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Abstract. To solve the problem of insufficient feature
representation ability and poor topological adaptability
of traditional methods in fault location of complex power
transmission and transformation systems, this study
proposes an intelligent location framework that combines
knowledge graph with GraphSAGE. Based on a
four-layer architecture, a dynamic knowledge graph is
constructed in real time through SCADA/PMU data,
defining entities such as substations, lines, circuit
breakers and their electrical connections, protection
triggers and other relationships, and designing an
incremental graph update mechanism. The model layer
uses a double-layer GraphSAGE, combined with an
LSTM aggregator to perform stratified sampling and
dynamic edge weight adjustment on neighborhood time
series measurement features. Joint cross-entropy and
knowledge constraint loss are introduced in training to
balance classification error and semantic consistency.
The experiment generates 2000 fault cases based on the
IEEE39 node system. The results show that the
positioning accuracy of the proposed model in the IEEE
39-node system reaches 0.953. As the transition
resistance gradually increases from 200 Q to 2000 Q, the
accuracy of the proposed model changes from 0.953 to
0.943. As the signal-to-noise ratio changes from 5dB to
30dB, the accuracy changes from 0.920 to 0.955.. The
semantic enhancement of the knowledge graph and the
dynamic  topological reasoning mechanism  of
GraphSAGE synergistically improve the robustness and
real-time performance of the model, providing a
high-precision solution for the intelligent operation and
maintenance of the power transmission and
transformation system.
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1. Introduction
As the core hub of the power grid, the operation safety

and stability of the power transmission and
transformation system [1,2] directly affect the reliability
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of power transmission. However, the network topology
[3,4] is complex, the equipment types are diverse, and
the fault propagation paths are changeable, which makes
the traditional positioning methods based on protection
action or waveform analysis have obvious deficiencies in
feature characterization and topology adaptability.
Knowledge graphs [5,6] integrate heterogeneous data
such as equipment archives, topological structures, and
historical faults into structured entity-relationship
networks through semantic modeling and reasoning;
GraphSAGE (Graph Sample and Aggregate) [7,8] relies
on neighborhood sampling and aggregation mechanisms
to achieve efficient inductive embedding learning of
large-scale, dynamic networks. The collaborative
application of the two can enhance node features through
knowledge embedding [9,10], and maintain the model's
reasoning efficiency and generalization ability in
real-time switch state changes, providing an innovative
solution for high-precision, dynamic and adaptive
positioning of fault sections in power transmission and
transformation systems.

The power transmission and transformation system
studied in this article mainly includes ultra-high voltage
and ultra-high voltage AC/DC transmission systems,
covering the main grid structure and key substation
nodes. This type of system has the characteristics of
complex topology, variable operating conditions, and
wide range of fault impact. This study is based on the
actual operation and maintenance needs of the State Grid
Corporation of China's ultra-high voltage construction
project, aiming to enhance its intelligent identification
ability for fault sections under complex operating
conditions, support rapid isolation and restoration of
power supply, and ensure the safe and stable operation of
the power grid.

The main contribution of this study is to propose an
intelligent positioning framework for fault sections in
power transmission and transformation systems that
integrates knowledge graphs and GraphSAGE, achieving
seamless integration and dynamic collaboration from
semantic modeling to graph neural reasoning. Through



the entity-relationship-attribute definition and
incremental update mechanism based on the IEC 61850
standard, a multi-source heterogeneous knowledge graph
including substations, lines, circuit breakers, relay
protection devices and historical fault events was
constructed. It can not only support the semantic
reasoning of complex topologies and causal links, but
also provide rich prior constraints for subsequent graph
neural networks. Inductive GraphSAGE is introduced at
the model level to perform multimodal feature fusion on
current amplitude, phase and switch state signals.
Real-time topology changes are embedded in the
network representation through dynamic edge weight
adjustment based on SCADA (Supervisory Control And
Data Acquisition)/PMU (Phasor Measurement Unit),
which significantly improves the discrimination of fault
embedding and the model's adaptability to topology
mutations. PMU is used for high-precision synchronous
acquisition of phasor data of voltage and current in
power systems, providing real-time dynamic behavior
monitoring. This paper designs a hybrid loss function
that combines cross entropy and knowledge consistency
regularization to maintain tight clustering of semantically
similar nodes in the embedding space, enhancing the
interpretability and generalization ability of the model. In
the IEEE 39-node system and multiple fault scenarios
(including high-impedance grounding and Emanuel arc
faults), this framework outperforms mainstream methods
such as HGNN, GAT, GIN (Graph Isomorphism
Network) and GCN (Graph Convolutional Network) in
terms of positioning accuracy, robustness and response
delay. This fully verifies the synergistic advantages of
knowledge  graph  semantic = enhancement and
GraphSAGE efficient embedding learning, and provides
an innovative and feasible technical path for the
intelligent operation and maintenance of power
transmission and transformation systems.

2. Related Works

In recent years, knowledge graphs [11,12] have gradually
become an important supporting tool for the
intelligentization of power systems due to their semantic
modeling and relational reasoning capabilities. In the
field of asset management, researchers use equipment
entities such as substations, lines, and protection devices
as nodes, and construct associations such as "connected
to" and "protection coordination" to achieve unified
management and retrieval of power grid topology [13,14]
and equipment attributes. The fault diagnosis method
based on knowledge graph [15,16] integrates real-time
measurement data and static equipment archives in the
same graph, and uses path query or rule reasoning to
quickly identify possible fault sources and propagation
paths. In addition, many works also integrate ontology
models and machine learning algorithms [17] on top of
knowledge graphs to improve the generalization ability
of new fault modes. However, existing research focuses
on static graph construction and offline reasoning, and
lacks support for real-time topology changes and
dynamic data updates, making it difficult to meet the
online needs of high-frequency fault location in power
transmission and transformation systems.
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Graph neural networks are widely used in power grid
state estimation and fault location because they can
directly learn features on graph structures. Early studies
mostly used GCN [18,19] to extract neighborhood
features of network nodes to achieve classification and
discrimination of fault types; subsequently, GAT [20,21]
enhanced the focus on key fault propagation paths by
adaptively allocating neighbor weights. In view of the
large-scale topology and real-time requirements of power
grids, inductive methods such as GraphSAGE [22]
effectively reduce the computational complexity through
neighborhood sampling and learnable aggregation
functions, and support online embedding updates of
network nodes. In addition, some works combine
time-series graph neural networks [23,24] to integrate
time-series measurement information such as current and
voltage to achieve dynamic capture of fault evolution.
Although the above methods have achieved significant
improvements in positioning accuracy and robustness,
most studies are still limited to pure data-driven, lacking
the use of complex semantic relationships in power grids
and model interpretability.

Although knowledge graphs and graph neural networks
have shown great potential in the field of power systems
[25,26], the deep integration of the two has not yet been
fully explored. Existing knowledge graph research
[27,28] focuses on static entity-relationship modeling
and lacks effective connection with graph neural network
training; while most graph neural network methods are
based on topological structure [29,30] and measurement
features, and make insufficient use of device attribute
semantics and historical fault causal information. In
addition, in the case of dynamic topological changes
[31,32], how to achieve the coordination of real-time
graph update and model online reasoning to ensure the
rapid adaptation of the positioning model to new fault
nodes is still a key problem that needs to be solved. In
recent years, research on load fault localization has
focused on integrating knowledge graphs and graph
neural networks to improve localization accuracy and
robustness. Based on GraphSAGE [33,34], GAT and
other models, combined with real-time data and power
grid topology structure, dynamic fault inference is
achieved. At the same time, introducing knowledge to
enhance semantic expression, integrating historical faults
and device attribute information, improving the stability
of positioning in complex scenarios, and providing new
ideas for smart grid fault diagnosis. Therefore,
combining the semantic enhancement capability of
knowledge graph with the efficient embedding learning
mechanism of GraphSAGE to build a fault location
framework with dynamic topology adaptation and
semantic reasoning capabilities has become an important
breakthrough in current research.

3. Methods
A.  Overall Framework Design
The overall framework design in this section is

specifically divided into four layers: data layer,
knowledge layer, model layer and application layer. It



takes the continuous input of SCADA/PMU data as the
starting point, and finally outputs the fault section
location result through dynamic update of knowledge
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Figure 1. Overall framework of this paper.

As the underlying support of the system, the data layer is
mainly responsible for collecting and preprocessing
various operating data, including real-time monitoring
values such as switch status, measurement quantity,
voltage and current providled by SCADA, and
high-precision phasor synchronization data collected by
PMU. In addition, historical fault recordings, equipment
archives, and topology configuration files are integrated.
All raw data are cleaned, time-series aligned, missing
value interpolated, and noise filtered to generate unified
format data storage that can be called by the upper layer,
ensuring the input quality of subsequent knowledge
graph construction and model training.

The knowledge layer builds and maintains the power
grid knowledge graph based on the output of the data
layer. Entity types (substations, line sections, circuit
breakers, protection devices, fault events, etc.) can be
defined, and relationship models can be designed
according to the IEC 61850 standard. The attribute layer
associates the device electrical parameters, operating
status, and historical fault labels. To meet the needs of
online positioning, an incremental graph update
mechanism is designed. Whenever SCADA/PMU reports
a switch trip or reconfiguration of the topology, the
system automatically triggers subgraph updates and
knowledge reasoning to ensure that the graph always
reflects the latest state of the power grid.

The model layer is centered on GraphSAGE, which
carries the fault node representation learning and
reasoning functions. Through the neighborhood sampling
strategy, a multi-layer neighbor subset is extracted from
each target node, and the aggregator is used to combine
the electrical measurement timing characteristics and the
device state vector to generate semantically enhanced
node embedding. The dynamic edge weight mechanism
adjusts the connectivity strength in the graph according
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to the real-time switching signal to ensure that the model
can capture the impact of topological mutations on the
fault propagation path. During the training process, the
joint cross entropy and knowledge constraint loss
function are used to minimize the positioning error and
semantic reasoning error at the same time.

The application layer converts the model reasoning
results into visualization and operation and maintenance
decision support. The positioning module outputs the
probability distribution map of the fault section and
integrates with the geographic information system
platform to intuitively mark the fault location and
possible propagation path, and provides a list of fault
sections for on-duty engineers to dispatch isolation and
maintenance. The system supports minute-level online
updates and feedback to meet the actual power grid's
needs for efficient and accurate fault diagnosis.

Through the above four-layer collaborative design and
flow, the framework realizes an end-to-end closed loop
from massive multi-source data to high-precision fault
section positioning, providing solid technical support for
the intelligent operation and maintenance of the power
transmission and transformation system.

B. Knowledge Graph Construction

In this study, the knowledge graph construction follows
the IEC 61850 standard to meet the semantic fusion
requirements of multi-source heterogeneous data in the
power transmission and transformation system. The

construction process includes three steps: entity
definition, relationship modeling, and attribute
association. The equipment archives, topology

information, and historical fault records are uniformly
mapped to a structured semantic network, providing rich
context and constraints for the representation learning of



graph neural networks.

(1) The entity definition phase identifies and abstracts
the key object types in the power transmission and
transformation system, including but not limited to the
following:

Substation is the core node responsible for voltage level
conversion and power distribution, usually including
multiple incoming and outgoing lines and main
transformers;

Transmission Line (TransmissionLine) is the conductor
segment that carries high-voltage power for
long-distance transmission, and its attributes include
impedance, length and geographic coordinates;

Circuit Breaker(CircuitBreaker) is the actuator for fault
isolation and line protection, and its action sequence is
crucial to fault location;

Protection Relay (ProtectionRelay) monitors current and
voltage changes and sends a trip command when an
abnormality is detected;

Current and voltage sensors (PMU/CT/PT) provide
synchronized phasors and measurement data;

Fault events (FaultEvent) record the time, type and
maintenance results of the fault;

Geographic location (Location) and operation and
maintenance personnel (Operator) and other auxiliary
entities.

(2) In the relationship modeling stage, various
association types are designed according to electrical
semantics and operation and maintenance logic:

connected_to indicates the electrical connection between
the two, such as the connection between the line and the
substation;

triggers: the action trigger of the circuit breaker by the
relay protection;

measured by: PMU/CT/PT measurement association
with line or bus;

located_in: the geographical location or section of the
equipment;

has_fault history: the historical association between the
entity and the fault event;

adjacent_to describes the topologically adjacent line or
switchgear;

protected by: the line or transformer is protected by a
certain relay protection device.

(3) Attribute association level, adding static and dynamic
attributes to each entity, including:

Equipment parameters include line impedance (Q/km),
transformer capacity (MVA), circuit breaker rated current
(A);

Status quantity includes voltage amplitude, phase angle
and switch status reported in real time by SCADA/PMU;

Historical fault records fault number, occurrence
timestamp, fault type (short circuit, grounding, arc, etc.)
and maintenance time;

Spatial information includes longitude and latitude
coordinates, region;
Maintenance cycle is date of the most recent
maintenance and inspection.

Finally, a power knowledge graph containing thousands
of entities, tens of thousands of relationships, and
hundreds of dimensional attributes is formed. It not only
supports path query and rule reasoning, but also provides
semantic initialization and constraint information for
subsequent GraphSAGE embedding learning.

The entity relationship example is shown in Table 1.

Table 1. Entity relationship example.

Entity 1 Relation Entity 2

Description

Substation-A connected to

TransmissionLine-L1

Substation A is electrically connected to line L1

TransmissionLine-L1 | measured by PMU-Device-P1

PMU P1 performs synchronized phasor measurements on
line L1

CircuitBreaker-CB1 located in Substation-A

Circuit breaker CB1 is installed in substation A

ProtectionRelay-R1

triggers

CircuitBreaker-CB1

Relay protection R1 operates to trigger circuit breaker
CB1

TransmissionLine-L1

adjacent to

TransmissionLine-1.2

Lines L1 and L2 are adjacent in the same corridor

Transformer-T1

protected by

ProtectionRelay-R2

Transformer T1 is protected by R2

Substation-B

connected to

TransmissionLine-1.2

Substation B is electrically connected to line L2

FaultEvent-F1001

has_fault history

TransmissionLine-L1

Fault event F1001 occurs on line L1

CircuitBreaker-CB2

measured by

CT-Device-C1

CT C1 measures bus current near circuit breaker CB2

PMU-Device-P2

located in

Substation-B

PMU P2 is deployed in substation B

Substation-A

owned by

Operator-O1

Substation A is managed by operator O1

TransmissionLine-L.3

connected to

Transformer-T2

Line L3 is connected to the high voltage side of T2
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C. Fault Reasoning Model Based on GraphSAGE

The GraphSAGE model used in this article belongs to a
type of graph neural network, designed to address the
problem of node embedding learning in large-scale graph
data, especially in scenarios that require support for
inductive learning and online updates. Compared to
traditional GCN, which is mainly used for node

classification tasks in static graphs, GraphSAGE
emphasizes efficient subgraph embedding learning
through neighborhood sampling and aggregation

mechanisms, and is suitable for power transmission and
transformation systems with frequent topology changes.
In addition, GAT enhances selective attention to key
neighborhood information by introducing attention
mechanisms, while this paper combines LSTM
aggregator and dynamic edge weighting mechanism to
further improve the adaptability of the model in complex
fault scenarios of power systems.

In order to construct a graph model for fault inference,
the entity set involved in this study is first defined,
including all key devices involved in power grid
operation and fault propagation. This collection contains
the following main types:

Substation: the core node responsible for voltage
conversion and energy distribution functions;

Transmission line: a physical channel for long-distance
transmission of high-voltage electrical energy;

Circuit breaker: a switching device that performs fault
i1solation and line control;

Protection relay: Monitor abnormal current and voltage
and issue tripping instructions;
Measurement equipment: provides real-time
synchronized phasor and status signals;

Historical fault events: Record the location, type, and
handling results of past faults.

The above entities form a dynamically evolving network
of relationships through electrical connections, triggering
actions, measurement  associations, and  other
relationships.

The power transmission and transformation system is
abstracted as a weighted graph at time t, and the formula
is:

G =(V.EW,) (1)

In Formula 1, V is a node set, each node corresponds
to an electrical device (such as busbar, line section,
circuit breaker, protection relay, etc.). EcVxV is an
edge set, which represents the electrical connectivity

w :[W.‘

between devices. f i

] is a time-varying edge
weight matrix, which is used to characterize the impact
V={1,2,---,39}

represents a set of nodes, corresponding to the bus
numbers in the IEEE 39 node system.

of switch status on connectivity.

The constructed graph structure is shown in Figure 2.
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Figure 2. Constructed graph structure.
Through Matpl(?tlib’s B!ues color spectrum aqd I, ifswitch, is closed at ¢
Normalize mapping, the impedance of each edge is . ) ] ]
represented by color depth: the greater the impedance, w; =9, ifswitch; isopenats, <1 (2)
the darker the edge color; the smaller the impedance, the 0, if(i,j)eE.

lighter the edge color. Nodes are represented by numbers
1-39 and are directly used for input preprocessing and
feature construction of the GNN model.

For any edge (i, /)€ E , its weight is defined as:
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This design ensures that fault information is mainly
propagated along closed lines, while weak connectivity
is retained on disconnected lines to assist the model in
learning recursive backtracking of edge faults. Index i



and j are elements of node set V.

From the matrix interpretation, define the adjacency
matrix 4, and the degree matrix D,:

4,=[w;] 3

b, 5 ) @

Each node v collects three-phase voltage and current
synchronous phasors at time ¢ , and its initial
eigenvector contains:

LI

(Vv v g ] 6

Among them, V, and I, represent the amplitude, and

2

evolution, the most recent T time steps are selected
and spliced to form a time series feature:

_ t=T+1
= [XV

The operating status of circuit breakers and protective
devices is represented by binary features:

is the phase angle. In order to capture short-term

x5

v

~x ]eRT (6)

StCB ’ s;{elay < {0’ 1} (7)

1 represents "action" or "closed", and O represents "no
action" or "open". These discrete signals are
concatenated with continuous measurements to form the
complete feature vector of the node:

t seq
X, = |:X

v

t t 9T +2
SCB ||SRe1ay:| € R (8)

This model uses a two-layer GraphSAGE architecture,
and the hierarchical aggregation mechanism includes
neighborhood sampling and LSTM (Long Short-Term
Memory) aggregation. Each layer samples a fixed

number of domain J\/(v) = {u : (u,v) € E} of the target

S, (v) ~ Uniform (N (v),S),5 =10 (9)

This operation reduces computational complexity at each
layer and prevents over-smoothing.

In LSTM aggregation, the sampled neighbor embedding
sequence {hg"_l) ‘ues, (v)} is input into the LSTM
unit in a fixed order:

0

) =LSTM(h§f*",---,h§i*>) (10)

The initial layer is h(vo) =x! . LSTM aggregation can
learn the complex dependencies of neighbor states over
time.

The update formula for each layer is:

b o ([ b

W J+64) an

{W(k),b(k)} is a trainable parameter.

In formula 11, represents concatenation and

K

v

Finally, is embedded and mapped to the fault

category probability through the Softmax classifier:

exp (wjh(vK) +b, )

Z,il exp(ijh(vK) +b, )

P(yV =c‘h£K)) (12)

In formula 12, C is the total number of categories and
{w j,bj} is the classification parameter.
Multi-classification cross entropy loss is used:
C
Lop ==, 2 L =c)logP(y,=c) (13)

The hyperparameter settings of the GraphSAGE model
are shown in Table 2.

node v:
Table 2. GraphSAGE model hyperparameters.

Parameter Value Parameter Value
Number of layers 2 Batch size 128
II\I)elghbors per layer (Layer 10 Dropout rate 05
Neighbors per layer (Layer 10 Welght. . decay (L2 0.0001
2) regularization)

Aggregator LSTM Training epochs 100
Tnitial learning rate 0.001 Knowledge loss  balance | ),

coefficient

The two-layer structure (Number of Layers=2) can take

into account both local and distant neighborhood features.

Each layer samples 10 neighbors to balance efficiency
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and information volume. The LSTM aggregator can
capture time series measurement dependencies. The
learning rate, batch size, weight decay, and Dropout



jointly control training stability and generalization
capabilities. 100 training rounds can fully converge, and
weekly incremental updates ensure that the model
responds to topology changes in a timely manner. The
knowledge graph loss coefficient is used to balance
classification and semantic consistency constraints.

D. Dynamic Topology Reasoning Mechanism

In actual power grid operation, the topology structure
changes frequently with the switch action, and must be
captured and synchronized to the reasoning model in real
time to ensure the timeliness and accuracy of fault
location. The system continuously monitors the action
signals of switches, circuit breakers and reclosers

provided by SCADA. When a device state s (¢)

switches from "closed" to "open" or vice versa, the
subgraph update is triggered.

Whenever As[j (t) =5 (t)— Sy (t - 1) # 0 1is detected, the

system only performs subgraph reconstruction on the
affected local node set and injects the updated edge
weight information into the knowledge graph and GNN
input graph.

To avoid full retraining every time the topology changes,
this study uses incremental parameter fine-tuning.
Assume that the model parameters are ® and the
current training loss is:

L(O)=Le (0)+ AL (©) (14)

In formula 14, L is the cross entropy classification

L the

regularization. In formula (14), a composite objective
function is defined that includes cross entropy loss and
knowledge consistency regularization terms to guide the
initial training process of the model. In order to achieve
rapid adaptation after topology changes, an incremental
fine-tuning strategy based on small batch gradient
descent is adopted. Every week or when the cumulative
number of key topology changes exceeds the preset
threshold, the system collects new fault samples and the
latest topology data to form an incremental training set

loss, and is knowledge consistency
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D,

inc

. Fine-tune ©® through mini-batch gradient descent:
© < 0-1Vo[L(®;D,)] (15)

The learning rate 7 takes a small value (1/10 of the

initial value) to keep the model stable. In this way, the
model can quickly adapt to changes in topology and fault
mode, while avoiding the high computational overhead
of full training. The incremental update strategy uses
logging and version control to ensure that when the
positioning error increases, it can quickly roll back to the
historical optimal weight, thereby ensuring high
availability of the online fault location system. This
incremental update mechanism only adjusts local
parameters, significantly reducing the computational cost
of full retraining. At the same time, combined with
logging and version control, it supports rapid rollback to
historical optimal weights when positioning performance
declines, ensuring high availability of the system.

4. Experimental Design
A.  Experimental Setup

In this study, the experimental platform selected the
classic New England IEEE 39-bus system, and carried
out detailed modeling and parameter calibration,
including core information such as bus voltage level, line
impedance and generator output. After the system
topology was reproduced in the Python environment,
2000 groups of typical fault cases were generated
through PSCAD software simulation, including
single-phase grounding fault, two-phase short circuit
fault, three-phase short circuit fault, etc. In order to
investigate the actual robustness of the positioning model,
white noise is added to the voltage and current
measurement waveforms in each fault case, and all
measurement data are normalized and time-series
calibrated in the post-processing stage to ensure the
consistency and comparability of the input features.

The Bus voltages of the IEEE (Institute of Electrical and
Electronics Engineers) 39-node system are shown in
Figure 3.
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The IEEE 39-bus system has a base voltage of 345 kV
and contains 39 nodes. 1-29 are load nodes (Pd=6.15 GW,
Qd=1.40 GVar), 30-38 are generator nodes (Pg=6.20 GW,
V=1.05 pu), node 39 is a balancing node (V=1.03 pu),
and the per-unit voltage range of the entire network is
0.94-1.06.

In the dynamic adaptability experiment, the transition
resistance of the line single-phase grounding fault was
tested at equal intervals in the IEEE 39-bus system, with
resistance values of 200 Q, 400 Q, 600 Q, 800 Q, 1000
Q, 1200 Q, 1400 Q, 1600 Q, 1800 Q and 2000 Q. Under
each impedance condition, 200 groups of fault cases
were generated based on PSCAD, keeping other fault
parameters unchanged, and evaluating the location
accuracy and delay change of the model in high
impedance fault scenarios. By comparing the accuracy
drop trend and response delay increment of the proposed
model with HGNN, GAT, GIN, and GCN at different
impedance levels, the sensitivity and adaptation speed of
each method to the change of fault resistance
characteristics are quantified.

In the evaluation of the sampling delay impact, the
neighborhood sampling lag caused by network
communication or computing delay during the real-time
reasoning process of GraphSAGE is simulated, and the
number of nodes for delayed sampling is gradually
increased from 1 to 10, and the positioning performance
under each delay configuration is tested respectively. In
the noise robustness test, Gaussian white noise of
different intensities was added to the PSCAD simulation
data, and the signal-to-noise ratio was set to 5 dB, 10 dB,
15 dB, 20 dB, 25 dB and 30 dB, a total of 6 levels, to
verify the positioning accuracy of each model when the
measurement noise increased sharply.

- 1O

= D

e 0

ES IS =

=30

TDSN =

=10

=0
SDSE=

e 36 . E

el . E

=08 —

Vabe 38

L1

e Jp0

Figure 3. Bus voltages of IEEE 39-bus system.
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In order to evaluate the model's scalability for complex
arc faults, the single-phase grounding fault was replaced
with the Emanuel type arc fault, verifying the wide
applicability and engineering feasibility of the method.

B.  Evaluation Indicators

In terms of comparative evaluation, the model in this
paper is tested in parallel with four mainstream graph
neural network models: HGNN, GAT, GIN and GCN. All
models are trained and tested under the same hardware
environment (Intel Xeon CPU, NVIDIA Tesla V100
GPU, 128 GB memory) and software configuration
(Python 3.8, PyTorch 1.12), and positioning accuracy,
Fl-score and average positioning delay are used as the
main evaluation indicators to ensure the fairness and
scientificity of the comparison results.

The positioning accuracy is defined as the proportion of
all fault segments in the test set that the model correctly
predicts:

TP+TN
Accuracy = Al (16)
TP+TN +FP+FN

In formula 16, TP is the number of faulty segments
correctly identified, 7N is the number of non-faulty
segments correctly excluded, FP is the number of
normal segments mistakenly predicted as faulty, and
FN is the number of faulty segments missed.

Fl-score comprehensively measures the accuracy and
recall of the positioning model on unbalanced data, and
its calculation formula is:



Precision x Recall

Fl=2 (17)

Precision + Recall

The response time measures the delay from the
occurrence of a fault to the output of the positioning
result by the model, including: data transmission delay,
graph update and feature construction delay, graph neural
network forward reasoning delay, result visualization and
decision support output delay.

1.007

0.95+

Value

0.90+

5. Results and Discussion

A.  Comparison of Accuracy

In the IEEE 39-node system, the positioning accuracy
and F1 value information of the proposed model and the

comparison model are shown in Figure 4.

The detailed data of Figure 4 is shown in Table 3.

3 Accuracy B F|

N

0.85
This paper model HGNN

GAT
Model

GIN GCN

Figure 4. Positioning accuracy.

Table 3. Positioning accuracyy.

Model Accuracy F1

This paper model 0.953 0.947
HGNN 0912 0.905
GAT 0.928 0.921
GIN 0.894 0.887
GCN 0915 0.908
GCN+Rule Engine 0.93 0.925
GAT+Expert System 0.935 0.928
GraphSAGE+Knowledge Enhancement 0.94 0.936
Based on impedance method 0.86 0.852
travelling wave method 0.875 0.867
SVM-+Feature Engineering 0.88 0.874
RF+timing characteristics 0.89 0.883
LSTM-+attention mechanism 0.90 0.895

The "knowledge graph + GraphSAGE" model proposed
in this paper has a positioning accuracy of 0.953 and an
F1 value of 0.947 on the IEEE 39-node system, which is
significantly better than the four mainstream comparison
methods. Although the HGNN, GCN and GAT models
can utilize graph structure information, they have
limitations in fault semantics and dynamic topology
adaptability, resulting in accuracy rates of 0.912, 0.915
and 0.928 respectively, and F1 values of 0.905, 0.908
and 0.921 respectively. GIN performs slightly worse in
extracting structural isomorphic features, with an
accuracy of only 0.894 and an F1 of 0.887. In contrast,
the model in this paper integrates the semantic priors of
electrical equipment and historical faults through the
knowledge graph, and then combines it with the
inductive embedding learning of GraphSAGE to
effectively enhance the discrimination of node feature
expression. In particular, in scenarios where the fault
sections have similar semantics or complex topology, it

can more accurately distinguish small feature differences
and eliminate noise interference, thus achieving
significant improvements.

An in-depth analysis of the root causes of the
performance differences can be attributed to the
following aspects: First, the knowledge graph provides
the model with multi-dimensional semantic relationships
including "connected to" and "triggers", which makes up
for the lack of understanding of device attributes and
causal links in models based purely on measurement or
topology; second, GraphSAGE uses neighborhood
sampling and LSTM aggregation. This retains local
high-order structural information and also forms a
stronger timing capture capability for multi-time
measurement features and switch state changes; thirdly,
the dynamic edge weight mechanism enables the model
to respond to SCADA/PMU switch changes in real time,
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ensuring that fault location can be completed quickly and
stably in topology mutation scenarios. In addition, the
optimization strategy of combining cross entropy and
knowledge consistency loss further improves the
interpretability and generalization ability by constraining
the distance of semantically similar nodes in the
embedding space. Therefore, the proposed method is
superior to other graph neural network variants in

positioning accuracy, providing stronger technical
support for the intelligent operation and maintenance of
power transmission and transformation systems.

The visualization of node embedding t-SNE
(t-distributed Stochastic Neighbor Embedding) is shown
in Figure 5.
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Figure 5. Node embedding t-SNE visualization.

From the t-SNE visualization results, the node
embeddings of the 39 buses roughly form 39 relatively
clustered but overlapping clusters in two-dimensional
space, reflecting the model's ability to distinguish
different bus characteristics and capture potential
correlations. The points within the cluster are relatively
scattered, indicating that GraphSAGE retains the
diversity of time series measurements and device states
during neighborhood sampling and LSTM aggregation;
the partial overlap between clusters reflects the similarity
of adjacent buses in the power grid in topology or fault

propagation paths. The fault segment nodes are densely
distributed near the center of their clusters, which
supports the interpretability of the location model's
embedding of the fault segment - the model can project
nodes of the same fault type to similar areas.

B. Ablation Experiment

The ablation experiment was set up and the results are
shown in Table 4.

Table 4. Ablation experiment results.

Model Accuracy F1
This paper model 0.953 0.947
Remove knowledge graph 0.926 0919
Further remove dynamic topology reasoning mechanism 0.908 0.902
The ablation experiment results show that the knowledge provides a powerful compensation for the node
graph is crucial to improving the performance of the fault characteristics, thereby achieving more robust

localization model. When the complete framework is
retained, the model accuracy reaches 0.953 and F1 is
0.947; once the knowledge graph is removed, the
accuracy drops to 0.926 and F1 is 0.919. This significant
performance gap is mainly due to the unique advantages
of knowledge graphs in enhancing node representation.
By encoding multi-source semantic information such as
electrical equipment attributes, historical fault events,
and protection coordination relationships into entity
embedding, the model can better distinguish segments
that are similar on the surface but have different potential
fault mechanisms. Especially when the fault signal is
weak or the noise interference is large, the semantic prior
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positioning when the original measurement data is not
sufficient to fully reveal the fault characteristics. In
addition, the causal links in the knowledge graph also
provide constraints on the upstream and downstream
fault propagation paths for the model, making the
probability distribution of the fault segment more
concentrated and the decision boundary clearer in the
complex topology structure.

After further removing the dynamic topology reasoning
mechanism, the model accuracy and F1 dropped to 0.908
and 0.902 respectively, which is lower than the
configuration of removing only the knowledge graph.



This result highlights the key role of the topology
dynamic adaptive module in fault location: the operating
state of the power transmission and transformation
system changes from time to time, and events such as
circuit breaker opening and closing and load switching
can change the propagation path and amplitude
attenuation characteristics of the fault current. The
dynamic edge weight mechanism injects topology
change information into the graph structure by real-time
monitoring of the switching signals of SCADA/PMU,
allowing GraphSAGE to capture the latest channels for
fault propagation. After removing this mechanism, the
model can only rely on static topology and historical
semantics, which makes it difficult to accurately reflect
the actual electrical connectivity state when the fault

occurs, resulting in increased positioning errors. In
summary, the synergy of knowledge graph and dynamic
topology reasoning mechanism jointly supports the high
accuracy and robustness of the model in a complex
power grid environment. The loss of any link can
significantly weaken the overall performance.

C. Dynamic Adaptability

In the IEEE 39-node system, the transition resistance
when the line grounding fault occurs is increased, and
the influence of the transition resistance on the fault

location is analyzed. The results are shown in Figure 6.

The data in Figure 6 is shown in Table 5.
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Figure 6. Effect of transition resistance on fault location.

Table 5. Effect of transition resistance on fault location.

Transition resistance (2) This paper model HGNN GAT GIN GCN
200 0.953 0.912 0.928 0.894 0.915
400 0.952 0.91 0.925 0.891 0.913
600 0.95 0.908 0.922 0.887 0.91

800 0.948 0.906 0.919 0.884 0.907
1000 0.946 0.904 0.916 0.88 0.904
1200 0.945 0.902 0914 0.877 0.903
1400 0.944 0.9 0913 0.874 0.902
1600 0.943 0.898 0912 0.872 0.901
1800 0.943 0.896 0911 0.871 0.901
2000 0.943 0.892 0911 0.871 0.901

As the transition resistance gradually increases from 200
Q to 2000 Q, the location accuracy of each model shows
a downward trend. This is mainly because too high
resistance can significantly attenuate the amplitude and
waveform characteristics of the fault current, making the
difference between the fault and normal state in the
measurement signal blurred, reducing the discrimination
ability of the model based on time series measurement
data. Comparing the decline of each model, it can be
clearly seen that the "knowledge graph + GraphSAGE"
framework proposed in this paper is the most robust: the
accuracy only dropped from 0.953 to 0.943, which is
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lower than HGNN, GAT, GIN, and GCN. This shows
that the semantic priors of device attributes and historical
faults provided by the knowledge graph can still provide
compensation for node embedding through semantic
reasoning when the measurement information decays,
thereby maintaining higher positioning accuracy. In
addition, GraphSAGE's dynamic edge weight
mechanism can capture the real-time impact of switch
and resistance changes on fault propagation paths,
enhancing the model's ability to perceive resistance
changes.



Further analysis shows that different models have
different sensitivities to resistance increases. Although
HGNN introduces a hypergraph structure to fuse
multi-source heterogeneous information, it has a strong
reliance on static high-order relationships and is difficult
to reflect the topological impact of resistance changes in
real time, so the accuracy drops from 0.912 to 0.892.
GIN has limited effect in characterizing homogeneous
structures, with the lowest overall performance and the
largest drop, indicating that pure structural features are
difficult to provide sufficient information for fault
location under current decay conditions. Although GCN
has stable low-frequency properties, its limitations in
high-impedance scenarios also lead to performance

degradation. In summary, the semantically enhanced
embedding of the model in this paper is combined with
dynamic adaptive topological reasoning, which can
effectively compensate for weakened measurement
signals and adjust the neighborhood information
aggregation strategy in real time, thereby maintaining
high positioning accuracy and stability in high-resistance
scenarios.

D. Effect of Sampling Delay

The fault location accuracy of delayed sampling nodes is
shown in Table 6.

Table 6. Effect of sampling delay.

Number of delayed sampling nodes This paper model HGNN GAT GIN GCN
1 0.953 0.912 0.928 0.894 0.915
2 0.950 0.910 0.925 0.891 0.913
3 0.947 0.908 0.922 0.888 0.910
4 0.944 0.905 0.919 0.885 0.907
5 0.940 0.903 0.916 0.882 0.904
6 0.937 0.900 0.914 0.879 0.902
7 0.933 0.897 0.911 0.876 0.899
8 0.930 0.894 0.908 0.873 0.896
9 0.927 0.890 0.905 0.870 0.893
10 0.925 0.887 0.902 0.867 0.890

As the number of delayed sampling nodes increases from
1 to 10, the positioning accuracy of each model shows a
decreasing trend. Among them, the "knowledge graph +
GraphSAGE" model proposed in this paper drops from

0.953 to 0.925, which is always higher than other models.

This result reflects the impact of the real-time topology
information lag introduced by delayed sampling on the
fault location performance. The greater the delay, the
more significant the deviation between the graph
structure based on which the model aggregates the
neighborhood and the actual fault propagation channel,
which makes the node embedding unable to accurately
capture the spatial distribution and propagation path of
the instantaneous fault signal.

For mainstream graph neural network methods, HGNN,
GAT, and GCN, they have a strong dependence on
topological consistency. Once the neighborhood
information lags, there is a significant performance
decline even at lower delays (2-4 nodes). Although GIN
has advantages in isomorphic graph representation, due
to the lack of adaptive adjustment of dynamic
topological weights, its tolerance to delayed sampling is
slightly inferior, and the accuracy finally drops to 0.867.
In comparison, the advantage of this model lies in the
integration of knowledge graph semantic priors and
inductive aggregation of GraphSAGE. Through the
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knowledge graph, rich device attributes and historical
fault causal constraints are introduced between graph
nodes, so that even when the sampling lag causes the
real-time measurement to be inconsistent with the
topology, the model can still use semantic embedding to
correct the mnode representation. In  addition,
GraphSAGE's hierarchical sampling and LSTM
aggregation mechanism are highly robust to the temporal
properties of neighbor order and features, and can
alleviate some of the lag noise to a certain extent, thereby
maintaining a higher accuracy. Although delayed
sampling  inevitably = weakens the  positioning
performance of GNN, the model in this paper achieves
high stability and online availability of fault location
through semantic fusion and dynamic adaptive design.

E. Noise Robustness

In order to evaluate the robustness of the model in
complex noise environments, this paper uses
signal-to-noise ratio as a quantitative indicator of noise
intensity. In the simulation data, Gaussian white noise is
added to the voltage and current measurement signals,
and the SNR is set to six levels: 5 dB, 10 dB, 15 dB, 20
dB, 25 dB, and 30 dB. The effects of different noises are
controlled, and the results are shown in Figure 7.
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Figure 7. Noise robustness.

Under different signal-to-noise ratio conditions, all
models show a trend of decreasing positioning accuracy
as the noise increases, but the robustness of the
"Knowledge Graph + GraphSAGE" model is the most
significant: from 5 dB to 30 dB, the accuracy is
significantly improved, and it still maintains a high
accuracy of 0.920 in a low signal-to-noise ratio (5 dB)
environment. In contrast, other models are greatly
affected by noisy data. When the signal-to-noise ratio is
5dB, the accuracy of HGNN, GAT, GIN, and GCN are
0.885, 0.895, 0.860, and 0.880, respectively. The
knowledge graph provides semantic priors such as device
attributes and fault causal links for node embedding.
When the measurement signal is distorted by noise, the
graph semantics can effectively compensate for the
shortcomings of pure data-driven methods. At the same

time, the neighborhood sampling and LSTM aggregation
strategies of GraphSAGE can extract stable time series
features from noise samples and suppress anomalies,
thereby improving positioning reliability. In general, the
framework that integrates semantics and dynamic graph
learning maintains excellent anti-interference
performance in high-noise scenarios, meeting the dual
requirements of accuracy and stability for online fault
diagnosis of power transmission and transformation
systems.

FE. Positioning Performance for Arc Faults
The single-phase grounding fault is changed to an

Emanuel arc fault, and the positioning performance is
shown in Figure 8.
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Figure 8. Emanuel arc fault location performance.

After replacing the single-phase ground fault with the
more complex Emanuel arc fault scenario, the location
accuracy of all models decreased to varying degrees. The
"knowledge graph + GraphSAGE" framework proposed
in this paper still maintained the highest accuracy of
0.915, surpassing the second place GAT (0.887), and
significantly better than HGNN (0.873), GCN (0.880)
and GIN (0.860). The nonlinear oscillation
characteristics and time-varying arc resistance of
Emanuel arc faults make it difficult for traditional
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positioning methods based on transient waveform
mutations to capture fault characteristics, especially in
the early weak arc stage, when the signal is highly
overlapped with the normal operating state. In contrast,
the model in this paper relies on the semantic embedding
of the causal relationship between devices and historical
arc fault patterns in the knowledge graph to successfully
separate arc fault nodes from non-fault nodes in the
embedding space, compensating for the information loss
caused by the missing or distorted waveform features. At



the same time, GraphSAGE's hierarchical neighborhood
sampling and LSTM aggregation can integrate
multi-time measurement and protection device signals,
effectively encode the temporal evolution process of arc
faults, and thus improve the -classifier's ability to
distinguish complex faults.

In terms of response time, the average delay of this
model is 35 ms, which is significantly better than HCNN
(45 ms), GAT (42 ms) and GIN (40 ms), and has a slight
gap with GCN (38 ms). This is mainly due to two aspects:
first, the semantic prior of the knowledge graph means
that the model does not need to calculate complex rules
or reconstruct large-scale subgraphs during online
reasoning. It only needs to retrieve relevant entity
attributes from the graph and initialize node features;
second, GraphSAGE's inductive neighborhood sampling
mechanism only performs learnable aggregation on fixed
small-scale  neighborhoods, avoiding the high

computational overhead brought by full-graph
convolution. The "Knowledge Graph + GraphSAGE"
framework maintains excellent positioning accuracy in
the face of highly nonlinear and volatile waveform
scenarios such as arc faults. In addition, with modular
design and dynamic topology adaptation, it meets the
real-time requirements of the power grid for fault
diagnosis and provides reliable performance guarantees
for actual engineering deployment.

G. Topology Mutation Test

In the IEEE 39-node system, topology reconstruction is
achieved by disconnecting branches, and the positioning
accuracy and delay of the test model after topology
mutation are tested. The branches related to load node 27
and generator node 31 are selected for disconnection test.
The topology mutation test results are shown in Table 7.

Table 7. Topology mutation test results.

Node Branch disconnection Accuracy Response time (ms)
27-26 0.941 35.3

27 27-28 0.938 35.5
27-29 0.935 35.7

31 31-26 0.943 354
31-30 0.940 35.2

The data in Table 7 show that in the IEEE 39-node
system, after the branches related to load node 27 and
generator node 31 are disconnected, the model
positioning accuracy remains in the range of 0.935-0.943,
and the response time fluctuates by only 0.5 ms.
Compared with the 0.953 accuracy under the static
topology, the topology mutation leads to a decrease in
performance, but it is still better than the traditional
method (such as 0.928 of GAT). Reasons for
performance retention: 1) Dynamic edge weight
mechanism updates the adjacency matrix in real time
through SCADA/PMU signals to compensate for the
fault propagation path deviation caused by topology
reconstruction; 2) Knowledge graph semantic embedding
provides causal links between device attributes and
historical ~ faults, and enhances node feature
representation through semantic association when the
topology is partially missing; 3) Incremental update
strategy avoids full retraining and only fine-tunes local
parameters. The accuracy of disconnection of the
relevant branches of load node 27 is slightly lower than
that of the relevant branches of generator node 31,
because the signal attenuation on the load side is faster,
and more neighborhood semantic  association
compensation is required. The experiment verifies the

robustness and real-time performance of the model in the
scenario of dynamic changes in power grid topology,
meeting the online positioning requirements of complex
power transmission and transformation systems.

Due to the strong nonlinearity and time-varying
characteristics of arc resistance, and the serious
interference of noise in the measurement signal, most
comparison models mistakenly identify it as adjacent
lines. The advantages of this model are reflected in the
knowledge graph providing causal relationship
constraints: narrowing the search scope through the
semantic chain of "protective relay R26 action — circuit
breaker CB26 tripping — fault source located near L26";
The temporal aggregation capability of GraphSAGE
allows the LSTM layer to extract stable time series
features from noisy samples and suppress abnormal
fluctuations.

H. Cross-scenario Generalization Analysis
The cross-scenario generalization of the model is

analyzed through IEEE 14, 30, 57, 118, and 300 node
systems, and the results are shown in Figure 9.
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Figure 9. Cross-scenario performance. Figure 9(a) Accuracy; Figure 9(b) F1 score.

Figure 9(a) shows that the accuracy of the paper’s model
in the IEEE 14-300 node system is 0.920-0.949,
significantly better than the comparison methods such as
HGNN (0.892-0.921) and GAT (0.905-0.933). The
performance of the paper’s model only drops by 3.1%
(IEEE 14—300 nodes), indicating that the paper’s model
has strong cross-scale generalization. Through the causal
links between device attributes and historical faults, the
feature fuzziness caused by measurement noise and
increased topological complexity in large-scale systems
is compensated, so that the semantics of the knowledge
graph is enhanced. The dynamic topological reasoning
mechanism adapts to the changes in fault propagation
paths of systems of different scales by adjusting the
adjacency matrix in real time. In contrast, pure
data-driven models (such as GCN) rely on local topology
and lack semantic constraints, and their performance
decreases significantly as the scale of the system
increases. Experiments verify the generalization of this
method in multi-scale power grid scenarios.

Figure 9(b) shows that the F1 score of the paper’s model
is stable at 0.915-0.943 in the IEEE 14-300 node system,
which is significantly better than GAT (0.899-0.927) and
GIN (0.864-0.898), indicating that the paper’s model
maintains a higher recall and precision balance under
unbalanced data. The LSTM aggregator integrates
multiple time series measurement features to enhance the
ability to capture weak fault signals in large-scale
systems. The joint loss function balances the
classification error and knowledge consistency
constraints. In contrast, GIN relies on the assumption of
isomorphic structure, and its F1 changes greatly (IEEE
14—300 nodes). The model in this paper achieves high
stability and interpretability across scenarios through the
collaboration of semantic enhancement and dynamic
graph learning.

The performance comparison between complete updates
and incremental updates is shown in Table 8.

Table 8. Performance Comparison between Full Update and Incremental Update.

Index Full update Incremental update
Average update time (s) 120-180 s 5-15s

Number of rounds of model convergence 50-100 rounds 5-10 rounds
Memory usage (MB) 500-800 MB 50-100 MB
Topology change response delay higher Responsive
Decreased positioning accuracy (after topology mutation) Decrease (about 5%) Within + 1%

6. Conclusions

This article proposes an intelligent positioning
framework that integrates knowledge graph and
GraphSAGE to address the problems of insufficient
feature representation ability and poor topology
adaptability in traditional methods for fault location in
complex power transmission and transformation systems.
By constructing a dynamic knowledge graph and
combining SCADA/PMU data to achieve semantic
enhancement and real-time topology inference, and
introducing an incremental graph update mechanism, the
robustness and response speed of the model to complex
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scenarios such as high impedance, noise, and topology
changes were improved. A localization accuracy of 0.953
was achieved on the IEEE 39 node system. The research
results provide high-precision and high stability online
fault diagnosis solutions for power transmission and
transformation  systems, with good engineering
application prospects. However, the study did not
consider the transfer learning of multi regional power
grids and extreme concurrent fault scenarios. In the
future, digital twins and multimodal fusion will be
combined to further enhance the model's generalization
ability and real-time performance.
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