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Abstract. In view of the slow convergence and easy fall
into local optimum of traditional WNN, this paper
introduces wavelet basis adaptive selection and GA-PSO
hybrid strategy to jointly tune the scaling factor,
translation factor, weight, threshold and number of
hidden nodes. First, the optimal wavelet basis is
automatically selected by mutual information. Then,
through GA global search and PSO local fine tuning, an
improved WNN model is constructed and applied to
medium voltage cable fault location. Simulation results
show that under the condition of 100km cable, the
improved WNN converges in 70 iterations, and the MAE
and RMSE are reduced by 1.95km and 2.25km
respectively compared with the traditional WNN, which
significantly improves the positioning accuracy and
convergence speed.
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1. Introduction

Quickly and accurately locating cable faults is essential
to assure the stable running of the power system [1,2].
Medium voltage cables have complex laying
environments and are affected by factors such as
temperature, humidity, and electromagnetic interference,
resulting in complex fault modes [3,4]. Traditional fault
location methods such as the TW (traveling wave) [5]
and the impedance method [6] are affected by factors
such as signal attenuation and noise interference when
facing complex cable networks. In recent years, artificial
intelligence technology, especially WNN(wavelet neural
network), has been widely used in signal processing and
pattern recognition. The traditional WNN training mainly
relies on the gradient descent method, it easily falls into
the local optimum, and the convergence speed is slow,
which limits its practicality. How to improve the training
algorithm of WNN, increase the fault signal
characteristic extraction ability, and improve the fault
localisation accuracy has already become an emergency
problem to be addressed.
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The aim of this paper is to construct an improved
WNN-based fault point localisation method for medium
voltage cables to increase the localisation accuracy and
convergence speed in complex cable network
environments. This paper introduces a MI(mutual
information)-driven wavelet basis adaptive selection
mechanism to automatically select the wavelet basis that
best matches the current fault signal from multiple
candidate wavelet bases, and integrates GA (Genetic
Algorithm) and PSO (Particle Swarm Optimization). GA
is used for global search and PSO is used for local fine
adjustment to jointly optimize the hyperparameters of
WNN, such as the scaling factor, translation factor,
weight, threshold and number of hidden nodes. On this
basis, the regularized MSE (Mean Squared Error) loss
function and Adam optimization algorithm are
introduced to further improve the network's training
efficiency and generalization ability. The experiment was
conducted under multiple different cable lengths, from
100km to 800km, and different noise conditions. The
results show that the proposed method is significantly
better than the traditional WNN and other intelligent
algorithm models in terms of fault location accuracy.
When the noise intensity is 5dB, the MAE(Mean
Absolute Error) and RMSE(Root Mean Square Error) are
6.4km and 8.1km respectively, which are relatively low.
It reaches the convergence state after 70 iterations, with
good adaptability and convergence efficiency, which
verifies the effectiveness and practicality of the improved
WNN model in locating medium voltage cable fault
points.

Contribution of the paper:

(1) This paper first introduces MI as an evaluation index
to achieve automatic screening and matching of wavelet
bases, significantly improving the ability of WNN to
extract fault signal features and providing more accurate
input features for fault location.

(2) The study combines the global search capability of
GA with the local optimization capability of PSO to
construct a GA-PSO(Genetic Algorithm-Particle Swarm



Optimization) hybrid optimization framework, and
jointly optimizes key parameters of WNN such as
scaling factor, translation factor, weight, threshold and
number of hidden nodes, effectively overcoming the
problem that traditional WNN is prone to fall into local
optimality and slow convergence.

(3) The experiment was conducted under different cable
lengths and different noise intensities. The results
showed that the improved WNN model is superior to the
traditional method in positioning accuracy and
convergence efficiency, has good adaptability and
practicality, and provides an innovative and effective
technical path for fault diagnosis in complex
environments of medium-voltage cables.

The rest of the paper is organized as follows: Section II
reviews the existing cable fault location methods,
including physical models and research based on neural
networks and optimization algorithms, and analyzes their
respective advantages and disadvantages. Section III
elaborates on the WNN method based on MI-driven
adaptive wavelet basis selection and GA-PSO hybrid
optimization proposed in this paper to achieve joint
tuning of scaling factor, translation factor, weight,
threshold and number of hidden nodes. Section IV
introduces the experimental design of medium voltage
cable fault point location, including data acquisition,
preprocessing and evaluation indicators. Section V
shows the location results and convergence performance
under different cable lengths and noise conditions, and
compares multiple benchmark methods. Section VI
discusses the experimental results and deeply analyzes

the mechanism and algorithm advantages of each module.

Section VII summarizes the full paper and points out the
innovative contribution, application value and future
research direction of the method.

2. Related Works

In the fault location of medium voltage cables, many
scholars have adopted different schemes to study it, and
have achieved a lot of research results, ensuring the
safety of cables. Li S, Chen C and other scholars used the
reflection coefficient spectrum and wave number domain
reflection method to locate medium voltage cable faults,
eliminating the influence of multiple reflections and
locating ground faults more accurately. However, it is
casily affected by signal attenuation in long-distance
cables and branch cables, which reduces the positioning
accuracy [7,8]. Sun G et al. applied the TW method to
fault location of cables and other lines in medium voltage
distribution networks, which improved the positioning
accuracy to a certain extent. The results showed that the
absolute error was less than 30 m. However, it relied on
high-precision extraction of the arrival time of traveling
waves, which made it difficult to cope with noise
interference and dispersion [9]. Zeng R et al. built a new
TW fault location solution based on the distance matrix
and frequency-related TW velocity, which optimized the
location accuracy. However, it was limited by the preset
model parameters and lacked online self-calibration [10].
As a positioning method, the impedance method is used
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in the positioning of cable fault points. The fault point
location is inferred by measuring the changes in cable
resistance, inductance, capacitance and other parameters,
but it is highly dependent on cable parameters and is
prone to failure in the case of multiple faults [11,12].
Scholars have used TW method, impedance method and
other methods to improve positioning accuracy to a
certain extent, but they are easily affected by noise in
complex environments, resulting in poor positioning
accuracy.

In recent years, many researchers have used artificial
intelligence technology to improve cable fault location
methods and establish a mapping relationship between
fault features and fault distances. Wan Q, Niaki S H A
and other scholars used DBN (Deep Belief Network) and
ANN (artificial neural network) to locate cable faults,
which improved the feature extraction capability in fault
location, but performed poorly under signal interference
[13,14]. Hadaeghi A combined wavelet transform and
artificial neural network to build WNN, and applied it to
transmission line fault location, reducing the fault
location error to 0.0045%. However, its training relies on
gradient descent, the initial parameters are sensitive, the
convergence is slow, and it is easy to fall into the local
optimum [15]. Shang Z and other scholars used the
time-frequency analysis and self-learning capabilities of
WNN to diagnose faults, and performed well in signal
feature extraction [16]. Scholars have applied WNN to
fault location, which has improved the signal processing
effect. However, the parameter initialization and
optimization of WNN rely on the traditional gradient
descent algorithm, which has a slow convergence speed
and low accuracy.

Researchers have combined optimization algorithms to
improve neural network methods, such as genetic
algorithms, to optimize the weights and structure of
neural networks and improve fault location accuracy. As
a kind of optimization algorithm, GA algorithm is used
to optimize the weights and thresholds of the positioning
model combined with wavelet transform and BP neural
network, which greatly reduces the positioning error, but
the convergence speed is slow [17,18]. In the fault
location of distribution network, Zhou C and other
scholars used GA algorithm for parameter optimization
of BPNN (back propagation neural network) model and
output better parameters. However, pure GA search lacks
local refinement ability and the fitness function is easily
disturbed by noise [19]. In denoising, PSO is used to
adjust the network parameters of WNN. It enhances the
ability to suppress noise and performs well in local
search, but is prone to premature convergence problems
[20]. Ong P et al. used CSA (cuckoo search algorithm) to
optimize the parameters of WNN such as hidden nodes
and initial positions. The results showed that it has better
generalization ability than a single WNN, but its
convergence path also lacks diversified guarantees and is
difficult to cope with multi-modal fault characteristics
[21]. The above scholars use GA or PSO alone to
optimize WNN, which has the risk of slow convergence
or premature convergence, and poor network parameter
optimization ability. Existing research mostly relies on



manual experience in the selection of wavelet basis,
lacks adaptive adjustment mechanism, and there is a
large research gap in the field of cable fault location.

Current research on cable fault location mainly focuses
on two types of methods: traveling wave method and
impedance method based on the physical characteristics
of electrical signals, and neural network method based on
artificial intelligence. The TW method and its
improvements such as reflection coefficient spectrum
and dispersion correction have high accuracy in short
distances or simple topologies, but are highly dependent
on accurate extraction of traveling wave arrival times,
are sensitive to noise and cable dispersion, and are
difficult to maintain stability in long distances, multiple
branches or complex environments. The impedance
method has an intuitive advantage in parameter
measurement, but its strong dependence on line electrical
parameters leads to rapid failure when multiple faults or
parameter estimation errors exist. Although deep models
such as DBN and ANN combined with WNN and
wavelet preprocessing have improved the ability to
extract nonlinear features, they are difficult to meet the
needs of real-time and high-precision fault location
because of their dependence on gradient descent for
training, sensitivity to initial parameters, slow
convergence, and easy to fall into local optimality.

Scholars have introduced optimization algorithms such
as GA, PSO, and CSA to perform global or local
searches on neural network parameters. Although the
convergence performance and noise suppression have
been improved to a certain extent, a single algorithm
often cannot take into account both global exploration
and local refinement. Although GA search is
comprehensive, it converges slowly, PSO is fast but
prone to premature maturity, and CSA has limited
diversity. Existing WNN research generally uses fixed
wavelet bases and lacks adaptive processing of signal
time-varying characteristics. Based on this, this paper
adopts Ml-driven adaptive wavelet base selection
combined with GA-PSO hybrid optimization strategy,
which can not only dynamically extract the most
representative traveling wave features, but also realize
parameter collaborative optimization at the global and
local levels. It is a key breakthrough in the dual
bottlenecks of signal adaptation and parameter
optimization of current methods.

3. Improved WNN Cable Fault Location Model
A. WNN

WNN is a neural network model that combines wavelet
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transform with neural network. By using wavelet basis
function as activation function, it can better extract the
time-frequency characteristics of the signal and has
strong localization characteristics [22]. Wavelet
transform can effectively capture the instantaneous
change information in the signal [23-25], while neural
network uses its powerful nonlinear mapping ability for
pattern recognition and learning. For WNN, wavelet
transform generates multi-scale wavelet coefficients by
performing multi-scale processing on the input signal.
The processing formula of wavelet transform is shown in

(1).
W(z,a,b) =L.[Zf(t)ﬁ(—t_b)dt (1)
a a

f (t) represents the input signal, S() represents the

wavelet basis function, a represents the scaling factor,
and b represents the translation factor.

In WNN, the input layer uses the input cable TW signal,
and the hidden layer transforms the wavelet coefficients
through a nonlinear activation function to simulate the
relationship between the signal and the fault point. The
output /4, of each hidden layer node is calculated by

formula (2), and the formula expression is shown in
formula (2).

=X rz+8) @
7; represents the weight from the input to the hidden
layer node, z, represents the input signal, and o,

represents the bias term. o
activation function sigmoid.

represents the nonlinear

In the output layer, the output is the location y of the
cable fault point, and the calculation formula is shown in

3).
y= zl”il Voili +6, (3)

v,. represents the weight of the output layer, and &,

represents the bias term of the output layer.

The improved WNN fault location model is shown in
Figure 1. In Figure 1, the left side shows the improved
steps, the adaptive wavelet basis selection based on MI
and the GA-PSO optimization algorithm, the middle
shows the structure of WNN, and the right side shows
the output cable fault location result.
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Figure 1. Improved WNN fault location model.

In Figure 1, after the cable TW signal is calculated
through MI, the best wavelet basis is selected. Then the
WNN improved by GA-PSO algorithm is used to locate
the cable fault and output the fault distance from the
starting point, which corresponds to 8.4km in the Figure
1.

The improved WNN fault location model in Figure 1
takes the cable TW signal as input, measures the
correlation between each candidate wavelet basis and the
fault signal characteristics through MI, and automatically
selects the optimal wavelet basis to ensure efficient
extraction of signal details. The selected wavelet basis is
then applied to the hidden layer nodes of WNN, and GA
is used to perform a global search for the scaling factor,
translation factor, network weight, threshold, and number
of hidden nodes to obtain the initial optimal parameters.
Finally, the initial solution is used as the initial
population, and PSO is introduced for local fine tuning to
further improve the network fitting accuracy. The trained
model directly gives the distance from the fault point to
the starting point at the output layer, realizing end-to-end
fault location from feature selection to parameter
optimization.

B. Improvement of WNN
1)  MI-Driven Adaptive Selection of Wavelet Basis

In the fault location of medium voltage cables, the
characteristics of the signal are highly nonlinear and
time-varying. Fixed wavelet bases are used in traditional
WNN, which are difficult to adapt to real-time changes.
This paper adopts a wavelet base adaptive selection
method based on MI drive, which uses MI to measure the
matching degree between different wavelet bases and
signal characteristics, and automatically selects the
optimal wavelet base that best suits the current signal
characteristics.
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MI is a statistic that measures the correlation between
two random variables and is widely used in signal
processing and feature selection [26,27]. This study uses
MI to quantify the amount of information between
different wavelet bases and the original fault signal,
selects the wavelet base that is most relevant to the signal
characteristics, and optimizes the feature extraction of
the signal. For each pair of signal and wavelet coefficient,

the calculation formula of MI 1 (X Y ) is shown in (4).

](X’Y) = Z,xexzerq (x,y)log [%J @

gq(x,y) represents the joint probability distribution of
X and Y, g¢(x) and ¢(y) represent their

respective marginal probability distributions. X
represents the features extracted by the wavelet basis
function, and Y represents the features of the original
cable fault signal.

After calculating the MI value of all wavelet bases, the
one with the largest MI value is selected as the optimal
wavelet base of the current signal, and ¢, is shown in

formula (5).

Cp="mI(X.Y) )

Among them, ,» Tepresents the wavelet basis that best

matches the input signal, and (A represents the set of all
candidate wavelet basis functions.

The MI comparison of different wavelet basis functions
is shown in Table 1.



Table 1. MI comparison of different wavelet basis functions.

Wavelet basis function MI value Wavelet basis function MI value
Haar wavelet 0.782 Daubechies 3 0.846
Coiflet 3 0.9 Daubechies 4 0.915
Symlet 4 0.875 Daubechies 5 0.935
Morlet wavelet 0.795 Daubechies 6 0.965
Mexican hat 0.77 Daubechies 7 0.955

In Table 1, according to the MI comparison of different
wavelet basis functions, the one with the largest MI
value is Daubechies 6, which is the final wavelet basis
function of this paper.

2) Optimization of GA-PSO Algorithm

(1) GA algorithm

In WNN, this paper introduces GA to optimize the global
search process of the network to avoid it from falling
into the local optimal solution [28,29]. GA simulates the
process of natural selection and uses the fitness function
to guide the search process to obtain the optimal
solution.

In GA, it now initializes a population, and each
individual represents a set of possible solutions [30]. The
chromosome of an individual consists of a series of
real-valued numbers, and each position represents a
parameter in the network. The gene encoding of each
individual in the population is shown in equation (6).

F= {pilapiz""apm} (6)

p, to p, represent the hyperparameters of WNN,
which are the scaling factor, translation factor, network
connection weight, threshold, and number of hidden

nodes, respectively. P, represents the i -th individual.

In the optimization process of WNN, the fitness function

mainly measures the positioning accuracy of the network.

The fitness function F(P) is shown in formula (7).

1

()
T+ [V + e

F (R

Y, represents the predicted fault location, and y,

represents the actual fault location.

The selection operation selects individuals from the
current population according to fitness as the parents of
the next generation. This paper adopts the roulette
selection method for parent selection. The probability

0. (P) of an individual being selected is shown in
formula (8).
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This paper simulates the gene recombination process
through crossover operation, generating offspring by
exchanging gene fragments between two parent
individuals. P, and P, of the two parent individuals

are shown in formulas (9) and (10).
Pa = {pal’paZ"“’pan } (9)

E; :{pbppbz,"'ypbn} (10)

B, and B, after single-point crossover are shown in
equations (11) and (12).

B = {pal’paZ"“’pak7pb(k+l)’pb(k+2)’.“’pbn } (11)

B, = {pblapbza"'spbkapa(k+1)’pa(k+2)""’pan } (12)

k and B,

represent the offspring individuals obtained after the
crossover operation.

represents the crossover point, and B,

In the mutation operation, randomness is introduced to
help the algorithm escape from the local optimum and
ensure the diversity of the population. Mutation
randomly changes the value of a gene in an individual,
and the new gene value p; is shown in formula (13).

p; = p; +1-ra(0,1) (13)

!

Dy

represents a random

represents the variation amplitude, represents

n
the new gene value. ra(0,1)

number between 0 and 1.

The study generated a new population through selection,
crossover and mutation operations. The next generation
of population can enter a new evolutionary cycle,
repeating operations such as selection, crossover, and
mutation until the predetermined number of iterations is
reached or the fitness reaches the set threshold. When
any of the termination conditions is met, the algorithm
ends, and the individual with the highest fitness is finally
selected as the optimal solution.

(2) PSO algorithm
In the optimization process of WNN, GA is mainly used

for global search to obtain a more reasonable preliminary
solution, while PSO fine-tunes the preliminary solution



through local search. PSO is an optimization algorithm
based on swarm intelligence, which simulates the
behavior of particles flying in the search space to find the
optimal solution of the problem [31,32].

In the PSO algorithm, each particle represents a potential
solution, and the position of the particle corresponds to a
set of solutions for the network parameters [33]. At
initialization, each position of the particle is assigned to
the preliminary solution obtained by GA optimization.

The position update C*' of each particle is shown in
formula (14).

Cid+1 — C;/ + I/id+l (14)

C? represents the position information of the particle in
Vd+l

information of the particle in the d +1th generation, and

the dth generation, represents the velocity
C™*' represents the position information of the particle

in the d +1th generation.

The PSO algorithm adjusts the velocity of each particle
through information transmission between particles, so

that it can effectively explore and utilize the solution
space. The particle velocity update ¥;“*' is shown in

formula (15).
V=iV w4 & (pol™ = Cl )+ 4y - & (g =) (19)

¢ represents the inertia weight, 4, and A, represent

the learning factors, and & and &, represent random

best

po;
particle in history, and gr,

numbers. represents the best position of the

bt is the best position among

all particles.

In the fitness function design, similar to the fitness
function in the GA algorithm, the fitness function of the
PSO algorithm is used to measure the quality of the

particle solution. The fitness function F(C;) is shown

i

in formula (16).

) P
1+|ypr (Ci)+yac

i

(16)

Vor (C) represents the network prediction output based

on the current parameter settings of the particle.

In the PSO algorithm, each particle maintains an

best
i

individual best position po,;” , which corresponds to the
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best solution encountered by the particle during the

The global ™
corresponds to the solution with the best fitness among

all particles.

search process. best position

At each iteration, if the current fitness of the particle is
better than the individual best fitness, the individual best
position is updated. If the current fitness is better than the
global best fitness, the global best position is updated.

best best

The update rules of po; are shown in

equations (17) and (18).

and gr,

pot =l F(C)>F(po) ()

g}"-bCSI — C-d

l , F(C)>F(gr™) (18)
Based on the preliminary solution obtained by GA, the
PSO algorithm further optimizes the hyperparameters of
WNN. In the fault point location of medium-voltage
cables, PSO further improves the prediction accuracy of
the network by fine-tuning the network parameters. The
particle swarm performs multiple iterations in the local
space and gradually converges to a better solution,
reducing the influence of the local optimal solution.

The termination condition of the PSO algorithm is to
reach the maximum number of iterations or the fitness
function reaches a predetermined threshold. When any of
the termination conditions is met, the algorithm ends and
outputs the current global optimal solution.

After the above steps, the output parameters of the
experiment are as follows: the scaling factor is 1.2, the
translation factor is 0.5, the network connection weight is
[0.1, 0.5, 0.8, -0.3], the threshold is 0.01, and the number
of hidden nodes is 10.

The interactive structure diagram of the GA-PSO
algorithm is shown in Figure 2. In Figure 2, the
interactive steps are as follows:

1) Initialize the population and particles, and calculate
the fitness function under GA optimization.

2) Perform selection, crossover and mutation operations,
and output a new population.

3) Send the new population to PSO optimization,
recalculate the fitness function, and update the global
position and historical optimal position of the particles in
turn.

4) Update the particle speed and particle position.

5) Output the optimal network parameters.
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Figure 2. Interaction structure diagram of GA-PSO algorithm.

In Figure 2, the GA-PSO algorithm is different from the
traditional connection method of extracting some
functions. This paper adopts a serial connection method
for mixing, using the execution result of the GA part as
the initial matrix of the PSO part.

Figure 2 shows the serial interaction structure of
GA-PSO hybrid optimization in WNN parameter tuning.
The GA part initializes a population consisting of
network hyperparameters, and through selection,
crossover, mutation operations and fitness evaluation, it
repeatedly evolves to produce a set of excellent
candidate solutions obtained by global search. Then the
PSO part receives the preliminary optimal particle group
output by the GA as the initial position, and uses the
information exchange mechanism between particles and
the speed-position update formula to further iterate and
optimize in the local area. In each iteration, PSO
dynamically adjusts the particle speed and position
according to the individual best and global best
information to more finely approximate the optimal
parameter combination. When the maximum iteration or
fitness threshold is reached, the final global optimal
parameters are output to complete the joint optimization
of WNN. Through this serial design, this paper not only
ensures the global exploration ability of the algorithm,
but also takes into account the convergence speed and
local fine adjustment, effectively avoiding the problem of
a single optimizer falling into local optimality or slow
convergence.
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C. Training and Optimization of Network Model
1)  Loss Function Design

This study uses MSE as the loss function to evaluate the
gap between the network predicted location and the

actual fault location. The loss function L(6) is shown

in formula (19).

3w (-2, () 09)

6 represents the parameter set of the network.

In order to further enhance the network's adaptability to
local signal features, this paper introduces the L2
regularization term in the loss function to prevent the
network from overfitting. The L2 regularization

expression L (@) is shown in formula (20).

M ho
L,e(9)=ozki:]9j (20)
o represents the regularization parameter.

The final loss function expression L, is shown in

formula (21).



L,=L(0)+L.(0) 1)

to

L represents the total loss function.

to

2)  Model Optimization

In actual fine-grained optimization, GA and PSO are
mainly used for global optimization and local refinement,
which are very useful when exploring parameter space.
This paper introduces Adam to further optimize the
network training process [34,35], and the expression of

parameter update is shown in (22).

@p,

_\/E+g

@ represents the learning rate, p, and g, represent

9 =9, (22)

the corrected estimates.

The hyperparameters of the three algorithms WNN, GA
and PSO in the experiment are shown in Table 2.

Table 2. Hyperparameters of the three algorithms WNN, GA and PSO.

WNN GA PSO
Parameters Value Parameters Value Parameters Value
Learning rate 0.001 Population size 50 Number of particles 30
Regularization parameter 0.01 Crossover rate 0.8 Position update coefficient | 0.5
Activation function Sigmoid | Mutation rate 0.1 Individual learning factor 1.5
Number of input layer nodes | 20 Maximum number of iterations | 100 Group learning factor 1.5
Number of output  layer 1 Selection method Roule_t te Maximum speed 2
nodes selection
4. Experimental Design For Locating Fault Points of ., Z-Z.
Medium-Voltage Cables Z'= 7 _7 23)

A. Experimental Data

The experimental data is generated by simulating the
actual operating environment of medium-voltage cables
and signal reflections under different fault types and fault
point locations. Fault types include short circuit, open
circuit, ground fault, etc. The power supply voltage is
35kv, the frequency is 50Hz, and the cable lengths
include 100km, 200km, 300km, 400km, 500km, 600km,
700km, and 800km. The fault start and end time is set to
0.03 to 0.035s, the simulation time is set to 0.1s, and the
signal sampling frequency is 10kHz.

This paper takes 100km as an example, and sets the cable
fault at a distance of 2km, with an interval of 2-80km.
The collected data are the modulus maximum points of
the fault voltage TW. A total of 40 sets of data were
collected as the training set for the 100km cable length at
this time, and 8 sets of data from 5km to 75km were used
as the test set, corresponding to Skm, 15km, 25km, 35km,
45km, 55km, 65km, and 75km positions. The
verification of the remaining seven sets of fault distances
is the same as above, and the cable setting distances are
consistent. When the cable length is 200km, the fault
interval is 102km to 180km, the distance is 2km, and the
data from 105km to 175km is used as the test set. The
corresponding fault points are 105km, 115km, 125km,
135km, 145km, 155km, 165km, and 175km.

B.  Data Preprocessing

The amplitude of the cable fault signal can vary greatly
in different tests. In order to ensure the uniformity of the
training data and the stability of the network training,
this paper uses Min-Max normalization to normalize the
signal. The formula is shown in (23).

18

Among them, Z' represents the normalized signal,
Z., and Z__ represent the minimum and maximum

values of the signal respectively.
C. Evaluation Indicators

In order to prove the advantages of the improved
GA-PSO-WNN method in locating medium-voltage
cable fault points, this paper uses indicators such as
number of iterations, convergence time, MAE, RMSE,
MAPE, error value, and error under noise and different
cable lengths to fully reflect the performance of the
algorithm in practical applications.

The number of iterations and convergence time can
intuitively reflect the convergence speed of the method.
Fewer iterations and shorter convergence time indicate
that the algorithm is more efficient in finding the optimal
solution and can quickly find satisfactory results. MAE,
RMSE, and MAPE are commonly used indicators for
evaluating positioning accuracy. They can quantify the
error between the positioning result and the actual fault
point, especially in complex environments. They can
better verify the ability of the improved algorithm to
reduce positioning errors. Through these indicators, the
experiment can comprehensively evaluate whether the
GA-PSO-WNN method can effectively improve
positioning accuracy, optimize global search capabilities,
and increase convergence speed, especially in practical
application scenarios such as different cable lengths and
noise interference.

The error value and the error under noise and different
cable lengths further verify the robustness and stability
of the algorithm in a changing environment. The



experiment tests the improved method under different
cable lengths and noise intensities to reflect its
adaptability and practical application effect in a complex
environment.

The calculation formula of MAE is shown in (24):
1 N . .
MAE = Nzi:l|yp, (1)-2. (1) @4

The calculation formula of MAPE
Percentage Error) is shown in (25):
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ytr (l

(Mean Absolute
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MAPE = Nzizl x100% (25)

The calculation formula of RMSE is shown in (26):

RMSE = \/%fol(ym ()=, (i ))2 (26)

D. Experimental Design

To verify the effectiveness and robustness of the medium
voltage cable fault location method based on the
improved WNN, this paper designed multiple
experiments covering scenarios with different cable
lengths and different noise interference intensities. The
main goal of the experiment is to evaluate the positioning
accuracy, real-time performance, and robustness of the
model in a variable actual environment.

The experiment was first conducted under different cable
lengths to simulate the impact of different cable
operating environments on fault location accuracy. The
selection of cable lengths took into account various
common scenarios in actual power systems, including
short, medium and long distance cables, which are
100km, 200km, 300km, 400km, 500km, 600km, 700km
and 800km respectively. The experiment also adds
Gaussian noise of different intensities to interfere with
the fault signal, compares the difference between the
positioning accuracy under different noise interference
and the noise-free state, and analyzes the stability of the
system. The noise ranges from 5dB to 40dB. In the
experiment, the experimental method is GA-PSO-WNN
(adaptive wavelet basis), and the control methods include
TW method, impedance method, BP (back propagation),
CSA-WNN, GA-WNN, PSO-WNN, WNN, SSA-WNN
(Sparrow Search Algorithm-Wavelet Neural Network).

5. Display of Medium Voltage Cable Fault Location
Results

A. Cable Fault
Diagram

Location Distance Difference

The experiment takes the case of a cable length of
100km as an example, conducts simulation experiments
on different methods, and statistically analyzes the cable
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Distance difference (km)

fault location results on the test set, as shown in Figure 3.
In Figure 3, the location errors of the fault location at
Skm, 15km, 25km, 35km, 45km, 55km, 65km, and 75km
are displayed. The horizontal axis represents the method
name, and the vertical axis represents the distance
difference.
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Figure 3. Positioning results.

In Figure 3, GA-PSO-WNN (adaptive wavelet basis)
shows the smallest error at each test point, with an error
range of -0.06km to 0.08km, significantly better than
other methods, with the error at the Skm fault point being
only 0.01km. The error of CSA-WNN is slightly larger,
ranging from -0.10km to 0.08km, indicating that the
introduction of swarm intelligence optimization
algorithm has improved the positioning accuracy to a
certain extent, but it is still not as good as the joint
optimization of GA and PSO. The error of BP neural
network fluctuates greatly, with an error of -0.1km at
15km and 0.13km at 55km, showing a certain degree of
prediction instability. Traditional methods such as the
TW method and the impedance method have larger
errors, ranging from -0.13km to 0.18km and 0.2km to
0.5km respectively, and have poor adaptability to
complex fault characteristics.

GA-PSO-WNN improves the ability to extract
instantaneous high-frequency features by introducing an
adaptive wavelet basis for fine signal modeling. At the
same time, it combines the global search of GA with the
local refinement optimization of PSO to effectively
adjust the scaling factor, translation factor and network
parameters to achieve more accurate fault location.
Although CSA-WNN has certain  optimization
capabilities, it has not achieved two-stage evolution and
has limited optimization accuracy. BP only relies on
gradient descent and is prone to fall into local optimality,
resulting in a significant decrease in prediction accuracy
at points where the fault location changes sharply, such
as 65km and 75km. The main reason for the increase in
errors is that the TW method and the impedance method
rely too much on a single characteristic parameter and
ignore the complex changes in the reflected waveform.



B. Convergence Curve Analysis In Figure 4, as a whole, as the number of iterations
increases, the fitness value gradually increases and the

The convergence curves of different methods tested convergence tends to be stable. PSO-WNN has the
under a cable length of 100 km are shown in Figure 4. In fastest convergence speed, reaching a convergence state
Figure 4, the horizontal axis represents the number of after 60 iterations, and the fitness value reaches 0.89. The
iterations and the vertical axis represents the fitness GA-PSO-WNN (adaptive wavelet basis) in this paper
value. The higher the fitness value, the better the model converges faster, reaching the convergence level after 70
fits the training data, the smaller the positioning error, iterations, and the fitness is the largest, reaching 0.93.
and the better the overall performance. The improvement The convergence speed of GA-WNN is slower, reaching
of the fitness value means that the algorithm has more the convergence state after 90 iterations, and the fitness
advantages in global search and local fine-tuning, and is average, reaching 0.86. For CSA-WNN, its fitness
can optimize network parameters more accurately, value is the lowest, only 0.85 after 100 iterations, and it
improving  the accuracy and robustness of has not reached the convergence state. SSA-WNN
medium-voltage cable fault point positioning. reaches convergence after 80 iterations, and the fitness

value reaches 0.88. In summary, this paper introduces
1.0 1

adaptive wavelet basis, GA, and PSO to achieve better
v e e convergence speed and improve positioning accuracy.
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Figure 5. Fault location results under different cable lengths and different noise interferences. Figure 5 (a) Fault location results under
different cable lengths; Figure 5 (b) Fault location results under different noises.

In the test results under different cable lengths in Figure the MAE is 6.25 km and the RMSE is 8.95 km.
5 (a), both MAE and RMSE increase with the When the cable length increases to 800 km, the MAE
increase of cable length, indicating that the longer the increases to 16.2 km and the RMSE increases to 18.85
cable, the more significant the attenuation and km. It can be seen that the distortion of the time domain
interference of the fault signal, resulting in a decrease in characteristics caused by attenuation, dispersion and
positioning accuracy. When the cable length is 100 km, reflection during the propagation of TWs reduces the
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ability of WNN to extract distant fault points. Looking at
the MAPE under different cable lengths, the MAPE
is 0.33% at 100 km, and rises to 0.60% at 800 km, nearly
doubling. The longer the cable, the more complex the
signal propagation path, and the more difficult it is to
completely filter out the superimposed interference and
background noise, which poses a challenge to the
reliability of fault feature extraction.

Under different noise intensity conditions in Figure 5 (b),
MAE and RMSE also show a significant upward
trend. When the noise intensity is 5dB, the MAE and
RMSE are 6.4km and 8.1km respectively; when the
noise intensity is increased to 40dB, the two indicators
reach 12.5km and 14.35km respectively. This
phenomenon shows that although the model has a certain
degree of noise resistance, the recognition accuracy of
key feature points decreases under high-intensity noise
interference, resulting in an increase in the overall
positioning error.

As for the change of MAPE under noise interference, it
gradually increases from 0.35% at 5dB to 0.54% at 40dB,

showing a stable increasing trend. The noise
superposition interferes with the characteristic structure
of the original TW signal and increases the

non-stationarity of the input data. Even if the adaptive
wavelet basis has a good decomposition ability for
high-frequency components, it cannot completely
eliminate the pseudo-features, which affects the accuracy
of the neural network's judgment of the real fault point.
In summary, the error of the improved WNN method in
this paper is generally at a low level under different cable
lengths, and it has a certain anti-interference ability for
different noise intensities.

The reason for the difference in errors under different
cable lengths and noise intensities is mainly due to the
changes in physical properties and the increase in noise
interference experienced by the TW signal during
transmission. As the cable length increases, the TW
signal needs to propagate over a longer distance, which
can cause more obvious attenuation, dispersion effect
and multiple reflection interference, resulting in time
domain broadening, amplitude reduction and waveform
distortion of the original signal characteristics. This
makes it difficult for the modulus maximum feature
points extracted by the adaptive wavelet basis to
accurately reflect the actual fault location, thus affecting
the training and prediction accuracy of the WNN. When
the noise interference is enhanced, especially when the
noise intensity is greater than or equal to 30dB, a large
number of high-frequency pseudo features can be mixed
in the TW signal, which increases the uncertainty in the
feature extraction process. This paper introduces the
GA-PSO optimization algorithm to jointly optimize the
WNN network parameters, using the global search
capability of GA to avoid falling into the local optimum,
and using the fast local search characteristics of PSO to
accelerate the convergence speed, thereby improving the
generalization ability and stability of the model. At the
same time, combined with the MI-driven adaptive
wavelet basis selection mechanism, feature extraction is
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more targeted and robust, and feature information
reflecting the real fault location can still be effectively
extracted in the face of long-distance transmission and
high-intensity noise interference. Experimental results
show that the improved WNN method in this paper
shows good robustness and high positioning accuracy

under different working conditions, verifying the
effectiveness and practicality of the GA-PSO
optimization strategy and adaptive wavelet basis

collaborative mechanism in the
medium-voltage cable fault points.

task of locating

D. Real-time Performance of Fault Location of
Different Methods

The real-time performance results of fault location of
different methods are shown in Figure 6. In Figure 6, the
horizontal axis represents the method name, and the
vertical axis represents the time, specifically the fault
location time, processing delay time, and response time.
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Figure 6. Real-time results of fault location of different
methods.

In Figure 6, the traditional methods of TW method and
impedance method have significant response speed
advantages. The fault location time of TW method is
12.5ms, the processing delay time is 8.3ms, and the
overall delay is the shortest. The fault location time and
processing delay time of the impedance method are
15.3ms and 10.1ms respectively. The location time of the
BP method is 28.9ms, and the processing delay is 18.5ms,
which is higher than the traditional algorithm.
CSA-WNN and GA-PSO-WNN (adaptive wavelet basis)
have higher computational efficiency with the support of
optimization strategy, with location time of 24.8ms and
20.5ms respectively, and processing delay time of
14.7ms and 12.3ms respectively.

In terms of response time, GA-PSO-WNN (adaptive
wavelet basis) outperforms all neural network methods,
with a response time of 32.8ms, while CSA-WNN
reaches 39.5ms and BP reaches 47.4ms. The TW method
and impedance method maintain the lowest response
time at 20.8ms and 25.4ms respectively, but the
positioning accuracy is much lower than GA-PSO-WNN



(adaptive wavelet basis). In summary, while maintaining
a relatively fast response speed, GA-PSO-WNN
(adaptive wavelet basis) achieves a better balance in
terms of accuracy and stability, reflecting its dual
guarantee of real-time and accuracy in medium-voltage
cable fault location.

In the comparison of the real-time performance of fault
location of different methods, the differences presented
are mainly closely related to the complexity of the
algorithm structure, the feature extraction mechanism,
and the computational efficiency of the optimization
strategy. Traditional methods such as the TW method and
the impedance method rely on fixed formulas and
threshold judgments. The algorithm logic is simple, the
amount of calculation is small, and it has an extremely
fast response speed. It is suitable for scenarios with
extremely high real-time requirements, but its robustness
and positioning accuracy are insufficient in complex
environments, and it is difficult to adapt to situations
where the signal has obvious nonlinear characteristics.
Neural network methods such as BP, CSA-WNN, and
GA-PSO-WNN can effectively capture complex signal
characteristics and improve positioning accuracy due to
the introduction of nonlinear modeling capabilities, but it
also brings about the problem of increased model
calculation and longer reasoning time. The BP method
has a slow convergence speed and inefficient reasoning
process due to the lack of a global optimization
mechanism, and performs worst in positioning time and
response time. Although CSA-WNN introduces swarm
intelligence optimization to improve accuracy, its
algorithm has a large search space and weak local
convergence ability, which also causes a certain response
delay.

The GA-PSO-WNN (adaptive wavelet basis) used in this
paper is more efficient in network parameter
initialization and fine-tuning by integrating the global
search of GA and the local optimization mechanism of
PSO, and reduces redundant features with the wavelet
basis selection mechanism driven by MI. This enables
the neural network to reduce the burden of feature
extraction and model calculation while maintaining the

accuracy advantage, significantly improving the
reasoning efficiency and overall response time. The
GA-PSO-WNN (adaptive wavelet basis) method
achieves a better trade-off between real-time and
accuracy, demonstrating its engineering adaptability and
application prospects in complex cable fault scenarios.

E. Ablation Experiment

This paper introduces GA and PSO, and the adaptive
wavelet basis is used to improve WNN. In order to
explore their respective effects on positioning accuracy
and convergence speed, this paper adopts ablation
experiments. The specific experimental process is as
follows:

(1) Complete model benchmark test: GA-PSO-WNN
(adaptive wavelet basis), the model contains all three
improved modules: GA, PSO and adaptive wavelet basis.

(2) Module 1 adaptive wavelet basis can be removed,
and only the WNN optimized by GA and PSO
(GA-PSO-WNN) can be retained to verify the
improvement effect of adaptive wavelet basis in signal
feature extraction and model training.

(3) Module 2 PSO algorithm can be removed, GA can be
retained, and a GA-WNN structure can be formed to
evaluate the role of PSO in optimizing convergence
speed and parameter tuning.

(4) Module 3 GA algorithm can be removed, PSO can be
retained, and a PSO-WNN structure can be formed to
analyze the contribution of GA in improving model
diversity and global search capabilities.

(5) GA and PSO can be removed and the most basic
WNN structure can be used. This structure is used as a
control group to reflect the comprehensive impact of the
three improvements on the model performance.

Now the experiment is carried out in an environment
with a cable length of 100 km. The results are shown in
Table 3.

Table 3. Ablation experiment results.

Method MAE (km) MAPE (%) RMSE (km) Convergence speed (epochs)
GA-PSO-WNN(adaptive wavelet basis) | 6.25 0.33 8.95 70

GA-PSO-WNN 6.85 0.35 9.3 76

GA-WNN 7.5 0.38 10.1 90

PSO-WNN 7.95 0.41 10.75 60

WNN 8.2 0.43 11.2 118

In Table 3, it can be seen that GA-PSO-WNN (adaptive
wavelet basis) has the lowest fault location error, with
MAE  of 6.25km, RMSE of 8.95km, and MAPE of
0.33%. When the adaptive wavelet basis is removed and
only GA-PSO-WNN is used, the MAE is 6.85km,
RMSE is 9.3km, and MAPE 1is 0.35%. It can be seen
that the introduction of the adaptive wavelet basis
improves the performance of the network to a certain
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extent, optimizes the feature extraction of the signal and
the learning ability of the network.

When the PSO algorithm is removed, the MAE of
GA-WNN is only 7.5km and the RMSE is only 10.1km,
and the positioning error is significantly improved. After
removing GA, the MAE of PSO-WNN is 7.95km and the
RMSE is 10.75km. This shows that after removing GA,



the performance of the model decreases more
significantly than after removing PSO, which proves the
importance of GA in optimizing population diversity.

When GA, PSO and adaptive wavelet base are
completely removed and traditional WNN is used, the
positioning error increases further, with MAE of 8.2km,
RMSE of 11.2km and MAPE of 0.43%. It shows that the
optimization strategy of GA and PSO and the
introduction of adaptive wavelet basis have significantly
improved the fault location performance of WNN and
effectively avoided falling into the local optimal solution.
Compared with the single GA and PSO, the global search
capability is improved, the adaptability and robustness of
the model are improved, and the location error is reduced,
which proves the important role of these modules in
improving accuracy.

For the convergence speed in Table 3, the convergence
speed of the GA-PSO-WNN (adaptive wavelet basis)
model is 70 iterations, which performs relatively well. It
can be seen that the synergistic effect of the three
improvement methods not only improves the positioning
accuracy, but also significantly accelerates the
convergence efficiency of training. The enhancement of
feature extraction by adaptive wavelet basis helps the
model to quickly capture key information and accelerate
the network learning process. The collaborative
optimization of GA and PSO effectively adjusts the
weight and threshold parameters and accelerates the
search process. When the adaptive wavelet basis is
removed and only GA and PSO are retained, the number
of iterations required for model convergence increases to
76 times, indicating that although the global optimization
capability still exists, the lack of the wavelet basis's local
fine expression ability of the signal makes the model
training process slightly slow. Further analysis shows
that the convergence speed after removing PSO alone is
90 times, which is slow. The PSO algorithm itself has a
strong local search capability and can quickly approach
the optimal area in the early stage of training. Removing
it can result in an inefficient search path and a prolonged
convergence process. The convergence speed of
removing GA alone is 60 times, which is faster than
GA-WNN. Although the accuracy has decreased, PSO
provides a faster local search capability in the initial
optimization process, and the training converges faster.
However, this rapid convergence is often accompanied
by the risk of falling into local optimality, resulting in a
decrease in overall performance. The basic WNN
structure has the slowest convergence speed, which is
118 iterations. It can be seen that the training process of
the neural network without any optimization means is
relatively slow when facing complex signals, and it is
difficult to efficiently find a better solution.

In summary, different modules have different focuses on
the impact of convergence speed. PSO is more conducive
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to rapid convergence in the early stage, GA focuses more
on global search and parameter diversity, and adaptive
wavelet basis improves feature extraction efficiency and
training stability. The combination of the three in this
paper can significantly shorten the model training cycle
while maintaining accuracy improvement.

F. Power System Stability Analysis

In order to verify the voltage and current stability of the
power system fault recovery process, an experiment is
designed to simulate the recovery process of the power
system after a fault occurs, and the system recovery
capability after the cable fault occurs is analyzed
according to different methods such as TW method,

impedance method, BP, CSA-WNN, WNN, and
GA-PSO-WNN (adaptive wavelet basis). In the
experiment, an instantaneous short-circuit fault is

artificially set in the system to simulate the instantaneous
fluctuation of voltage and current. The fluctuation curves
of voltage and current in the process from fault
occurrence to recovery are shown in Figure 7. In Figure
7 (a), the horizontal axis represents time and the vertical
axis represents voltage. In Figure 7 (b), the horizontal
axis represents time and the vertical axis represents
current.

In Figure 7 (a), it can be seen that when the fault occurs,
the voltage fluctuation has obvious fluctuations, and the
voltage fluctuation gradually decreases during the
recovery process. In the TW method and impedance
method, the voltage fluctuation is large, especially for a
period of time after the fault, and the recovery time is
long, about 13.6s and 15.3s respectively. The recovery
effect of the BP, CSA-WNN, WNN and GA-PSO-WNN
(adaptive wavelet basis) methods is better, the voltage
fluctuation is reduced quickly, and the recovery process
is smoother. The GA-PSO-WNN (adaptive wavelet basis)
method has the smallest voltage fluctuation after
recovery, which only takes about 6.2s. It shows a strong
recovery ability, which is related to the optimization
characteristics of its adaptive wavelet basis.

In Figure 7(b), the current fluctuations of all methods
after the fault occurred are also large, and the
fluctuations gradually decrease after recovery. The
current fluctuations of the TW method and the
impedance method are more severe, especially in the
carly stage after the fault occurs, and the current
recovery is slow. The current recovery of the BP,
CSA-WNN, WNN and GA-PSO-WNN (adaptive
wavelet basis) methods is relatively rapid, especially the
GA-PSO-WNN (adaptive wavelet basis) method, the
current fluctuations recover to a near normal state in a
relatively short time. GA-PSO-WNN (adaptive wavelet
basis) has the best current recovery performance because
it combines GA and PSO and has high efficiency in fault
location and optimization of recovery strategy.



Figure 7 (a) voltage fluctuation curve of the system during the process from failure to recovery
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Figure 7. Voltage and current fluctuation curve of the system during the process from fault to recovery. Figure 7 (a) Voltage
fluctuation curve of the system during the process from fault to recovery; Figure 7 (b) Current fluctuation curve of the system during
the process from fault to recovery.

From the perspective of voltage fluctuation recovery, the
differences in fault location accuracy and response
strategy among different methods are the main reasons
for the different recovery effects. Traditional TW method
and impedance method rely on the propagation
characteristics of fault reflection wave or line parameter
calculation, which are sensitive to noise and system
structure changes, easily causing error accumulation,
prolonging positioning and recovery time, and resulting
in long duration of voltage fluctuation. BP neural
network and WNN methods have advantages in learning
the nonlinear dynamic characteristics of the system,
especially CSA-WNN and GA-PSO-WNN methods
combined with intelligent optimization algorithms,
which can achieve global optimization of network
weights and wavelet basis functions, and improve the
model's fitting and generalization capabilities. After fault
location, the recovery process can be started faster, and
voltage fluctuations decay quickly.

In the process of current fluctuation recovery, the
algorithm's response speed to system disturbances and its

adaptability to non-stationary signals become key factors.

The TW method and impedance method need to rely on
multi-point feature judgment and complex model
matching processes after fault identification. The
response speed is relatively lagging, and the current
fluctuation lasts for a long time. Intelligent algorithms
such as BP and WNN can quickly capture the
characteristics of current mutations, extract effective
fault modes, and accelerate the triggering of system
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control  strategies. The GA-PSO-WNN  method
effectively avoids falling into local optimality by
introducing GA and PSO mechanisms, enhances the
ability to handle complex disturbances, and quickly
restores the current to a steady state. This multi-agent
collaborative optimization method improves the overall
response efficiency of the system, which is the main
reason for its optimal performance in current recovery.

G. System Recovery Time and Fault Downtime of
Different Methods, Load Recovery Efficiency

In order to comprehensively evaluate the comprehensive
performance of various methods in actual cable fault
handling, this paper introduces the load recovery
efficiency index, which is used together with the system
recovery time and fault downtime as a comprehensive
evaluation standard. The system recovery time refers to
the time from the occurrence of the fault to the
restoration of the overall power supply of the system.
The fault downtime refers to the interruption time from
the occurrence of the fault to the completion of the
location and the start of the recovery process. The load
recovery efficiency refers to the proportion of the load
restored per unit time to the total load, which is used to
measure the speed and effectiveness of the recovery
process. The experiment is based on the results of
multiple medium-voltage cable fault simulations, and the
average performance of different methods is statistically
analyzed. The results are shown in Table 4.



Table 4. System recovery time and fault downtime of different methods, load recovery efficiency.

Methods System recovery time (s) Fault downtime (s) | Load recovery efficiency (%)
TW method 13.6 8.9 81.2
Impedance method 15.3 9.7 78.4
BP 10.2 6.5 85.9
CSA-WNN 7.4 43 90.3
WNN 8.1 4.9 88.5
GA-PSO-WNN (adaptive wavelet basis) 6.2 3.7 93.6

In Table 4, from the perspective of system recovery time
and fault downtime, the GA-PSO-WNN (adaptive
wavelet basis) method performs best, with a system
recovery time of only 6.2s and a fault downtime of 3.7s.
The recovery time of the traditional TW method is 13.6s
and the downtime is 8.9s, while the impedance method is
15.3s and 9.7s respectively. The BP neural network
method has a significant improvement over the
traditional method, with a system recovery time of 10.2s
and a downtime of 6.5s. The system recovery time and
fault downtime of the ordinary WNN are 8.1s and 4.9s
respectively, while the CSA-WNN only takes 7.4s and
4.3s. It shows that with the intelligence of the algorithm
and the optimization of the structure, the fault location
accuracy is higher and the response is faster, which
effectively reduces the interruption time of the cable
system.

In terms of load recovery efficiency, GA-PSO-WNN
takes the lead with an efficiency of 93.6%. CSA-WNN
and WNN are 90.3% and 88.5% respectively, and the BP
method is 85.9%. The traditional TW method and
impedance method have low load recovery efficiency,
which are 81.2% and 78.4% respectively. High load
recovery efficiency means that more electricity
consumption is restored per unit time, which is of great
significance to the operation continuity of the power
system and the user-side experience. It can be seen that
the more advanced the optimization algorithm, the more
it can improve the recovery ability of the power supply
system after a sudden failure.

Traditional methods such as the TW method and the
impedance method are easily affected by interference
signals in complex environments, resulting in large
positioning errors and long processing times. Algorithms
based on neural networks, such as BP and WNN, have
certain learning capabilities, but are prone to falling into
local optimality and have weak generalization
capabilities. After introducing improved mechanisms
such as CSA or GA-PSO (adaptive wavelet basis), the
model's ability to extract signal features and parameter
adaptability are significantly enhanced. In particular,
GA-PSO-WNN combines the multi-scale feature
extraction capability of the adaptive wavelet basis, which
can more accurately identify fault points and avoid
falling into local optimality. At the same time, it can
effectively shorten downtime and achieve large-scale
load recovery in the shortest time, achieving
high-efficiency and high-reliability fault location and
system recovery.
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H. Comparison Results with Other Deep Learning
Methods

In order to further verify the feasibility of the
GA-PSO-WNN (adaptive wavelet basis) method, a
comparative experiment was conducted in an
environment with a cable length of 100 km. The results
are shown in Figure 8. In Figure 8, the comparison

models include 1DCNN-BSVM, CNN-LSTM,
BiGRU-ResNet, DSCNN-SA-SE, and BiLSTM.
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Figure 8. Comparison results with other deep learning methods.

In Figure 8, for MAE and RMSE , GA-PSO-WNN
(adaptive wavelet basis) performs best, with MAE of
6.25 km and RMSE of 8.95 km. Other methods such as
BiLSTM and 1DCNN-BSVM perform relatively poorly
with MAE of 7.3 km and 7.1 km, RMSE of 10.0 km
and 9.8 km, respectively. The MAE s of CNN-LSTM,
BiGRU-ResNet and DSCNN-SA-SE are 6.8 km, 6.5 km
and 6.9 km, respectively, which are also higher than
GA-PSO-WNN, indicating that GA-PSO-WNN has
more advantages in positioning accuracy and stability.

In terms of MAPE , GA-PSO-WNN still performs best,
only 0.33%. The MAPE of other models such as
BiLSTM and IDCNN-BSVM are 0.40% and 0.38%
respectively, with relatively large relative errors, while

the MAPE  of CNN-LSTM, BiGRU-ResNet, and
DSCNN-SA-SE are 0.36%, 0.35%, and 0.37%
respectively.

GA-PSO-WNN introduces GA and PSO to jointly
optimize network parameters, so that the model can jump
out of the local optimum and find a more global solution.



Moreover, the WNN structure using adaptive wavelet
basis can more flexibly capture the non-stationary
characteristics in the cable fault reflection signal.
Compared with the traditional convolutional network or
RNN structure, it has stronger local time-frequency
analysis ability for the signal, which improves the
accuracy of positioning. Although other models such as
BiLSTM and CNN-LSTM have advantages in time
series modeling, they may not achieve the optimal
expression of features or parameter tuning, resulting in
relatively large errors. In particular, the combined model
of 1IDCNN-BSVM has bottlenecks in nonlinear feature
extraction, and its accuracy is more obviously limited. In

summary, GA-PSO-WNN shows stronger performance
advantages in cable fault location tasks due to its
optimization strategy and signal adaptability design.

1. Convergence Stability Analysis

To further verify the convergence stability, this paper
repeats the GA-PSO-WNN (adaptive wavelet basis) and
the comparison method 10 times under the same 100km
cable condition, and counts the fitness value and
convergence iteration number at the end of each final
iteration, and calculates the mean and standard deviation.
The results are shown in Table 5.

Table 5.
Method Average final fitness (mean+std) é;/:;iiestd)number of  convergence iterations
GA-PSO-WNN (adaptive wavelet basis) | 0.925+0.003 72+4
PSO-WNN 0.887+0.005 61+6
GA-WNN 0.855+0.007 92+8
CSA-WNN 0.851+0.010 101+9
SSA-WNN 0.882+0.006 82+7

In Table 5, for the average final fitness, GA-PSO-WNN
(adaptive wavelet basis) leads all methods with a score of
0.9254£0.003, which is significantly better than
PSO-WNN's 0.887+0.005 and SSA-WNN's 0.882+0.006.
GA-WNN reaches 0.855+£0.007 and CSA-WNN reaches
0.85140.010, which is more average. The results show
that GA-PSO-WNN finds higher quality parameter
combinations overall, with lower training error and better
model fit.

In terms of the average number of convergence iterations,
PSO-WNN is the fastest, reaching stability in only 61+6
iterations, followed by GA-PSO-WNN with 7244 times,
SSA-WNN and GA-WNN require 82+7 and 92+8 times
respectively, and CSA-WNN is the slowest, reaching
10149 times. Although PSO-WNN has an advantage in
convergence speed, its fitness level is still far behind that
of GA-PSO-WNN, while GA-PSO-WNN achieves the
best balance between speed and effect.

GA-PSO-WNN adopts a serial fusion optimization
strategy. The GA stage is responsible for extensive
exploration of the parameter space to avoid falling into
the local optimum in the early stage, while the PSO stage
conducts a refined search in the excellent area of

GA output, so that the model can eventually
converge to a higher fitness value. At the same time, the
adaptive wavelet basis selection provides a more
representative feature expression for the network,
improves the "signal quality" of the optimization process,
and further improves the upper limit and stability of the
final fitness. Although PSO-WNN can quickly complete
the search using inertia weights and individual/global
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optimal information, it lacks global diversity guarantees,
resulting in early convergence but difficulty in further
improvement. On the contrary, pure GA-WNN has a
strong global exploration ability but is not efficient in
detail tuning, so it converges slowly. The construction of
CSA-WNN introduces diversified search, but its update
mechanism does not provide enough detailed mining of
local areas, which slows down the speed and makes it
difficult to converge to the optimal point. This paper
connects GA and PSO in series and supplements them
with adaptive feature selection, which is the key to
achieving high fitness and fast and stable convergence.

J.  Friedman Test and Wilcoxon Signed Rank Test

To further evaluate the statistically significant differences
in fault location accuracy among different algorithms,
this paper uses the Friedman test and Wilcoxon signed
rank test for analysis. The compared algorithms include:
GA-PSO-WNN, PSO-WNN, GA-WNN, CSA-WNN,
SSA-WNN, IDCNN-BSVM, CNN-LSTM,
BiGRU-ResNet, DSCNN-SA-SE, BiLSTM.

Under the same 100km cable condition, all algorithms
were run 10 times each, and the final fitness values

were recorded as statistical samples. The Friedman
test is used to determine whether there are significant
differences among all algorithms as a whole; the
Wilcoxon test is used for further pairwise comparisons to
determine which specific algorithms have significant
differences. The statistical results of the Friedman test
are shown in Table 6.




Table 6. Statistical results of the Friedman test.

Method Average rank x2(9) p value
GA-PSO- WNN 1.3

PSO-WNN 2.9

BiGRU- ResNet 3.7

DSCNN-SA-SE 4.1

BiLSTM 4.5

61.47 <0.001

SSA- WNN 5.1

GA-WNN 6.1

CNN-LSTM 6.3

1DCNN-BSVM 7.1

CSA-WNN 8

From the statistical results of the Friedman test in Table 6,
it can be seen that the average ranking differences of all
algorithms are quite obvious. GA-PSO-WNN ranks the
highest, with an average ranking of 1.3, indicating that
the algorithm performs best in fault location accuracy
and is significantly better than other algorithms. The
average ranking of PSO-WNN is 2.9, and the average
ranking of BiGRU-ResNet is 3.7. CSA-WNN ranks the
lowest, with an average ranking of 8, indicating that the
algorithm is relatively poor in accuracy.

According to the P value of the Friedman test (<0.001), it

can be seen that the location accuracy differences
between different algorithms are statistically significant.
The P value is much smaller than the significance level
of 0.05 usually set, indicating that in the task of fault
location, there are significant differences in the
performance of each algorithm, and further pairwise
comparisons are needed to determine which specific
algorithms have significant differences.

The results of the Wilcoxon signed rank test are shown in
Table 7.

Table 7. Wilcoxon signed rank test results.

GA-PSO-WNN vs other Z value p value Significance judgment (a = 0.05)
PSO-WNN -2.401 0.013

GA-WNN -2.712 0.008

CSA-WNN -2.897 0.005

SSA-WNN -2.406 0.016

1DCNN-BSVM -2.221 0.022 Significant differences
CNN-LSTM -2.687 0.009

BiGRU- ResNet -2.09 0.036

DSCNN-SA-SE -2.035 0.041

BIiLSTM -2.328 0.019

In the Wilcoxon signed rank test results in Table 7, the
differences in fault location accuracy between
GA-PSO-WNN and other algorithms have reached a

significant level (a=0.05) . The Z  value of
GA-PSO-WNN and PSO-WNN is -2.401, the p value

1s 0.013, the Z wvalue of GA-PSO-WNN and GA-WNN
is -2.712, the p value is 0.008, the Z  value of
GA-PSO-WNN and CSA-WNN is -2.897, the p value
is 0.005, and the Z value of GA-PSO-WNN and
SSA-WNN is -2.406, the p value is 0.016. It can be
seen that the differences between the algorithms are
significant. This shows that GA-PSO-WNN has obvious

advantages in these algorithms and can provide higher
positioning accuracy.

The Z value of GA-PSO-WNN and IDCNN-BSVM is
-2.221, the p value is 0.022, the Z  value of

27

GA-PSO-WNN and 1DCNN-BSVM is -2.687, the p
value is 0.009, and the Z value of GA-PSO-WNN and
BiGRU-ResNet is -2.09, the p value is 0.036. The Z
value of GA-PSO-WNN and DSCNN-SA-SE is -2.035,
the p  value is 0.041, and the Z  value of
GA-PSO-WNN and BiLSTM is -2.328, the p value is
0.019, which further verifies the relative advantages of
GA-PSO-WNN among multiple algorithms and shows
the strong ability and stability of this method in fault
location tasks.

6. Experimental Discussion

The experimental results of this paper show that by
introducing adaptive wavelet basis, GA and PSO
optimization algorithm, the improved GA-PSO-WNN
(adaptive wavelet basis) in this paper shows obvious



advantages in cable fault location. This result is mainly
due to several factors: the introduction of adaptive
wavelet basis can effectively process high-frequency
details and instantaneous changes in the signal, improve
the feature extraction ability of fault signal, and optimize
the learning effect of the network. GA and PSO
algorithms fine-tune network parameters such as scaling
factor, translation factor and network weight through
global and local joint optimization, thus overcoming the
problem that traditional WNN is prone to fall into local
optimality and improving the positioning accuracy and
robustness of the model. Compared with other methods,
the TW method and impedance method are overly
dependent on a single signal feature, resulting in poor
adaptability under complex signal conditions, while the
BP network is prone to unstable prediction results due to
the use of gradient descent optimization, which further
verifies the advantages of the GA-PSO-WNN (adaptive
wavelet basis) method.

The improved GA-PSO-WNN (adaptive wavelet basis)
method in this study has important application
significance in cable fault location. The method
combines the swarm intelligence optimization algorithm
GA and PSO, as well as advanced signal processing
technology, breaking the bottleneck of poor adaptability
and low accuracy of traditional fault location methods in
complex environments. This paper uses the improved
wavelet basis with strong adaptability to better cope with
the complexity and uncertainty of cable signals,
providing a more accurate and real-time responsive
solution for fault location in power systems. This study
also provides new ideas for signal processing and fault
detection in similar fields, and promotes the application
of neural networks based on intelligent optimization,
which has important theoretical value and practical
significance.

The GA-PSO-WNN (adaptive wavelet basis) method has
good generalization ability and can be applied to fault
location of overhead lines or hybrid lines. The key
advantage of this method is that it uses MI-driven
adaptive wavelet basis selection to dynamically select the
optimal wavelet basis function according to the
characteristics of different line signals, and adapt to the
strong reflection signals, interference noise and nonlinear
waveform changes in overhead lines. At the same time,
through the hybrid optimization strategy of GA and PSO,
the WNN parameters can be globally searched and
fine-tuned to improve the model's ability to identify and
locate complex fault modes of overhead and hybrid lines.
In practical applications, it is only necessary to collect
the traveling wave signals of the corresponding lines and
adapt the model input features, so that the method can be
extended to the prediction of the distance to the fault
point of overhead or hybrid lines, which is expected to
achieve high-precision fault location for lines of several
kilometers or even tens of kilometers.

In the GA-PSO-WNN cable fault location method of this
paper, the neutral point grounding mode of the
distribution system has an indirect but important impact
on the performance and applicability of the algorithm.
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The neutral point grounding mode determines the current
path and fault signal when a fault occurs in the cable
system, especially the characteristics of the traveling
wave signal, such as amplitude, duration, spectral
components, etc. These characteristics directly affect the
extraction quality of the traveling wave signal and the
expression effect of the wavelet feature. The
GA-PSO-WNN method relies on the traveling wave
signal for feature extraction, optimal wavelet basis
selection and neural network training. Therefore,
different grounding modes, such as direct grounding,
grounding through arc suppression coils, and no
grounding, may lead to significant differences in the
time-frequency characteristics of the fault signal,
affecting the mutual information-driven wavelet basis
adaptive selection results and the training accuracy of the
WNN. In practical applications, the traveling wave
characteristic analysis and model parameter tuning
should be carried out for specific grounding modes to
ensure the accuracy and robustness of the
GA-PSO-WNN model.

The improved WNN method in this paper performed
well in the experiment, but there are still some
limitations. Future research can be improved and
expanded in the following aspects:

(1) The experiment in this paper is mainly aimed at fault
location of cables with a length of 100km to 800km,
which is limited in scope. In the future, it can be
extended to cables with longer distances, and more
complex cable network topologies and various types of
faults can be considered for more comprehensive
verification.

(2) The method in this paper has strong anti-noise ability,
but the positioning error still increases in a high-intensity
noise environment. In the future, time-frequency analysis
or multi-sensor data fusion can be combined to further
improve the system's adaptability to complex
interference.

(3) With the development of deep learning technology,
WNN can be improved in the future by combining deep
technologies such as convolutional neural networks to
achieve more accurate and rapid fault location, further
improving the real-time and intelligent level of the
system.

7. Conclusions

This paper adopts a medium voltage cable fault point
location method based on improved WNN. By
introducing the MI driven wavelet basis adaptive
selection mechanism and combining the GA-PSO
algorithm, multiple key parameters of WNN are jointly
optimized, which effectively improves the accuracy of
fault point location and the convergence efficiency of the
model. Experimental results show that this method
shows good positioning performance and robustness
under different cable lengths and noise intensity
conditions. Compared with the traditional WNN, the
improved model has significant optimization in MAE,



RMSE and convergence speed, reducing the error by
1.95km and 2.25km respectively. This study has made
some achievements, but there are still some limitations.
The diversity of fault types and cable lengths is relatively
narrow and not fully covered. Moreover, this paper is
based on simulation experiments and cannot be verified
in experimental scenarios. In the future, it can be
expanded to a wider range of cable scenarios and
experiments can be conducted in actual cable detection
scenarios. At the same time, multimodal fusion and deep
learning technologies can be introduced to further
improve the generalization ability and intelligence level
of WNN.
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