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Abstract. The increased participation of renewable variable 

energy sources (RVS) in the Brazilian electricity matrix brings 

several challenges to the planning and operation of the Brazilian 

Electricity System (BES) due to the stochasticity present in RVS. 

Such challenges involve the modeling and simulation of 

intermittent generation processes. In this context, this work aims 

to simulate power generation scenarios of three Brazilian plants, 

each based on three distinct renewable sources: wind power, solar, 

and biomass. The methodology used is based on the modeling of 

historical time series by Markov Chains, and the generation of 

scenarios is performed by Monte Carlo simulation. The results 

obtained are promising: the simulated scenarios satisfactorily 

reproduced the characteristics of the historical generation data of 

the plants. 

 

Keywords. Wind Power, Solar Photovoltaic, Biomass, 

Markov Chains, Monte Carlo Simulation. 
 

1. Introduction 
 

In recent years, renewable variable energy sources (RVS) 

have become a cost-effective and environmentally friendly 

alternative to supply power to isolated and integrated 

electrical grids worldwide. According to data from the 

International Renewable Energy Agency (IRENA) [1], the 

world added more than 260 gigawatts (GW) of renewable 

energy capacity in 2020, outpacing the expansion in 2019 

by about 50%. 

 

The growing share of renewable sources is partly 

attributable to the net dismantling of power generation from 

fossil fuels, whose total world additions fell from 64 GW 

in 2019 to 60 GW in 2020 [1], demonstrating a continued 

downward trend of expansion of fossil fuels. Thus, it is 

noteworthy that more than 80% of the world's electricity 

generation capacity added in 2020 was RVS, highlighting 

wind, solar, and biomass sources. 

 

In Brazil, following the global trend, investments in 

renewable sources have increased significantly over the last 

decades. It is worth noting that the share of renewables in 

the Brazilian electricity matrix is substantially higher when 

compared to the world matrix [2], as shown in Figure 1 

based on 2019 data information. 

 
Figure 1. The relative share of renewable and non-renewable 

sources in the electricity matrices of Brazil and the world in 

2019. Source: Adapted from Empresa de Pesquisa Energética 

(EPE) [2]. 

 
Figure 2. Share electricity generation by source, 2020. Source: 

Adapted from Empresa de Pesquisa Energética (EPE) [2]. 

 

Figure 2 presents the Brazilian electricity matrix by source 

in 2020. Although the hydroelectric source accounts for 

65% of the total installed capacity, the joint participation of 

wind, photovoltaic, and biomass RVS is already equivalent 

to about 20% of the country's electricity matrix and is 

increasing substantially every year. 

 

However, it is essential to mention that the large-scale 

integration of RVS in electrical systems strongly impacts 

their planning and operation due to the uncertainties 
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inherent to such sources, bringing challenges to the 

dispatch of energy generation worldwide [3]. According to 

[4], such challenges require the simulation of stochastic 

processes of renewable energy generation on temporal and 

spatial scales to support decision-making in the public and 

private sectors. 

 

According to [5], extensive historical measurements of 

variables linked to intermittent sources are necessary to 

model the random behavior of these variables at a given 

location. However, the availability of such data is often 

insufficient, emerging the need to develop simulation 

techniques that capture and satisfactorily reproduce the 

random behavior of RVS. 

 

In this sense, the objective of this work is to simulate 

electricity generation scenarios for three different RVS: 

wind, solar, and biomass. Data from three Brazilian plants 

is based on one of the mentioned sources. The methodology 

used is based on the works of [5] and [6], which apply a 

technique called Monte Carlo via Markov Chains to 

simulate wind power generation scenarios in Canada and 

Brazil, respectively. Furthermore, as the objective is to 

simulate reliable scenarios compatible with reality, 

statistical characteristics of the synthetic series are 

compared with the historical ones to evaluate the 

simulations. 

 

The remainder of this article is divided as follows: Chapter 

2 presents the methodology used to generate the scenarios; 

in chapter 3, a brief description of the data from each 

simulated source is made; chapter 4 brings the results 

obtained; finally, in chapter 5, the conclusions of this 

research and some proposals for future work are presented. 

 

2. Methodology 

 

In this paper, the authors propose the methodology shown 

in Figure 3, with four steps: first, if necessary, the historical 

data is divided into subsets, then clustered, followed by the 

construction of a transition matrix, and finally, simulated 

based on the matrix created on step 3. 

 

 
Figure 3. Methodology steps for scenarios generation. 

 

A. Create subsets from historical data 

For each renewable energy source, if necessary, subsets 

have to be created based on the characteristic of the 

historical input data. This phase needs a descriptive data 

analysis to identify trends and seasonality to help decide the 

best subset of data. 

B. K-means clustering 

The objective of this phase is to define a finite amount of 

values, discretizing the historical generation data. The 

limited amount of values enables the construction of a 

transition matrix of K x K dimensions, where K is the 

number of clusters that represent this amount of discrete 

values. 

 

The k-means clustering [7] groups the data, which are 

continuous, in a number k of clusters randomly selected 

with an initial centroid (cluster's center). The distance 

between each historical observation to this initial centroid 

is calculated, and the data value (generation) is assigned to 

the nearest cluster. Then, new centroids are defined, the 

mean of all data values of each cluster. This process is 

repeated until the centroids remain fixed after multiple 

iterations. The historical generation values are replaced by 

the cluster centroids to which they belong [8]. 

 

C. Markov chains matrix construction 

Making a link of k-means with Markov Chains 

implementation, each cluster is interpreted as a state of a 

stochastic process. The stochastic process represents an 

evolution of a random variable over time; precisely, the 

variable corresponds to a discrete generation. The process 

is called a Markov chain when there is a finite number of 

states, which means when the variable is discrete [9]. 

 

 𝑷𝒂,𝒃 is the transition probability, the probability of the 

stochastic process, assuming the value of state 𝒃, starting 

from a state 𝒂. Each probability is an element of the matrix 

and is calculated by equation 1. 

 𝑷𝒂,𝒃 =
𝒏𝒂,𝒃

∑ 𝒏𝒂,𝒌𝒌
 (1) 

Where 𝒌 ∈ 𝑲, set of all states, 𝒏𝒂,𝒃 is the number of times 

the process assumed value 𝒃, starting from the state 𝒂 and 

𝒏𝒂,𝒌 the number of transitions in which the process 

assumed any state 𝒌 from 𝒂.  

Equation 1 results in the empirical probability of the state 

transition. There is the transition probability from each state 

to any other state, thus constructing the transition 

probability matrix, 𝑷, presented by Equation 2. 

 

𝑷 = (

𝑷𝟏,𝟏 ⋯ 𝑷𝟏,𝒌

⋮ ⋱ ⋮
𝑷𝒌,𝟏 ⋯ 𝑷𝒌.𝒌

) (2) 

   

D. Monte Carlo Simulation 

Each matrix row corresponds to the initial state at instant 𝒕, 

and the columns refer to the next state assumed at 𝒕 + 𝟏 

[10]. Each line can represent a discrete probabilistic density 

conditioned to the initial state 𝒕. A random value is drawn 

for the instant 𝒕 + 𝟏 and follows the respective density. 

Equation 3 represents the iterative simulation process. 

 

 𝑺𝒊𝒎𝒕+𝟏 = 𝑴𝒌 ∼ 𝑷𝑺𝒊𝒎𝒕,𝒌   (3) 

Where 𝒌 ∈ 𝑲, for each instant 𝒕.  

Equation 3 is already contemplating a methodology 

peculiarity. The value drawn is a centroid following the 

initial state probabilistic density at instant 𝒕, 𝑷𝑺𝒊𝒎𝒕,𝒌. 

Simulation finish when the iteration process reaches the 

previously determined horizon. The methodology was 

implemented using R software [11]. 
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3. Data description 
 

This section summarizes the generation series of Brazilian 

plants descriptions concerning the three energy sources 

treated in this work: wind, solar, and biomass. 

 

The seasonality existing in the three categories of 

generation were considered separately for each one of 

them, as they have different behavior. This is described in 

the presentation of each one of them. 

 

A. Wind power 

 

For the development of wind generation scenarios, we use 

active power time series between April 2018 and February 

2021, and they are supplied every 15 minutes. These data 

belong to a wind power plant located on the coast of 

northeastern Brazil, a region with a large capacity for wind 

power generation. 

 

Before preparing the scenarios, the data underwent a pre-

processing and statistical analysis. The pre-processing 

consisted of processing and validation of the data: (i) no 

missing data identified; (ii) the data above the installed 

capacity were corrected to maximum capacity; and (iii) no 

negative values were identified, which would be substituted 

by zero. Corrections accounted for less than 0.001% of the 

data. 

 

The monthly boxplot data and the density curve were 

generated in the descriptive data stage of the modeling 

process. For all the energy sources, the data available by the 

Brazilian electricity sector utilities are shown per unit of 

installed capacity (p.u.) to preserve confidentiality. 

  
Figure 4. Power generation boxplot from the Wind Farm. 

 

 
Figure 5. Power generation probabilistic density from the Wind 

Farm. 

 

Figure 4 presents the monthly boxplot of wind generation 

data, a seasonal movement of the month's medians is noted, 

a peak in September, and a valley in March. The months 

belonging to the second half of the year tend to present 

higher generations than the first semester; besides, the data 

shows a significant dispersion. 

 

The density curve of the data is exposed in Figure 5. It 

displays a single peak closer to the beginning of the data 

range, indicating that a Gama or even a Weibull distribution 

would fit the data. 

 

B. Solar photovoltaic 

 

In the case of the Solar Photovoltaic source, the input data 

period comprises the months from October 2018 to 

February 2021, with observations every 15 minutes. The 

first three months (2018) show a generation growth due to 

the start of operation of the plant. The authors decided not 

to consider this period to avoid a model misinterpretation 

because this trend does not exist. 

 

In addition, all missing values were completed with the 

mean of the last seven days before the day/hour with no 

generation. The missing values were interpreted as a 

measurement error. 

 
Figure 6. Power generation boxplot from the solar photovoltaic 

plant.

 
Figure 7. Power generation probabilistic density from the solar 

photovoltaic plant. 

 

The boxplot, in Figure 6, shows that from January to May, 

the solar power generation is almost the same, with a 

decrease in generation during June and July. On the other 

hand, solar power generation grows in August, September, 

and October, returning to the same generation level of 

December and January. This behavior justifies dividing the 

data in a monthly subset before the clustering phase. 
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Solar Photovoltaic source differs from wind and biomass 

because power generation is observed only during the day 

(from 6 am to 6 pm). Thus, for simulation, the night period 

is not considered. After the process is finished, the hours 

from 6 am to 6 pm are completed with zeros. 

 

The density curve (Figure 7) shows a bi-modal curve for 

low values near zero (first hours of each day and near 6 pm) 

and a significant number of high generation between 10 am 

and 3 pm. 

 

C. Biomass 

The historical biomass plant series goes from August 2019 

to February 2021, with observations every 15 minutes. On 

the power generation boxplot, Figure 8, it is possible to 

observe an annual intermittence period between March and 

July, explained by the off-season production period of the 

primary raw material used in the plant, in this case, the 

sugarcane. 

 

In addition, there are three well-defined operation phases: 

an initial period between August and September, a 

somehow steady generation period between October and 

December, and a final period between January and 

February.  

 
Figure 8. Power generation boxplot from the biomass plant. 

Figure 9. Power generation probabilistic density from the 

biomass plant. 

 

Figure 9 presents the generation density curve of the plant 

in its period of operation, that is, excluding the 

intermittency period. The curve is bimodal, with a peak 

close to its maximum generation and small concentrations 

at lower and null values. 
  

4. Results 

In this section, the results of the simulations obtained from 

the data of the three plants are presented. 

 

A. Wind power 

From the analysis of wind generation data presented in 

section 3.1, different behavior was noted between months. 

In this way, the authors decided to generate monthly 

scenarios. The data is divided into month subsets and for 

each month, the methodology proposed was followed, 

creating 100 wind power scenarios. The number of clusters 

selected per month ranged from five to eleven; the most 

recurrent amount was seven clusters.  

 

Figure 10 compares the proportion of values generated 

through simulations and those from the historical series for 

January as an example. For all the histograms, the number 

of values belonging to a state in the simulated series is 

approximately equal to that of the historical series for all 

cases, pointing out that the method to generate synthetic 

scenarios used satisfactorily reproduces the observed data 

behavior of the wind power plant. 

 
Figure 10. Historical clusters and simulations' distributions of 

Janeiro of the Wind Farm. 

 

Table I compares the means and monthly standard 

deviations between the measured and synthetic series. It is 

possible to see that the percentage errors between values 

are minimal. The mean percentage error ranges from 0.14% 
to 2.09% and between 0.49% and 5.47% for the standard 

deviation. Those ranges indicate that the proposed method 

replicates the annual seasonality of wind generations very 

well. 

 
Figure 11. Comparison of the simulated scenarios with the 

means of the monthly historical generations. 

 

Figure 11 compares the simulated scenarios calculated 

means with the actual generations’ mean per month—the 

measured power generation average in red, the mean of the 

simulated scenarios in orange, the first (light blue), and the 

third (dark blue) means of the set of scenarios quartiles. It 

is noteworthy that the series corresponding to the actual 

averages is between the first and the third quartiles each 
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month. In addition, it is noted that the synthetic mean 

accompanies the seasonal movement of the real average 

generation. Thus, we can conclude that the simulated series 

satisfactorily reproduce the behavior of the historical 

observed time series. 

 
Table I. Comparison between the measured and synthetic series 

– mean and standard deviation for Wind Farm. 

Month 
Mean (p.u.) Standard deviation (p.u.) 

Historic Simulation Historic Simulation 

Jan 0.2670 0.2707 0.1803 0.1770 

Feb 0.1800 0.1804 0.1496 0.1466 

Mar 0.1192 0.1206 0.1306 0.1277 

Apr 0.1254 0.1255 0.1148 0.1085 

May 0.1862 0.1888 0.1519 0.1498 

June 0.2585 0.2592 0.1846 0.1810 

July 0.2963 0.2983 0.2129 0.2115 

Aug 0.3712 0.3749 0.2357 0.2340 

Sept 0.3787 0.3848 0.2223 0.2200 

Oct 0.3198 0.3180 0.2085 0.2074 

Nov 0.3389 0.3460 0.1930 0.1909 

Dec 0.3009 0.3042 0.1890 0.1872 

 

B. Solar photovoltaic 

The data were also divided into months for the solar 

photovoltaic source to better reproduce the time series 

behavior throughout the year. However, the number of 

clusters per group ranged from two to six clusters. Figure 

12 shows the histogram for January to exemplify the 

clustering process. In most of the cases, the clustering 

method resulted in 7 clusters. As well as for wind and 

biomass cases, simulated solar photovoltaic series presents 

almost the same number of values of the historical series. 

 
Figure 12. Historical clusters and simulations' distributions of 

January of the solar photovoltaic plant. 

 

Finally, after the Monte Carlo simulation, comparing the 

mean from the simulated series with the historical data 

available, it is possible, with the line graph (Figure 13), to 

visualize that this methodology reproduces the aggregated 

monthly behavior of the solar photovoltaic generation. As 

for wind power, 100 scenarios were generated for 

photovoltaic solar generation. 

 

Table II presents the means and the standard deviations. 

The worst result was obtained in August, where the 

percentage error for the mean was 1.17%. Despite this 

result, the mean bias error found is 0.21% for the means 

and 1.49% for the standard deviation, confirming the visual 

perception shown in Figure 13. 

 
Figure 13. Simulated limits and means of the historic plant and 

solar photovoltaic simulations. 

 

Table II. Comparison between the measured and synthetic series 

– mean and standard deviation for the solar photovoltaic plant. 

Month 
Mean (p.u.) Standard deviation (p.u.) 

Historic Simulation Historic Simulation 

Jan 0.5490 0.5487 0.3052 0.2993 

Feb 0.5469 0.5536 0.3045 0.2978 

Mar 0.5226 0.5198 0.3109 0.3057 

Apr 0.5448 0.5525 0.2939 0.2865 

May 0.4971 0.4952 0.2921 0.2864 

June 0.4680 0.4706 0.2896 0.2846 

July 0.4818 0.4787 0.2952 0.2916 

Aug 0.5805 0.5688 0.3011 0.3017 

Sept 0.6260 0.6232 0.3056 0.3016 

Oct 0.6554 0.6513 0.3118 0.3075 

Nov 0.6210 0.6233 0.3005 0.2959 

Dec 0.5872 0.5804 0.2932 0.2914 

 

C. Biomass 

As highlighted in section 3.3, three distinct phases were 

identified in the biomass plant’s operation period: 

beginning, intermediate or entire generation phase, and a 

final period. Therefore, the clustering of the historical 

series was carried out separately for each of the three 

periods mentioned so that the simulated scenarios could 

well represent the individual characteristics of each stage. 

Thus, the K-means method identified 12, 9, and 4 clusters 

for each phase. 

 

Figure 14. Historical clusters and simulations' distributions of the biomass plant's initial, intermediate, and final stages. 
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Figure 15. Simulated limits and means of the historic plant and 

biomass simulations. 

 

Figure 14 compares the distribution of clusters, represented 

by the values of their centroids, between the observed series 

and the simulated three stages. Note that the historical 

distribution was reproduced satisfactorily by the 

simulations. Therefore, it is possible to affirm that the 

methodology adheres to the time series trends. 

 

Figure 15 compares the simulated scenarios' averages with 

the observed generations' monthly averages. The simulation 

averages followed the generation trends, while the 

simulated upper and lower bounds comprised the generation 

capacity. In parallel with the cluster distribution graphs, it 

can be said that the 100 scenarios reproduced the statistical 

characteristics of the generation history.  

 

Table III compares the means and monthly standard 

deviations between the measured and synthetic series. It is 

possible to see that the percentage errors between values are 

minimal. The mean percentage error ranges from 0.00% to 

0.16% and between 0.18% and 2.55% for the standard 

deviation. Those ranges indicate that the proposed method 

replicates the annual seasonality of biomass generations 
very well. 

Table III. Comparison between the measured and synthetic series 

– mean and standard deviation for the biomass plant. 

Phase 
Mean (p.u.) Standard deviation (p.u.) 

Historic Simulation Historic Simulation 

Beginning 0.5196 0.5195 0.2567 0.2556 

Middle 0.7887 0.7874 0.2854 0.2849 

End 0.8579 0.8579 0.2192 0.2136 

 

5. Conclusion 
 

Given that the generation of renewable energy scenarios is 

essential for the planning and operation of sustainable 

electrical networks, this work aimed to simulate synthetic 

energy series from three plants with different renewable 

sources - wind, solar, and biomass. From the application of 

the simulation methodology, based on the modeling of time 

series by Markov Chains, the scenarios obtained reproduced 

well the statistical characteristics of the historical data of the 

three RVS. As the scenarios were generated for three plants, 

it is suggested to investigate the robustness of the 

methodology, applying it to a more significant number of 

plants. 
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Appendix A. Supplementary data 
 

Supplementary data (table of centroids and all the months 

histograms) to this article can be found at 

https://github.com/paulamacaira/Araujo_et_al_ICREPQ_

2022. 
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