition
ability of specific domain vocabulary through the
efficient time series modeling mechanism of Conformer.
It can still extract the main category features well in the
complex scenario with large changes in power grid
dispatching.

Although Transformer ASR has strong global context
modeling ability, its adaptation under small sample
conditions is still limited, making the Top-3 recognition
rate lower than that of the model in this paper.

DeepSpeech2 and DNN-HMM have relatively simple
structures. The former relies on CTC loss, and the
network has limited ability to capture long-distance
dependencies; the latter designs the acoustic model and
language model separately, resulting in poor performance
in complex vocabulary recognition. Overall, the model in
this paper integrates pre-training and high-level time
series structure, which can effectively improve the
adaptability of professional terms in power grid
dispatching.

On this basis, more competitive ASR benchmark models,
Whisper and HuBERT, were introduced in the
experiment. Whisper is a large-scale pre trained ASR
model proposed by OpenAl, while HuBERT is a self
supervised learning model proposed by Meta. This
article compares the recognition accuracy (experimental
results) and prediction accuracy (model predicted values)
of different models on a dataset. As shown in Table 9:

Table 9. Comparison of advanced model experimental results and predicted values.

Model Experimental accuracy (%) Prediction accuracy (%)
Whisper 88.7 88.1
HuBERT 89.1 88.4
Wav2Vec2.0-Conformer 90.6 90.2

From Table 9, it can be seen that the prediction accuracy
based on Wav2Vec 2.0 and Conformer model is very
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close to the experimental accuracy, with a deviation of
less than 0.5%. This indicates that the model has high



prediction accuracy and stability. Especially in the
dataset, its prediction accuracy reached 90.2%, and the
experimental accuracy was 90.6%, further verifying the
effectiveness of the model. Although Whisper and
HuBERT performed relatively well on the dataset, the
recognition accuracy of our model was slightly higher
than these two models on all datasets, with experimental
accuracies 1.9% and 1.5% higher than Whisper and
HuBERT, respectively. This indicates that the model
presented in this article has higher accuracy in handling
complex speech interaction tasks.

4)  Adaptability to Noise Environments

To verify the robustness of the model under background
noise, this paper applies impulse noise as an extreme
noise condition and uses the SNR robustness curve to
compare the performance of various models under
multiple background noise environments, setting the
signal-to-noise ratio to -5-50 dB. Under different
signal-to-noise ratios, the WER of each model is
calculated, and the results are shown in Figure 5.

Comparison of WER under different SNR
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Figure 5. Comparison of adaptation to noise environment.

In Figure 5, Wav2Vec2-Conformer has the best
robustness to impulse noise. When the signal-to-noise
ratio reaches -5dB, the WER can still be controlled at
42.1%, which is significantly better than other models,
and as the SNR increases, the WER continues to
decrease, reaching only 2.8% at 50 dB. This shows that
the proposed model can more efficiently extract
noise-resistant  robust  features by  combining
context-aware voice features with the Conformer
structure with good local and global modeling
capabilities. The performance of DNN-HMM and
DeepSpeech2 at a signal-to-noise ratio of -5 dB is not
ideal, and their WERs are significantly higher, with
limited feature extraction and insensitivity to background
noise. The performance of Transformer ASR in the low
signal-to-noise ratio area is still somewhat different from

that of the proposed model. This is because Transformer
ASR has strong global modeling capabilities and is
easily affected by external noise.

To be closer to the actual operation of the power system,
the recognition robustness of the model under typical
power grid noise conditions is evaluated. This paper
selects four types of noise: transformer hum, wind and
rain noise, intercom noise, and communication channel
interference. Under the same signal-to-noise ratio
(SNR=10dB), the WER of each model is statistically
analyzed, and the results are shown in Figure 6:

Comparison of WER under different power grid noises

WER (%)

15 1 L |

Transformer buzzing  The sound of wind and rain Radionoise ~ Communication channel interference

Noise type
Figure 6. Comparison of WER under different noise conditions.

Under the four typical power grid noise conditions in
Figure 6, the proposed model is significantly better than
the DNN-HMM, DeepSpeech2, and Transformer ASR
comparison models in terms of WER. The experimental
results show that the WER of the proposed model under
various types of noise are 18.2%, 19.6%, 21.4%, and
25.8%, respectively. Based on the Wav2Vec 2.0 and
Conformer fusion model, the spectrogram enhancement
is combined with the background noise synthesis
mechanism, which shows stronger anti-interference
ability in relatively stable noise environments such as
transformer hum and still maintains good recognition
stability under more challenging communication channel
interference,  further  improving the  model’s
anti-interference ability to noise, thereby effectively
improving recognition robustness.

5) Model Efficiency

In order to comprehensively evaluate the performance of
the proposed model and the comparative model in terms
of model efficiency, a computational resource
consumption index was used to record the GPU usage
and average processing time of each instruction for each
model, as shown in Table 10:

Table 10. Comparison of model efficiency.

Model GPU usage rate (%) Average instruction processing time (ms)
DNN-HMM 65.2 120.8

DeepSpeech2 68.9 105.2

Transformer ASR 72.1 93.7

Wav2Vec2.0-Conformer 61.5 81.1
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From Table 10, it can be seen that although DNN-HMM
has relatively low computational resource consumption,
its processing speed is slow. DeepSpeech2 and
Transformer ASR show high GPU utilization and fast
processing speed respectively, but due to their complex
network structure and a large number of parameters, they
may face higher hardware requirements in actual
deployment. In contrast, the model presented in this
article demonstrates more reasonable GPU utilization
while maintaining efficient processing speed. Especially
in terms of average processing time for each instruction,
it is only 81.1 milliseconds, significantly better than the
other three models.

6) Ablation Experiment

To verify the specific contribution of each key module in
the model proposed in this paper to the overall
performance, the Wav2Vec2.0 pre-trained encoder,
Conformer structure, and term-guided attention
mechanism are eliminated, and the WER and CER
results of each ablation model are compared to verify the
specific contribution of each key module in the model to
the overall performance. The results are shown in Figure
7.
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Figure 7. Comparison of ablation experiment results. Figure 7A is the WER ablation experiment result; Figure 7B is the CER
ablation experiment result.

In Figure 7, there is a large difference between the WER
and CER results after eliminating each component. From
Figure 7A and Figure 7B, after removing the
Wav2Vec2.0 pre-trained encoder, the model performance
is greatly reduced; the WER is increased to
13.1%-15.3%; the CER is increased to 7.1%-8.3%. After
removing the Conformer structure, the ratio of WER to
CER also increases significantly, 12.0%-13.9% and
6.5%-7.6%, respectively, indicating that Wav2Vec2.0 and
Conformer have a significant impact on temporal
correlation and local overall characteristics, while the
absence of them reduces the model’s performance. After
removing the term-guided attention mechanism, WER
and CER increase to 11.3%-12.9% and 5.8%-6.9%,
respectively, which is slightly lower than the complete
model, indicating that this mechanism helps to improve
the term recognition ability and context focus ability. In
general, the three modules play an important role in
improving the accuracy of ASR, which means that the
design of each component in this paper is reasonable and
has a synergistic effect.

5. Conclusions

The existing power grid dispatching voice interaction
system has the problem of difficulty in recognizing
professional terms and poor scenario adaptability. To
improve the accuracy and robustness of dispatch
instruction ASR, this paper combines Wav2Vec 2.0 and
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Conformer to build an end-to-end ASR model. Through
Wav2Vec 2.0 self-supervised pre-training and Conformer
structure modeling, the terminology-guided attention
mechanism is integrated to improve the recognition
ability of professional terminology. The experimental
results show that the overall recognition accuracy of this
model is significantly better than DNN-HMM,
DeepSpeech2, and Transformer ASR, with an average
WER and CER of 10.8% and 5.7%, respectively; the F1
value of term recognition reaches 90.7%, showing strong
robustness, and the WER decrease trend is better. The
ablation experiment verifies the key role of each key
component in improving the model’s performance, which
provides a certain reference for solving the problems of
professional terminology adaptation and noise robustness
in power grid dispatch ASR. However, this paper still has
limitations. This paper does not deeply explore the
adaptability of the model to extreme noise and rare
accents. In practical operation, it shows a certain demand
for computing resources. According to the experimental
test results, the average GPU utilization of the system is
61.5%, and the average delay of a single speech
processing is 81.1ms. Although it consumes less
computing resources compared to other models, it still
has a certain delay on low performance hardware. In
addition, this article did not conduct in-depth research on
user interaction experience, nor did it effectively explore
the design of voice interaction interfaces and the
optimization of command input processes. Future
research can focus on multimodal integration,



lightweight model design, and dynamic adaptive
mechanisms. Speech enhancement techniques based on
deep learning can further improve noise reduction
capabilities. The system can be deployed in the server
cluster of the power grid dispatching center. Multiple
terminal devices can be connected through the LAN and
deployed locally using edge computing devices to further
improve the practicability and intelligence of the power
grid dispatching ASR system.
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