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Abstract. Aiming at the problem that the current
multi-sensor Energy Management Strategy (EMS) of
new energy vehicles is not adaptable enough and has
insufficient system stability when dealing with sensor
data mutations and complex road conditions, this paper
takes Plug-in Hybrid Electric Vehicle (PHEV) as the
research object, integrates Reinforcement Learning (RL)
algorithm, and studies the optimization of multi-sensor
EMS, aiming to improve the energy consumption control
and system robustness of PHEV under non-steady-state
conditions and sensor interference conditions. This paper
first constructs a state observation module that integrates
multi-sensor data to provide input for decision-making
strategies through refined perception of the vehicle's
operating environment. Then, a dual network structure is
introduced based on Deep Q-Network (DQN) to alleviate
the problem of Q-value overestimation and improve
strategy stability by separating action selection and value
evaluation processes. Finally, combined with Prioritized
Experience Replay (PER), the training priority of
experience samples is dynamically adjusted according to
the Temporal Difference (TD) error to improve the
learning efficiency of key states and the generalization
ability of strategies. The conclusion shows that the EMS
under the proposed method has strong dynamic load
stability and adaptability in complex working conditions
of a disturbance environment, providing a new idea with
more engineering adaptability for the energy efficiency
optimization of PHEV.

Key words. Energy management strategy, Multi-sensor
fusion, Plug-in hybrid electric vehicle, Double Deep
Q-Network, Priority experience replay

List of abbreviations/Symbols

Sequence Abbreviations
/Symbols Full name/definition

1 EMS Energy Management
Strategies

2 PHEV Plug-in Hybrid Electric
Vehicle

3 RL Reinforcement Learning
4 DQN Deep Q-Network
5 PER Prioritized Experience Replay

6 TD Temporal Difference
7 SOC State of Charge
8 EV Electric vehicle
9 DRL Deep Reinforcement Learning
10 LSTM Long Short-Term Memory
11 RC Resistance-Capacitance
12 SAC Soft Actor-Critic
13 PPO Policy Optimization
14 battT Battery temperature

15 motorn Motor speed

16 engn Engine speed

17 vehv Vehicle speed

18 acc Accelerator pedal opening

19 brake Brake pedal opening

20 road Road slope

21 envT Ambient temperature

22 t Global unified sampling
period

23 kt Resampling node
24 N Window size
25 kx States
26 F State transition matrix
27 H Observation matrix
28 k Process noise

29 kv Observing noise
30 m Quality
31 v Speed
32 a Acceleration
33 diveF Drive

34  Coefficient of rolling
resistance

35 Air Air density

36 AAir Air windward area

37 dAir Air resistance coefficient

38  Road inclination angle

39 ocU Open circuit voltage

40 oR Ohmic resistance

41 batQ Rated capacity of battery
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42 bat Charge/discharge efficiency

43 engT Torque

44 engn Rotational speed

45 fuel Energy density per volume of
fuel

46 engi Instantaneous thermal
efficiency

47 gen Motor Efficiency

48 tR Total reward function

49 tS State Space

50 tA ACTION SPACE
51  Discount factor
52 onlineQ Discount factor

53 targetQ Target Value Network

54 i TD error

55  Factors determining priority
order

56 i Importance sampling weight

1. Introduction

In the current world where energy crisis and
environmental problems are becoming increasingly
serious, PHEV, as a new type of transportation that can
replace traditional fuel vehicles, has become a core
technology to promote the development of transportation
towards green direction [1,2]. PHEV multi-sensor EMS
is an important factor affecting vehicle energy efficiency,
endurance, and user experience, and determines the
vehicle performance level [3,4]. To achieve effective
coordination between power batteries, energy recovery,
electric drive, and other parts, multiple types of sensors
are installed in the vehicle to provide support for energy
management by real-time monitoring of important
parameters such as battery power, vehicle speed, road
slope, ambient temperature, etc. [5,6]. The current EMS
has improved the energy-saving performance of PHEV
to a certain extent, but because it is too dependent on
pre-set models, it is difficult to effectively adjust to
sudden sensor data and driving environment, resulting in
poor robustness and real-time performance in practical
applications. These problems seriously limit the energy
efficiency optimization potential of PHEV in complex
road environments.

RL algorithm is an important branch of machine learning.
It learns through the interaction between the subject and
the environment, thereby achieving individual
adaptability and dynamic optimization [7,8]. This paper
enhances the perception ability of vehicle operating
environment by integrating a multi-sensor data fusion
module, enabling strategies to more accurately respond
to complex and nonlinear driving needs; compared with
previous studies, the "Dual DQN+PER" framework in
this paper has been optimized specifically for sensor data
mutations and complex road conditions. By applying a
dual network structure to separate the process of action
selection and value evaluation, the problem of
overestimation of Q-values can be reduced; based on the

PER mechanism, the importance of samples is
dynamically adjusted according to TD error, making the
model more focused on learning key state transitions,
which is particularly important for dealing with sensor
noise and rapidly changing road conditions.

With the development of new energy vehicle technology,
existing research is devoted to solving problems such as
power distribution and battery utilization in vehicle
energy management [9,10]. To achieve electric vehicle
(EV) EMS optimization, Kranthikumar et al. proposed a
combination of a bidirectional long short-term memory
network based on enhanced multi-head cross attention
and the Remora optimization algorithm. They
implemented the proposed method in Matlab and
compared it with several other benchmarks. The results
showed that the regenerative braking efficiency using the
proposed technology was reduced to 4.5% [11]. Hong et
al. proposed an EV real-time EMS strategy based on
deep Long Short-Term Memory (LSTM) to manage
large-scale EVs in layers and partitions. They used
historical load information to obtain the historical
optimal solution to train the learning network to guide
new real-time optimization. Finally, he verified the
effectiveness and superiority of the proposed layered
architecture and management strategy through simulation
examples [12]. To solve the problem of battery capacity
attenuation caused by excessive battery discharge current
during EV driving, An et al. used fuzzy logic controller
to adjust the charge and discharge power of lithium-ion
power batteries and supercapacitors based on fuzzy logic
EMS and 45 established fuzzy control rules. The
experimental results under test conditions showed that
the proposed strategy could effectively avoid the
influence of current fluctuations and extend the battery
life [13]. Guo et al. proposed an improved low-pass filter
equivalent power minimization EMS, which smoothed
the transient changes of fuel cell power by applying
low-pass filtering technology. Simulation results showed
that the proposed strategy performed well in suppressing
battery power fluctuations under idling conditions and
significantly improved the operating efficiency of the
battery [14]. These studies provide certain guidance for
improving automobile energy efficiency and power
distribution, but there are still limitations in long-term
performance optimization and overall economy under
dynamic environments.

RL can dynamically perceive multi-sensor information
through interactive learning between the agent and the
environment, providing more possibilities for improving
the long-term performance and overall economy of EMS
[15,16]. Li et al. proposed a method based on a solid fuel
cell model and an advanced DRL (Deep Reinforcement
Learning) algorithm, supplemented by expert knowledge
of rule-based EMS. The proposed method was
thoroughly tested in various scenarios. The results
showed that the proposed method was superior to
existing methods in terms of long-term learning
efficiency and improved driving economy by 2.8% to
7.5% [17]. Zou et al. used a range-extended vehicle as
the research object to explore the optimal EMS based on
rules and the optimal EMS based on RL for the vehicle,
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and built a strategy model for simulation in MATLAB
software. The results showed that the energy
consumption rate of the EMS optimized based on RL
was 3.2% lower than that of the original rule-based EMS
[18]. To solve the problem of low energy saving effect of
hybrid electric vehicle EMS when running online, Chen
et al. proposed a DRL-based EMS design method. The
established control strategy included a two-layer logic
framework of offline interactive learning and online
update learning, and dynamically updated the control
parameters according to the vehicle operation
characteristics. The results showed that the proposed
DRL-based EMS could achieve long-term energy saving
effect better than the particle swarm optimization
strategy [19]. Tang et al. proposed an EMS based on a
deep value network algorithm. Through multi-objective
collaboration, it realized the upper-level vehicle
following control and lower-level energy management
for PHEVs. Finally, through simulation, it was verified
that the DRL-based EMS achieved good fuel economy in
both the pilot vehicle and the following vehicle [20].
These studies have promoted the development of EMS
for new energy vehicles in the direction of green and
economic efficiency. However, most current RL
applications need to further improve their strategy
stability and generalization capabilities when faced with
sudden sensor data changes and complex road
conditions.

To improve the energy consumption control capability
and system robustness of PHEV in unstable
environments, this paper combines RL algorithms to
study the optimization of PHEV multi-sensor EMS.
Innovations: 1) this paper integrates a multi-sensor data
fusion module to enhance the perception of the vehicle's
operating environment, enabling the strategy to respond
more accurately to complex and nonlinear driving needs;
2) this paper applies a dual DQN structure, which
effectively alleviates the policy deviation problem caused
by the overestimation of Q values in traditional DQN by

separating the action selection and action evaluation
processes, thereby improving the algorithm’s learning
stability and policy accuracy in complex state spaces; 3)
the PER mechanism is integrated to dynamically adjust
the sampling probability of the empirical samples
according to the TD error, so that the model pays more
attention to the key state transition, significantly
improving the sample utilization efficiency and
convergence speed, and providing a more adaptive
thinking for EMS deployed in real scenarios.

2. Construction of Multi-sensor EMS for New Energy
Vehicles

A. System Modeling

This paper takes PHEV as the research object. PHEV has
both traditional engine and electric motor energy,
including battery energy management, engine start-stop
control, energy recovery scheduling, and multiple
decision-making issues. The energy flow is complex and
highly dependent on sensor data, which can fully reflect
the fusion management characteristics of multi-sensor
information [21-23]. In addition, the energy management
of PHEV also faces complex and changeable driving
conditions and environmental changes, and needs to have
strong adaptability, real-time, and robustness. Based on
the PHEV architecture, this paper can model its
multi-sensor energy management system.

1) Sensor Data Integration

In system modeling, the important sensor information
related to energy management is first integrated. To
ensure the real-time, stable, and accurate performance of
the vehicle under complex driving conditions, this paper
uses the four types of sensor data that are most widely
involved in energy management as the basis for state
space input and analyzes them, as shown in Table 1.

Table 1. Sensor data.

Parameter Classification Variables

Battery status
SOC SOC
Battery temperature battT

Power system operating
Motor speed motorn

Engine speed engn

Driving behavior

Vehicle speed vehv
Accelerator pedal opening acc

Brake pedal opening brake

External environmental
Road slope road

Ambient temperature envT

Firstly, to solve the problem that the acquisition timing
of multiple sensors is inconsistent, and there is a
deviation in the timing, a synchronization method based
on a unified time axis is used to process it. The global
unified sampling period t is set, and the nearest
neighbor interpolation and linear interpolation are used

to reconstruct the asynchronous data. The original sensor
data sequence is set to   i ix t , and the estimation at

the uniform resampling node kt k t  is calculated by
the formula:

43



           1
1

1

   i i
k i k i i k i

i i

x t x t
x t x t t t t t t

t t






     


(1)

For data such as acc and brake , since their signals
fluctuate greatly and are prone to short-term mutations,
the sliding average method is used synchronously during
interpolation, and the window size N is dynamically
adjusted according to the rate of change of the signal,
taking 5 to 10 frames. The calculation formula is [24]:

   1

0

1ˆ N
k k jj

x t x t
N




  (2)

Synchronization and smoothing are used to make each
sensor signal output at the same time, constructing input
features with continuity and consistency. The dynamic
estimation algorithm based on the extended Kalman
Filter reduces the interference of sensor noise and
improves the accuracy of the system's state estimation.
The true value of each sensor is taken as the state vector
kx of the system; the sensor measurement value is taken

as the observation vector kz ; the state transition and
observation equations are modeled:

1k k kx Fx    (3)

k k kz Hx v  (4)

Here, F represents the state transition matrix; H
represents the observation matrix; k and kv
represent the process noise and observation noise, and
they are assumed to be Gaussian white noise with a mean
of 0. To solve the problem of inconsistent acquisition
time of different sensors, the unified time axis
synchronization method is first applied, and then, the
asynchronous data is reconstructed using the nearest
neighbor interpolation. Next, combined with extended
Kalman filter, the state prediction for the next time is
adjusted based on the current state estimation and
measurement values in each update step, effectively
reducing errors caused by asynchronous sensor sampling.

In each update step, the extended Kalman filter adjusts
the next state prediction 1 1ˆk kx   based on the current

state estimation and measurement values. Firstly, based
on the previous state estimation 1 1ˆk kx   , the state

transition equation is used to predict the current state:

 1 1 1ˆ ˆ , kk k k kx f x u   (5)

The error covariance matrix C of the predicted state

1k kP  is calculated:

1 1 1kk k k kP F P   (6)

Based on the predicted error covariance and observation
model, the Kalman gain is calculated:

  1

1 1
T T

k K k K Kk k k kK P H H P H R


   (7)

When encountering sudden interference, extended
Kalman filter quickly adjusts state estimation based on
the latest observations to reduce the impact of
interference on system performance. Although
introducing Kalman filter increases the system’s
computational burden, it provides higher accuracy and
robustness, especially in the presence of noise and abrupt
changes. To balance this point, this paper optimizes the
implementation of Kalman filter, reduces unnecessary
calculation steps, and adopts an efficient matrix
operation library to improve execution speed.

After completing data quality control, considering the
heterogeneity of each sensor data, it is standardized. The
continuous sensor data is mapped to intervals:

min

max min

x x
x

x x
 


(8)

Among them, minx and maxx are the minimum and
maximum values of the corresponding features in the
sample set.

Based on the processing of a single feature, the feature
splicing method is used to combine each standardized
sensor signal according to a predetermined order to
obtain a unified feature vector. Its structure is defined as:

T
batt motor, eng veh acc brake road envSOC, , , , , , ,tf T n n v T      (9)

Here, T represents vector transposition.

2) Dynamic Model

Based on the integration of multi-source sensor data, this
paper obtains the real-time observation value of the
PHEV vehicle operation status. On this basis, a dynamic
model of the vehicle power system is built, including the
dynamic model of the vehicle movement, battery
electrochemical behavior, and engine-generator coupling
operation. The method of combining physical modeling
and system identification is used to analyze the evolution
law of the dynamic energy of the vehicle under complex
working conditions, as shown in Figure 1.
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Figure 1. PHEV power system structure.

First, based on the one-dimensional driving dynamics
framework of the mass point method, the vehicle
dynamics model is established, taking into account the
four main forces: driving force, rolling resistance, air
resistance, and slope resistance. Assuming that the mass
of the vehicle is m , and the speed is v , its acceleration

d
d
va
t

 is expressed by the dynamic balance equation:

dive resist
d
d
vF F m
t

  (10)

In this formula, the driving force diveF determined by
the output torque of the motor and engine is applied to
the wheels through the transmission system; the entire

resistF consists of three components [25,26]:

2
resist roll air slope

1cos sin
2 A dF F F F mg Air Air Air v mg        (11)

Among them,  represents the rolling resistance
coefficient; Air represents the air density; AAir
represents the air frontal area; dAir represents the air
resistance coefficient;  represents the road inclination
angle, which is obtained by fusing the data of multiple
sensors. The model physically constrains the EMS by
responding to external disturbances such as slope and
wind resistance in real-time.

An improved secondary RC (Resistance-Capacitance)
equivalent circuit model is used to simulate lithium-ion
power batteries, taking into account the accuracy and
calculation speed of the model. Considering the dynamic
response of the open circuit voltage ocU , the ohmic
internal resistance oR , and the parallel RC network
( 1 1,R C and 2 2,R C ), the relationship between the
battery terminal voltage tU and the discharge current

tI is expressed as:

   oc RC1 RC2t o tU U R I V t V t    (12)

Here, the voltages of the two RC branches satisfy the
condition:

d 1 1 , 1, 2
d

i

i

RC
RC t

i i i

V
V I i

t R C C
    (13)

Then, the battery SOC state is updated in real-time
using the coulomb counter measurement:

     
0

0 bat
bat

1SOC SOC d
t

t
t t I

Q
     (14)

Here, batQ represents the rated capacity of the battery,
and bat represents the charge/discharge efficiency.
Based on the RC dynamic response element, the terminal
voltage under different charge/discharge efficiencies is
estimated to solve the transient error problem caused by
energy collection and accelerated conversion.

The engine-generator coupling model provides two ways
of power and electricity for the hybrid system. The
system’s steady-state characteristic model is established
by table lookup method, and the dynamic hysteresis link
is used to describe the system’s hysteresis characteristics.
The relationship between the output torque engT and
speed engn of the engine is determined by
two-dimensional performance surface mapping method,
and the corresponding fuel consumption rate model is
given:

   
eng

fuel eng eng
eng eng eng

,
, fuel

P
F f n T

i n T 
 


(15)

Among them, there is:
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eng eng2 60P n (16)

fuel represents the energy density per volume of fuel,
and engi represents the instantaneous thermal efficiency
obtained by looking up the table. When the generator is
coupled with the engine, it becomes an auxiliary power,
and its output is affected by the motor efficiency gen .
The maximum power limit is considered:

avail max
gen gen eng gen gen,    P P P P  (17)

On this basis, the integrated real-time sensor state vector
is used as the input driving variable, and based on the
established vehicle dynamics model, battery dynamics

model, and engine-generator model, a vehicle energy
evolution dynamics equation group defined by state
variables, system parameters, and constraints is formed.

3) Energy Flow Model

To characterize the energy transfer relationship between
various components such as batteries, motors, engines,
generators, and wheels, an energy flow map is
constructed to analyze the energy flow characteristics
under sudden changes in sensor data and complex
working conditions, as shown in Figure 2.

In Figure 2, the energy flow diagram uses the power
consumption of components under a time step as the
basic description unit, as shown in Table 2:

Figure 2. Energy flow diagram.

Table 2. Power status of each component.

Component Power status Variables
Battery Output  batP t

Traction motor Input  motP t

Engine Output  engP t

Generator Output  genP t

Wheel Drive  wheelP t

Each subsystem Energy transfer loss  lossP t

According to the constructed model, the energy flow
relationship of each component is defined as:

     wheel mot motP t t P t (18)

       mot bat gen engP t P t t P t  (19)

     eng eng engP t t P t (20)

Among them,  mot t ,  gen t , and  eng t are
established by table lookup and multi-point interpolation.
They can be dynamically corrected according to the
real-time data of the sensor, representing the

instantaneous energy conversion efficiency.  lossP t is
dispersed in each level of transmission process.
According to the principle of energy conservation, there
is:

     input output lossP t P t P t  (21)

To more accurately describe the evolution law of energy
flow state under complex operating conditions, this paper
represents the energy flow in the form of node-edge
based on multi-sensor fusion data:

 ,G V E (22)
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Here, V represents each energy unit, and E
represents the energy transfer path. The weight is used to
represent the energy flow rate, that is, the instantaneous
power amplitude.

The basic content of the generation process is:

(1) Initialization of V : a set of fixed nodes is
determined by the dynamic model.

(2) Real-time allocation of E weights: using the power
equation P U I  and combining it with the real-time
data of the sensor to calculate the energy flow between
each node.

(3) Dynamic graph update: according to the vehicle's
operating states such as acceleration, braking, and sliding,
the edge direction and weight of  t in each sample
period are adjusted to achieve bidirectional energy
control of the vehicle.

Considering the vehicle’s complex operating conditions,
the energy flow anomaly model is established with the
sudden change of sensor data and road interference as
external interference sources.

The abnormal energy flow caused by the sensor mutation
is estimated by using the standard deviation of the power
change rate in the local sliding window, and the

pP   condition is met. When pP   , the
energy flow state of the system is determined to be
abnormal, and the fault tolerance mechanism of the EMS
is activated. Here, p is the preset threshold. During
the driving process of the vehicle, the vehicle's rolling
resistance and slope force are corrected in real-time, and
the driving power of the vehicle is transmitted to the
wheel driving power  wheelP t , thereby directly guiding
the energy distribution during the vehicle’s driving
process.

B. Energy Management Strategy Optimized by
Reinforcement Learning

1) Deep Q-network

RL can learn optimal strategies online through
interaction with the environment and adapt to complex
working conditions; meanwhile, its modeling approach
based on reward mechanism can directly optimize the
system’s overall energy efficiency target. However,
traditional machine learning methods rely heavily on
offline training and are difficult to cope with uncertainty
in dynamic environments. Therefore, choosing
reinforcement learning algorithms can better meet the
real-time and adaptive requirements of new energy
vehicle energy management systems. Based on system
modeling, to solve the problems of sudden changes in
sensor information data and dynamic instability of the
environment in the system, DQN is used to build an RL
framework, fit the state-action value function, and
optimize the energy supply strategy. The intelligent

decision-making model based on dynamic behavior
interacts with the outside world, obtains reward
information in real-time, and stores and uses historical
experience, realizing continuous updating and smooth
convergence of strategies, and enabling the automotive
system to have autonomous learning and adjustment
capabilities under complex operating conditions. In the
high-dimensional state space, DQN constructs  ,Q s a
to perform dynamic learning and decision-making of
EMS. It uses the data collected by sensors in real-time as
the basic input and integrates the SOC, vehicle speed,
acceleration, driving power, and efficiency indicators of
each component to construct the current driving state
vector of the vehicle and use it as the model’s state space.
At the same time, the action space is defined as the
power distribution command between the battery and the
engine to ensure that the powertrain optimizes the energy
supply path while meeting driving requirements.

First, based on the integration of multi-sensor
information fusion and the establishment of dynamics
and energy flow models, the state space tS of the
system is defined:

                  wheel eng bat mot genSOC , , , , , , , ,t engS t v t a t P t P t P t t t t  

(23)

In this state space, the state of charge of the vehicle
battery, the vehicle power demand, the output level of the
engine and motor, and the efficiency parameters of the
system are fully reflected and collected and updated in
real-time through sensors. Among them, the

     SOC , ,t v t a t indexes come from the integrated

sensor data, and the      mot gen eng, ,t t t   parameters
are calculated in real-time through the dynamic model.

    set set
eng bat,tA P t P t (24)

Among them,  set
engP t and  set

batP t represent the
required power values to be output by the engine and
battery at time t . Because the energy supply needs to
meet the constraints of supply and demand balance:

     set set
eng bat motP t P t P t  (25)

Here,  motP t is obtained from the energy flow graph,
which is used to simulate the power of the traction motor.
For the purpose of policy learning, the reward function
based on energy efficiency comprehensively considers
the dimensions of energy effectiveness, system stability
and operating state responsiveness, and defines the total
reward function as Rt, whose structure is expressed as:

     2
1 ref 2 fuel 3 bat 4 unstableSOC SOCtR t F t P t            

(26)

Among them, refSOC is the target range of SOC;
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 fuelF t represents the current engine fuel consumption;

 2
batP t is the square term of the battery output power

change, which is used to limit excessive instantaneous
fluctuations;  unstable t is the penalty indicator for
sudden working conditions, and 1 2 3 4, , ,    are the
weight coefficients of each item.

To verify the rationality of the trade-off relationship
between the target items in the reward function, this
paper conducts a systematic sensitivity analysis of the
weight parameters. Under the premise of keeping other
hyperparameters unchanged, three different weight
combinations are set to evaluate their impact on the
energy management system’s overall performance, as
shown in Table 3:

Table 3. Weight parameter evaluation.

Sequence 1 2 3 4
Average SOC
fluctuation (%)

Average fuel
consumption
(L/100KM)

Standard deviation of
power fluctuation (KW)

Emergency
response time (S)

1 0.5 0.2 0.2 0.1 1.32 5.98 2.1 2.7
2 0.4 0.3 0.2 0.1 1.45 5.65 2.05 3
3 0.3 0.3 0.3 0.1 1.78 5.52 1.92 3.2

From Table 3, it can be seen that as 1 increases, SOC
stability improves, but fuel consumption slightly
increases; an increase in 3 reduces power fluctuations,
but at the expense of SOC control effectiveness.
Considering various indicators, the configurations with

1 =0.4, 2 =0.3, 3 =0.2, and 4 =0.1 demonstrate
good balance and robustness in multiple testing
scenarios.

Regarding algorithm implementation, the experience
replay mechanism and target network structure are used
to stabilize the learning process. In each stage of the
interactive strategy, the four-tuple  1, , ,t t t tS A R S  is
recorded in the replay pool, and the network weights are
updated by small batch sampling; when calculating the
required target, the target network  ˆ , ;Q s a   updated
with a fixed step size is used to calculate the expected
target [27-29]:

 1
ˆmax , ;t t ta

y R Q S a  


  (27)

Finally, the deep strategy is iteratively learned with the

goal of minimizing the loss function.

      1

2
, , , , ;
t t t t t t tS A R S y Q S A 



    
L  (28)

2) EMS Optimization

Due to the extremely complex state space after
multi-sensor information fusion, DQN is prone to fall
into local extreme values in the early stages of learning,
resulting in delayed policy updates and inability to
quickly adapt to sudden changes in data [30]. In a
dynamic driving environment, vehicle conditions are
changeable and energy flow patterns fluctuate
dramatically. The basic DQN model is too conservative
to adjust quickly, and the target Q value is updated
with the maximum action value, which can easily lead to
overestimation, thus affecting the vehicle's dynamic
response and energy consumption optimization. To solve
this problem, this paper introduces dual DQN and
combines it with PER. By separating action selection and
evaluation, the bias of overestimation is suppressed. By
strengthening the weight of the critical point, the
convergence and robustness of the algorithm in complex
road environments are accelerated, as shown in Figure 3:

Figure 3. EMS optimization mechanism.
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In dual DQN, the main network is used to select actions,
and the target network evaluates the action value. The
specific update is expressed as [31-33]:

  target 1 online 1, arg max , ; ;i i i ia
y r Q s Q S a   

 
  (29)

Here, iy is the target Q value at the i th iteration; ir
is the immediate reward;  is the discount factor.

onlineQ and targetQ are the current value network and the

target value network, and  and   are their
corresponding parameters. By separating the action
selection and evaluation processes, the over-estimation
phenomenon is suppressed, and more reasonable energy
flow decisions are generated under changing
environments [34].

To enhance the automotive system’s rapid response
capability to complex working environments and sudden
data, the PER mechanism is introduced to replace the
conventional uniform sampling mode. In the traditional
experience replay method, each sample is selected with
equal probability, resulting in a lack of effective learning
of critical mutation states. However, PER allocates
sampling probability according to the importance of the
sample, that is, through TD error. The larger the TD error,
the greater the strategy error, and the more frequent
updates are required. The specific sampling probability is
defined as [35,36]:

  i

kk

P i
 
 




(30)

Among them, i is the TD error of the i th experience
sample, and  0,1  is the factor that determines the
priority. Through this mechanism, the deviation degree
of key decision nodes can be quickly corrected to
improve the adaptability to complex environmental
conditions. To avoid introducing sampling bias, the

gradient update is corrected together with the importance
sampling weight i :

 
1 1

i N P i




 

   
 

(31)

In this process, as the training time goes by, the 
value gradually increases to 1, thus ensuring the
unbiasedness of the strategy in the later stage of
algorithm training.

In the specific implementation, based on multi-source
sensor information, the state vector of the system is
dynamically constructed. Based on the system's dynamic
constraints and energy balance conditions, a set of
alternative action sets are generated, and the actions are
executed according to the current strategy. At the end of
each interaction, the experience is input into the priority
experience replay pool, and the sampling probability is
dynamically updated using the TD error. The target Q
value is obtained according to the DoubleDQN principle,
and the network parameters are iterated.

3. Energy Management Simulation Results and
Analysis

A. Simulation Settings

To verify the effectiveness and robustness of the EMS
under this method, a simulation analysis is performed.
This paper combines the established sensor fusion model,
dynamic model, and energy flow model to simulate the
energy transfer between the components in the PHEV
multi-sensor. The TensorFlow deep learning framework
in Python can be used to establish the DQN training
environment. The Real-World Drive Cycle Dataset in the
FASTSim database is selected as the simulation data
support source. The selected working condition data
characteristics and their key indicators are shown in
Table 4:

Table 4. Working condition data characteristics and their key indicators.

Working condition name Working condition
type

Maximum
speed (km/h)

Average vehicle
speed (km/h)

Total driving
distance (km)

UDDS (Urban Dynamometer Driving Schedule) Urban area 91.25 31.5 12.07
HWFET (Highway Fuel Economy Test) High speed 97.7 77.7 16.45
US 06 High acceleration 129.2 80.3 12.86
NYCC (New York City Cycle) Congested urban area 44.5 11.4 1.6

B. Algorithm Training

The dual DQN structure is based on a three-layer fully
connected neural network, taking the state space tS
defined in this paper as the input dimension and the
action space dimension, that is, the Q value of EMS, as
the output. To enhance the algorithm’s effectiveness and

stability, the PER mechanism is combined to avoid the
impact of Q value estimation oscillation on algorithm
training. Considering the possible mutation interference
under each working condition, greedy  strategy is
adopted to dynamically adjust the exploration rate, which
is initially set to 1.0 and eventually decays to 0.05. The
key parameter configuration during DQN training is
shown in Table 5:
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Table 5. DQN parameter settings.

Model Parameter Specifications

Double DQN

Learning rate 0.0005
Gamma 0.99
Batch size 64
Experience replay capacity 50,000
Target network update cycle Every 500 steps
Initial/minimum value of ε 1.0 / 0.05
 decay rate Linear decay to 0.05 every 5000 steps

Maximum number of training epochs 1500 episodes

The basic DQN, Soft Actor-Critic (SAC), and Proximal
Policy Optimization (PPO) are used for comparative
experiments:

(1) Basic DQN: DQN without any improvement;

(2) SAC: based on the maximum entropy policy
optimization principle, it has good performance in the
continuous behavior space and is suitable for the smooth
control requirements of the energy allocation strategy;

(3) PPO is a stabilization algorithm based on policy
gradient and is widely used in optimal control problems.

Each algorithm is performed under the same training set
and disturbance configuration. After the training, the
convergence speed, energy consumption performance,

response stability, computational efficiency dimension,
and data mutation tolerance of the algorithm are
quantitatively evaluated and analyzed.

C. Simulation Results

1) Convergence Speed

To verify the adaptability of different algorithms and the
learning efficiency of strategies, 1500 rounds are run
under the same training environment using the same
initial parameters, perturbation ratio, and update
mechanism. The convergence criterion is that the average
Q value increase does not exceed 1% and lasts for more
than 200 steps. The convergence steps and average
fluctuation range of each algorithm under each working
condition are shown in Figure 4:

Figure 4. Convergence speed comparison.

From the convergence speed of Figure 4, it can be seen
that the convergence advantage of the proposed
algorithm under various industrial control systems is
more significant. The reward curves of the algorithm in
this paper all show rapid growth and reach a plateau
around 400-600 rounds, and its convergence speed is
higher than that of the basic DQN, PPO, and SAC
algorithms. In contrast, the global convergence of the
DQN algorithm is relatively slow, and the reward level

after convergence has certain fluctuations, indicating that
its generalization ability in complex states is not strong.
As a policy gradient algorithm, PPO converges slightly
faster than DQN, but overall, there are still problems of
inconsistent convergence rate and easy to fall into local
extreme values. In the initial stage, the learning
efficiency of individuals in SAC is higher than that of
PPO and DQN, and the rising slope of the reward curve
is larger, showing the regulation effect on entropy change,
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but its convergence degree is still slightly lower than that
of the algorithm in this paper.

The algorithm in this paper can overcome the
overestimation problem that is common in traditional Q
learning, and use dual networks to select and evaluate
actions respectively, reduce policy deviations, and
improve the stability and accuracy of learning. PER uses
a weighted sampling method according to the size of the
TD error, which increases the frequency of using
samples that have a greater impact on learning and
improves the algorithm’s convergence efficiency,

especially in the initial stage, where its training
advantage is more significant.

2) Energy Consumption Performance

This paper uses 1000 time steps as the simulation cycle
to simulate the change of battery and engine power over
time, compares and analyzes the impact of different
algorithms on system load size and output stability, and
determines the energy saving effect and optimization
performance of the algorithm under different operating
conditions, as shown in Figures 5 and 6.

Figure 5. Battery energy consumption comparison.

From the results in Figure 5, it can be seen that the EMS
algorithm in this paper has a significant advantage in
energy consumption optimization. Under the four
working conditions of Figure 5, its battery output power
is relatively stable. The average power is controlled
below 12 kW, which is lower than the other three
algorithms and can effectively reduce the peak power.
Especially in the case of frequent acceleration such as
US06, the average power is only 11.22 kW. The
algorithm in this paper adopts a double-layer network
structure to solve the problem of overestimation and uses
the PER mechanism to improve the learning efficiency
of the critical point, the stability of battery energy
management, and energy saving effect. In general, the
proposed EMS considers both energy consumption and
robustness of control strategies, and has strong adaptive
capabilities.

In contrast, the battery power of the DQN algorithm
fluctuates greatly under various working conditions,
reflecting that its operating stability under complex load
changes is not ideal. Although DQN has the ability of
adaptive strategies, its learning process has slow
convergence and is prone to local extreme value
problems, which in turn causes large fluctuations in
energy output and affects the system’s energy efficiency
and stability. The average battery power of the PPO
algorithm EMS is above 13kW, which can effectively
avoid sudden changes in system performance caused by
sudden changes in strategy. However, it still has the
problem of significant instantaneous power increase
under complex operating conditions, indicating that its
adaptability to rapid changes in operating conditions is
still limited. The SAC power fluctuates between 11 and
13 kW, and at higher speeds, when the system frequently
starts and stops for short periods of time, its average
power level is higher than that of the EMS in this paper.
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Figure 6. Engine energy consumption comparison.

Under the four operating conditions shown in Figure 6,
the engine power outputs obtained by using different
EMS algorithms are significantly different, reflecting the
differences in energy allocation among various
algorithms. According to the results of Figure 6, the EMS
based on the algorithm in this paper shows the smallest
and most stable engine power output in the whole time
series. The average power output under the four working
conditions does not exceed 19 kW, specifically 18.36 kW,
18.02 kW, 18.44 kW, and 17.93 kW. The variation is
very small, and the curve is relatively smooth. This
shows that the EMS algorithm in this paper tends to
allocate more power to the battery, thereby reducing fuel
consumption and engine losses. In comparison, the DQN
algorithm has a higher power output, which is 28.53 kW,
28.12 kW, 29.41 kW, and 28.75 kW, respectively, with
large fluctuations. This shows that its energy distribution
mechanism is not stable, and it often needs to rely on the
engine to cope with emergency driving needs, which
causes the system’s total energy consumption. The PPO
and SAC algorithms are at an intermediate level, with
moderate fluctuations, showing a certain degree of
synergy, but their energy consumption levels are still
higher than that of the algorithm in this paper.

Compared with the other three methods, the EMS engine
power curve under the algorithm in this paper is
generally lower and can maintain good fluctuation
stability under various operating conditions. The
experimental results show that the algorithm in this paper
can well implement the EMS system with battery priority
and timely engine intervention. The dual DQN can well
solve the problem of too high Q value of the traditional
DQN algorithm, thereby improving the rationality of
decision-making; PER can effectively utilize valuable
experience and improve learning efficiency and strategy
promotion. This combination enables the system to
quickly grasp the critical point in operation during
operation, thereby achieving a low-consumption effect.

3) Response Stability

To evaluate the response stability of each algorithm
under different working conditions, the SOC control
performance of the strategy under different dynamic load
modes is analyzed. The overall fluctuation of the battery
and the speed of change are characterized by two
indicators: SOC fluctuation range and SOC change rate.
The comparison results are shown in Figure 7:

Figure 7. Response stability comparison.
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According to the results shown in Figure 7, the proposed
algorithm shows the best performance in terms of SOC
control stability under UDDS, HWFET, US06, and
NYCC conditions. Specifically, in terms of the SOC
fluctuation range, the maximum fluctuation range of the
proposed algorithm in the four working conditions does
not exceed 0.09, which are 0.0792, 0.0829, 0.0784, and
0.0833, respectively, while the basic DQN is 0.1883,
0.2044, 0.1869, and 0.1836, respectively; the PPO
algorithm is 0.1540, 0.1562, 0.1550, and 0.1435,
respectively; the SAC algorithm is 0.1145, 0.1143,
0.1313, and 0.1182; the average SOC change rate of the
proposed algorithm in the four working conditions does
not exceed 0.007, which are 0.0069, 0.0064, 0.0066, and
0.0068, respectively; the basic DQN is 0.0217, 0.0233,
0.0222, and 0.0226, respectively; the PPO algorithm is
0.0169, 0.0174, 0.0163, and 0.0169, respectively; the
SAC algorithm is 0.0136, 0.0127, 0.0138, and 0.0140.
From the comparison results, the SOC fluctuation range
and change rate of the proposed algorithm are
significantly smaller than those of DQN, PPO and SAC
algorithms.

The results show that the proposed method has better
stability and better learning performance, which can

effectively suppress SOC mutations and ensure the safe
and efficient operation of the system. Its excellent
performance comes from the structural optimization of
the algorithm: the dual DQN adopts a two-layer network
structure to reduce the error of excessive Q value
estimation, making the strategy update more stable and
accurate. On this basis, the PER mechanism is
introduced to increase the weight of key samples,
improve the sensitivity of the SOC upper and lower
bound strategy convergence, and achieve stability control
of the vehicle in a complex and changing environment.

To further evaluate the long-term stability of each
algorithm, a simulation test scenario that runs
continuously for 60 minutes is constructed in the
simulation platform and divided into six 10-minute time
periods (t1-t6). The difference between the maximum
and minimum SOC values of the PHEV system in each
time period is collected in each period, and the t1 period
is used as the benchmark period. By expressing the
increase ratio of the SOC fluctuation amplitude
compared to the t1 period, the performance decay rate of
EMS under each algorithm is calculated. The results are
shown in Table 6:

Table 6. Performance decay rate.

Time interval DQN(%) SAC(%) PPO(%) Double DQN+PER(%)
t1 0 0 0 0
t2 8.5 3.7 3.8 1.3
t3 11 4.9 6.3 3.9
t4 13.4 6.2 7.5 5.2
t5 17.1 7.4 8.8 5.2
t6 19.5 8.6 11.3 6.5

From the results in Table 6, the long-term stability of the
proposed algorithm is more ideal. The performance
decay rate of the basic DQN algorithm is as high as
19.5% after 60 minutes, and the fluctuation increase is
large, reflecting that its strategy is not stable enough over
time, and there may be problems of overfitting training
or poor strategy generalization ability. The performance
decay rates of SAC and PPO after 60 minutes are 8.6%
and 11.3%, respectively. The algorithm in this paper
shows the smallest decay trend, and the performance
decay rate after 60 minutes is only 6.5%, indicating that
its experience priority sampling mechanism and target
network structure effectively alleviate the strategy
deviation and error accumulation, and have strong
resistance to time disturbance.

4) Computational Efficiency

This paper compares the advantages and disadvantages
of different algorithms in terms of EMS computational
efficiency from two levels: single-step decision time and
simulation run time. The single-step decision time is
used to evaluate the average computational time required
for the algorithm to output the control strategy. The total
simulation run time is reflected in the overall
computational overhead of the entire control loop. Under
the same operating conditions and state input sequence,

each algorithm runs independently, and their results are
compared, as shown in Figure 8.

Figure 8. Comparison of computational efficiency.

From Figure 8, the single-step decision time and total
simulation running time of the proposed algorithm under
various working conditions are shorter than those of
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other algorithms. The single-step decision time of the
algorithm in this paper is 0.0046 seconds, 0.0042
seconds, 0.0041 seconds, and 0.0039 seconds,
respectively; the basic DQN is 0.0050 seconds, 0.0052
seconds, 0.0053 seconds, and 0.0050 seconds,
respectively; the PPO algorithm is 0.0061 seconds,
0.0062 seconds, 0.0065 seconds, and 0.0065 seconds,
respectively. The SAC algorithm is 0.0080 seconds,
0.0077 seconds, 0.0085 seconds, and 0.0084 seconds; in
Figure 8A, Figure 8B, Figure 8C, and Figure 8D, the
total simulation running time of the algorithm in this
paper is 4.5559 seconds, 3.7107 seconds, 4.3609 seconds,
and 3.5520 seconds, respectively; the basic DQN is
5.1926 seconds, 5.2906 seconds, 5.3302 seconds, and
5.2344 seconds, respectively; the PPO algorithm is
5.8693 seconds, 5.9391 seconds, 6.3524 seconds, and
6.5460 seconds, respectively; the SAC algorithm is
8.6139 seconds, 7.6572 seconds, 8.4201 seconds, and
8.3417 seconds.

From the results, after integrating PER, the algorithm in
this paper can use historical data more effectively, speed
up learning, and reduce computational costs.
DoubleDQN reduces overestimation errors, improves
learning stability, and accelerates convergence, thereby
effectively shortening the strategy control cycle time.
Through fast iterative training, an optimal control
strategy function is obtained, which is the mapping
relationship between the state and the corresponding
optimal control action. In comparison, although the
performance of the basic DQN and PPO algorithms is
relatively stable, the algorithm complexity is high, and
the solution speed is slow, especially when the state

space dimension is high. SAC performs well under some
working conditions, but due to its high computational
cost, the algorithm’s overall performance is greatly
limited. In summary, the method in this paper can
effectively improve the computing speed of EMS and
improve the energy management efficiency of the
automotive system.

5) Data Mutation Fault Tolerance

To verify the data mutation fault tolerance of each
algorithm under EMS, the abnormal conditions of the
actual sensor are simulated, and two types of interference
are introduced in each test condition:

(1) The random drift of the signal simulates the
inaccurate output of low-precision sensors caused by
high temperature and humidity;

(2) Data loss simulates the data loss of the Controller
Area Network bus and randomly deletes 3-5 adjacent
input signals.

The EMS fault tolerance performance of each algorithm
after the introduction of abnormal sensor disturbance is
evaluated. The engine load change rate (%/s) is used as a
measurement indicator, and the average amplitude of the
load value change per unit time is statistically analyzed
to reflect the fault tolerance of EMS under each
algorithm to sudden data anomalies. Among them,%/s
represents the proportion of change in engine load per
unit time (per second) in the case of signal random drift
or data loss. The results are shown in Table 7 and Table 8:

Table 7. Load change rate under signal random drift interference.

Working condition DQN(%/s) SAC(%/s) PPO(%/s) Double DQN+PER(%/s)
UDDS 3.64 2.85 2.51 1.73
HWFET 4.21 3.06 2.82 2.01
US06 4.96 3.72 3.41 2.53
NYCC 4.68 3.47 3.29 2.34
Mean 4.37 3.28 3.01 2.15

Table 8. Load change rate under data loss.

Working condition DQN(%/s) SAC(%/s) PPO(%/s) Double DQN+PER(%/s)
UDDS 3.79 3.08 2.76 1.95
HWFET 4.29 3.22 3.00 2.14
US06 5.07 4.03 3.64 2.69
NYCC 4.93 3.79 3.54 2.52
Mean 4.52 3.53 3.24 2.33

From the results in Table 7 and Table 8, it can be seen
that both the random drift of sensor signals and the loss
of data have a certain impact on the PHEV engine load.
Under the two interference conditions, the average load
change rate of the basic DQN is 4.37%/s and 4.52%/s,
showing that it has a weak ability to adapt to
emergencies and is prone to significant fluctuations
during the control process. Although SAC (3.28%/s,
3.53%/s) and PPO (3.01%/s, 3.24%/s) have been
improved compared to the basic DQN, they still have a
large jitter problem under high dynamic conditions such

as US06, and there are still hidden dangers in stability.
The method in this paper has good fault tolerance for
both types of interference. The average change rate under
random signal drift is 2.15%/s, and the average change
rate under data loss is 2.33%/s, which is significantly
better than other methods and shows strong fault
tolerance. This paper effectively suppresses decision
instability caused by overestimation of quantization
through the dual DQN structure, and uses the PER
mechanism to achieve learning and memory of mutation
points, thereby improving the generalization ability of
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the strategy and providing a more reliable guarantee for
multi-sensor energy management of PHEV under actual
road conditions.

Although strategy optimization algorithms such as SAC
and PPO can also achieve effective energy management,
they typically require more complex model parameter
adjustments and may face computational efficiency
issues in high-dimensional state spaces. Double
DQN+PER utilizes the advantages of deep learning by
dynamically adjusting sampling probabilities to improve
sample utilization and convergence speed, especially
suitable for real-time online updates. In dealing with
sudden changes in sensor data and complex road
conditions, the "dual DQL+PER" architecture exhibits
stronger robustness and adaptability. Due to the PER

mechanism's ability to dynamically adjust the importance
of empirical samples based on TD errors, the model
focuses more on state transitions that are crucial for
policy improvement, thereby enhancing the system's
anti-interference ability.

6) Comparison of Advanced Methods

To further highlight the effectiveness of this paper, the
performance of the "dual DQN+PER" architecture and
two cutting-edge methods, namely MPC based on RL
hybrid framework and energy management based on
neural differential equations, are compared in extreme
scenarios of severe congestion in urban traffic and
complex road conditions in mountainous areas. The
results are shown in Table 9:

Table 9. Comparison of extreme scenarios.

Scene Model SOC fluctuation
range

Average power
output (kW)

Energy
consumption
change rate (%)

Response time (s)

Severe
congestion

Double DQN+PER 0.082 22.5 6.2 0.563
RL Hybrid MPC 0.136 23.3 7.3 0.711
Neural differential
equation 0.114 23.5 7.5 0.832

Complex road
conditions in
mountainous
areas

Double DQN+PER 0.073 19.2 5.8 0.414
RL Hybrid MPC 0.095 21.5 6.5 0.608
Neural differential
equation 0.118 22.7 7.0 0.712

From Table 9, it can be seen that "dual DQN+PER"
exhibits the smallest SOC fluctuation range, lower
average power output, better energy consumption change
rate, and faster system response time in the test scenario.
This indicates that the method has significant advantages
in dealing with sensor noise and responding quickly to
external environmental changes. Especially in dealing
with extreme scenarios, the stability and adaptability of
"dual DQN+PER" are superior to the other two methods,
which can better maintain system performance.

4. Conclusions

The sudden changes in existing sensor data and complex
operating conditions result in poor adaptive and stable
performance of PHEV multi-sensor EMS. To improve
the ability of PHEVs to cope with unstable interference
and sensor anomalies, this paper proposes a dual
DQN+PER architecture based on reinforcement learning
algorithm for optimizing the multi-sensor energy
management system of PHEVs. This system not only
improves the energy efficiency of the vehicle itself, but
also promotes seamless integration with renewable
energy networks. Through precise energy scheduling and
dynamic response mechanisms, PHEVs can quickly
adapt to external environmental changes under
non-steady state conditions. This flexibility makes
PHEVs an important distributed energy storage unit in
smart grids, helping to balance supply and demand and
improve the entire power system’s stability. Under
complex working conditions, the performance of this
paper's EMS under the complex operating conditions of

UDDS, HWFET, US06, and NYCC is analyzed.
Experiments have shown that compared with the basic
DQN, SAC, and PPO algorithms, the EMA under the
algorithm in this paper is more ideal in convergence
speed, energy consumption performance, response
stability, computational efficiency dimension, and data
mutation tolerance. The average power output of the
battery and engine under four complex working
conditions is controlled within 12kW and 19kW,
respectively. The maximum fluctuation range of State of
Charge (SOC) does not exceed 0.09; the average change
rate does not exceed 0.007; the performance decay rate
after 60 minutes is only 6.5%; the average change rate
under signal random drift and data loss is 2.15%/s and
2.33%/s, respectively. It can quickly converge to stability
within 400-600 rounds and has excellent performance in
battery, engine power control, and SOC fluctuation
suppression. It can effectively reduce peak power and
power consumption, improve overall energy efficiency
and stability, help PHEVs achieve anti-interference under
complex working conditions, and maintain good decision
consistency when sensors have abnormalities such as
analog signal drift and frame loss. This study provides a
certain basis for the energy management of PHEV under
complex working conditions and interference conditions,
but there are still some shortcomings. In the construction
of EMS, the multi-objective optimization problem has
not been deeply explored. Although this paper does not
consider external environmental factors such as road
slope and ambient temperature, it has not yet delved into
the specific impacts under different weather conditions.
Weather conditions such as temperature, humidity, and
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precipitation not only affect the efficiency of the
vehicle's power system but may also indirectly affect
battery performance and energy consumption. Future
research should further analyze the specific impacts of
various weather conditions on PHEV energy
management, integrate online learning mechanisms with
multi-agent collaborative decision-making, and expand
its adaptability and intelligence on a larger scale.
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