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Abstract. The output of geographically adjacent
distributed photovoltaic (PV) units exhibits strong
temporal and spatial correlations. PV operators can select
representative PV units from many distributed PVs and
install real-time data transmission equipment at these
locations. By leveraging the correlation of neighboring
PV outputs, an efficient forecasting method for large-
scale PV can significantly reduce the cost of real-time
communication for PV data. In this paper, a framework
for an ultra-short-term forecasting method for massive
distributed PVs is proposed. Firstly, the initial PV output
sequence is decomposed by multivariate variational
mode decomposition. Then, based on the decomposed
sequence results, the K-medoids algorithm is utilized to
categorize the distributed PV units into distinct clusters,
with data transmission systems positioned at cluster
centers. Finally, a distributed PV ultra-short-term
forecasting network is constructed using a dynamic
graph convolution and gated cycle unit structure, fully
considering the correlation of adjacent distributed PV
outputs. The experimental results demonstrate that the
proposed ultra-short-term forecasting framework can
efficiently plan real-time PV communication equipment
and achieve high-precision forecasting of large-scale
distributed PVs.

Key words. Photovoltaic power forecasting, Spatial-
temporal correlativity, Multivariate variational mode
decomposition, Graph convolutional network, Gated
cycle unit

1. Introduction

According to the International Renewable Energy
Agency's World Energy Transition Outlook, solar

photovoltaic (PV) and onshore wind power are projected
to generate a combined capacity of 8.5 terawatts by 2030
[1]. In recent years, the installed capacity and power
generation of distributed PVs have risen rapidly. This
growth trend is driven by a combination of factors,
including declining costs of PV technology, supportive
government policies, and increasing awareness of the
environmental benefits associated with renewable energy.
However, as the proportion of distributed PVs connected
to the grid increases, the intermittency and volatility of
PV output have posed significant challenges to the stable
operation of the power grid [2].

The proliferation of distributed PVs has catalyzed the
transformation of traditional distribution network (TDN)
into active distribution network (ADN) incorporating
distributed energy resources (DERs), including
distributed PVs, electric vehicle (EV), and energy storage
(ES) as shown in Figure 1. Notwithstanding these
advancements, there is growing concern for revenue loss
caused by the high penetration of weather-dependent
distributed PVs in ADN [3]. This is mainly due to the
intermittent and fluctuating nature of distributed PVs.
Distributed PV output is highly uncertain, often
influenced by many factors such as irradiance,
temperature, wind speed, and surrounding environment,
and can lead to fluctuations in power supply. These
fluctuations, if not properly managed, can strain the
power grid, potentially leading to issues such as voltage
instability, frequency deviations, and difficulties in load
balancing. Therefore, addressing the challenges posed by
the integration of distributed PVs into the grid is crucial
for ensuring the reliability and efficiency of the overall
power system.

Figure 1. The transformation of TDN towards ADN.
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PV operators typically install real-time data acquisition
and transmission equipment at the PV units, commonly
referred to as smart inverters [4]. These smart inverters
are advanced equipment that not only convert the direct
current (DC) generated by solar panels into alternating
current (AC) suitable for the grid but also collect and
transmit real-time data on PV output. Leveraging the
real-time PV output data collected, PV operators can
conduct high-precision ultra-short-term forecasts and
assist utilities in real-time power dispatch adjustments [5].
This capability is crucial for maintaining grid stability
and optimizing the integration of renewable energy
sources. However, the economic cost of large-scale real-
time data transmission is substantial, Installing and
maintaining data transmission systems at each PV unit
requires significant investment in hardware, network
infrastructure, and ongoing maintenance. Additionally,
there is a risk of data leakage, making it difficult for
distributed PV operators to install data transmission
systems at each PV unit. These challenges make it
difficult for distributed PV operators, especially smaller
ones, to install data transmission systems at every PV
unit. Given the strong correlation between the output of
geographically proximate distributed PVs, a single PV
output sequence can reflect the output of surrounding PVs.
This spatial correlation can be leveraged to reduce the
number of data transmission points needed for accurate
forecasting. Therefore, smart inverters can be installed at
PV units with representative output to support efficient
forecasting of a large number of distributed PVs. By
selecting a few key PV units as data collection points,
operators can gather sufficient information to make
accurate predictions for the entire distributed PV network.

Currently, research on short-term PV forecasting mainly
focuses on single PV forecasting, failing to establish an
effective framework for large-scale distributed PV
forecasting. This gap in research highlights the need for
new approaches that can handle the complexities of
distributed PV systems. There is a universal
classification method of dividing the forecasting time
range of PV output. It is divided into 3 categorizes:
medium-term and long-term forecasting (when
forecasting time range is between 1 month and 1 year)
which focuses on strategic planning, resource allocation,
market operations, short-term forecasting (when
forecasting time range is between 4 hours and 3 days)
which aids in operational planning, load balancing,
maintenance scheduling, and market trading over a period
of days, and ultra-short-term forecasting (less than 4
hours) which is essential for real-time grid management,
renewable energy integration, emergency response, and
demand response programs over a period of hours. There
are significant differences in feature selection and model
construction for PV forecasting across different time
scales. Ultra-short-term PV forecasting, in particular, is
characterized by high volatility and uncertainty due to
the rapid changes in weather conditions and solar
irradiance. This type of forecasting usually adopts
satellite cloud image data, real-time temperature, and
irradiance [6] as input features, characterized by high
volatility and uncertainty. These features provide a
detailed and up-to-date picture of the current and near-

future conditions affecting PV output. However, the high
volatility and uncertainty of these inputs require
sophisticated models that can handle rapid changes and
provide accurate predictions within a very short time
frame. This makes ultra-short-term forecasting
particularly challenging but also highly valuable for real-
time grid management and power dispatch adjustments.

The ultra-short-term PV forecasting can be categorized
into two main methods: physical methods [7] and
statistical methods [7-11]. Physical methods rely on
detailed meteorological data and the physical principles
governing solar energy conversion, aiming to predict PV
output based on environmental conditions such as solar
irradiance, temperature, and cloud cover. These methods
are highly accurate when precise meteorological data is
available but can be limited by the complexity of
atmospheric models and the availability of real-time data.
On the other hand, statistical methods do not consider the
specific physical mechanisms of PV units. Instead, they
build forecasting models based on historical PV output
data, leveraging patterns and trends within the data to
make predictions. These methods are widely used due to
their high accuracy in forecasting. [8] considers the real-
time sky images and solar irradiance historical data. To
figure out their correlation, it adopts the transformer
model to process image, and carries out multi-step
irradiance forecasting using multi-modal coupling
analysis, integrating visual and temporal data to enhance
prediction accuracy. Another approach is that PV output
data can be components with low and high frequencies.
Components with different frequencies are forecasted
using convolutional neural network (CNN) separately [9].
This method leverages the strengths of CNNs to handle
the varying dynamics of PV output. [10] proposes that
Integrated Empirical Mode Decomposition (EEMD) can
also construct PV modal components. With the
decomposed sequences, Autoregressive Moving Average
(ARMA) can be combined with Long Short-Term
Memory (LSTM) to work as a forecasting model. The
reason why the two methods are combined is that ARMA
model is responsible for identifying the general trend,
while the LSTM handles autocorrelation fluctuations in
PV output, thereby enhancing the overall forecasting
accuracy. Accurate meteorological predictions serve as a
fundamental pillar for ultra-short-term PV forecasting. It
has been proposed that the development of an effective
feature selection module for forecasting, the
implementation of multi-objective intelligent
optimization techniques, and the utilization of combined
models can collectively enhance the robustness and
precision of PV forecasting [11]. The complex temporal
correlation of PV output is considered, with a particular
focus on the impact of meteorological factors on PV
output [12]. This method helps establish a comprehensive
feature selection framework. Along with the mechanism
of rolling time series network, the method integrates a
neural network called Enhanced Time Convolutional
Neural Network (TCN), so as to forecast the ultra-short-
term multi-step outputs of PV systems. This integrated
approach not only considers the immediate
meteorological conditions but also the historical context,
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providing a robust framework for accurate and reliable
PV forecasting.

The power output of PV units that are located next to
each other tends to be highly correlated. This
phenomenon is particularly significant as large-scale
distributed PV systems are increasingly integrated into
the power grid. The integration of these systems has led
to a surge in research focusing on ultra-short-term PV
power forecasting, with a particular emphasis on
accounting for geographical correlation. By analyzing the
spatial-temporal correlation of PV power, suitable
adjacent PV power stations are identified based on
satellite image data. Subsequently, the meteorological
characteristics and output data from these neighboring PV
stations are utilized to create input features [13]. It has
been proposed that considering the interaction between
temporal and spatial features can enhance forecasting
accuracy. To this end, a two-flow model and an attention
mechanism can be employed to extract sky image
features. Subsequently, the power forecasting is
completed by a progressive structure and a time series
model [14]. A stacked dilated convolutional network
(DCN) helps to extract spatial features of new energy. To
fully obtain the features on a spatial-temporal base and
further utilize them in forecasting, together with
integrated attention mechanism, attention-time
convolutional network is constructed [15]. The
characteristics of input data are obtained by self-attention
mechanism (SA), which allows the model to focus on the
most relevant parts of the input data. Furthermore, to
makes full use of the spatiotemporal correlation of PV
output when building an ultra-short-term forecasting
model, [16] proposes integrating a encoder-decoder
structure (ACGRU) called bidirectional convolutional
gated cycle unit (BiConvGRU). The models mentioned
above consider adjacent PV units and excavate their
spatial correlations, but they are primarily designed for
single PV forecasting and are not easily applicable to
large-scale distributed PV forecasting scenarios. This
limitation highlights the need for more comprehensive
models that can handle the complexities and scale of
distributed PV systems.

In this paper, we propose a framework for ultra-short-
term forecasting of large-scale distributed PVs. To
excavate the original sequence into sub-modes with
different frequency centers, Multivariate variational
mode decomposition (MVMD) is an effective choice.
Based on the decomposed sequence results, to determine
the placement of data transmission systems by clustering,
the K-medoids algorithm is employed. A ultra-short-term
forecasting network for massive distributed PV is
constructed using a dynamic graph convolution and
gated cycle unit (GRU) structure, fully considering the
correlation of adjacent distributed PV outputs. The main
contributions of this paper are summarized as follows.

(1) An integrated framework for ultra-short-term
forecasting of massive distributed PVs is proposed. The
framework addresses the challenges of limited
communication equipment installation capacity and high
costs associated with real-time data acquisition and

transmission by strategically selecting locations for data
transmission equipment. This approach ensures efficient
and accurate forecasting while optimizing resource
allocation.

(2) A novel data pre-processing method using MVMD is
introduced in this paper. This method effectively
decomposes multi-dimensional PV sequences into
distinct modes while preserving the output correlation
between adjacent power stations. By enhancing the
quality and structure of the input data, this pre-
processing step significantly improves the accuracy and
efficiency of subsequent forecasting tasks.

(3) A dynamic graph convolutional network combined
with a gated recurrent unit (DGCN-GRU) model is
developed in this paper. This advanced model
architecture captures both temporal and spatial
correlations within distributed PV output, thereby
enhancing the accuracy of ultra-short-term PV
forecasting.

Additionally, this paper provides insights for future work,
including determining the optimal number of
communication equipment to balance forecasting
accuracy and system economics, and developing an
integrated system for equipment location selection and
PV forecasting to further enhance model performance.
The structure of this paper is organized as follows:
Section II introduces a data pre-processing method based
on multivariate variational mode decomposition. Section
III describes the method of using K-medoids to
determine the planning scheme of communication of
equipment by clustering. Section IV presents a short-
term forecasting scheme for large-scale PVs based on
DGCN-GRU. Section V verifies the forecasting
effectiveness of the proposed scheme using actual PV
data. Finally, Section VI summarizes the entire paper and
discusses future research directions.

2. Method: Data Pre-processing Based on
Multivariate Variational Mode Decomposition

In this part, a comprehensive data pre-processing
framework based on MVMD is established to enhance
the accuracy and efficiency of large-scale distributed PV
forecasting. This section is primarily divided into two
subsections. Section A introduces the fundamental
concept and mathematical formulation of variational
mode decomposition (VMD), highlighting its
effectiveness in decomposing non-stationary time series
data into manageable sub-modes. Section B extends the
discussion to MVMD, detailing how it addresses the
challenges of multi-dimensional data and improves the
decomposition process by considering the correlations
among multiple PV output sequences.

A. Variational Mode Decomposition

VMD [17] is frequently employed to address non-
stationary time series that are highly complex and
unstable. The factors influencing PV output are intricate
and highly uncertain. Using these factors directly as
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input features can negatively impact the accuracy of
forecasting models. Hence, data pre-processing is
essential to break down the original data into manageable
sub-mode sequences and effectively tackle the mode
aliasing issue present in traditional empirical mode
decomposition. The core of VMD lies in solving
variational problems, decomposing sub-modes with
distinct center frequencies, and minimizing the total
bandwidth of these sub-modes. The alternating direction
method of multipliers is used to iteratively update the
center frequency of each mode. The sub-modes are then
demodulated to their fundamental frequencies, and the
information of the sub-modes and center frequencies is
extracted. VMD boasts a robust theoretical foundation
and outperforms other modal decomposition algorithms
in terms of noise robustness, modal decomposition
performance, and sampling effectiveness. VMD assumes
that each sub-mode has a fixed center frequency and
limited bandwidth. The objective function aims to
minimize the sum of the bandwidths of the sub-modes,
subject to the constraint that the sum of the sub-modes
equals the original input signal. The detailed steps are as
follows:

(1) The Hilbert transform is applied to derive the
unilateral spectrum of each sub-mode function: The
frequency spectrum of each mode is then shifted to its
corresponding fundamental frequency band, as in (1).

         e j ts t s t j s t A t 
     (1)

Where  A t is the amplitude function,  s t is a time-

varying signal phase function,  t is a phase function,

affected by phase modulation,  s t is a unilateral
spectrum signal generated by the Hilbert transform.

 s t can be calculated as (2).
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Suppose  ŝ  is the Fourier transform of  s t , it can
be written as (3).

   
    

ˆ e d

ˆ1 sgn

 
 





 

 j ts s t t

s



 
(3)

Where e j t is the exponential term of the center
frequency.

(2) The gradient norm of the demodulated signal is
computed, serving as an estimate for the total bandwidth
of the sub-modes. Based on this, a constrained
variational problem is formulated. In this paper, the L2
norm is utilized, as in (4).
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Where  t is the Dirac distribution function, symbol 
is a convolution multiplier,    1: , ,m Ms s s K means the
sub-modes,    1: , ,m M   K represents each center
frequency, and m means the number of decomposed
modes. The constraint ensures that the sum of the sub-
modes reconstructs the original signal, as in (5).
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Where g represents the original input sequence.

(3) The initial constrained variational problem is
converted into an unconstrained one by incorporating
Lagrange multipliers and quadratic penalty factors. The
quadratic penalty term helps maintain reconstruction
accuracy in the presence of Gaussian noise. The resulting
Lagrange expression is presented as in (6).
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Where p represents quadratic penalty factor, and  is
the Lagrange multiplier.

(4) VMD adopts alternate direction method of multipliers
(ADMM) to calculate the variational problem and update
ms and m alternately. The iteration formula of ms is as

in (7).
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The iterative formula of m is as in (8).
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Where symbol  represents the Fourier transform.
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B. Multivariate Variational Mode Decomposition

To tackle the challenge of forecasting large-scale
distributed PV power requires a sophisticated approach
to handle the complexity of the data. The input to the
forecasting model consists of multiple PV power time
series, meaning that the multivariate signal must be
decomposed into distinct modes. There is a strong
correlation between the PV output of geographically
adjacent locations. However, current multivariate modal
decomposition methods face several issues:

(1) Correlation Between Sequences: It is challenging to
account for the correlation between different sequences.
Traditional methods often fail to capture the intricate
relationships between multiple PV power time series,
leading to less accurate forecasts.

(2) Frequency Alignment: Frequency alignment
problems arise when different signals share the same
frequency. This can lead to mode mixing and aliasing,
which further complicates the decomposition process.

If traditional multivariate mode decomposition is applied
to process the massive distributed PV output sequences,
issues such as sampling effects, noise sensitivity, and
insufficient mode separation are likely to occur. To
overcome these challenges, this paper employs MVMD
[18] to generate power data for multiple PV units. This
method is an extension of the VMD algorithm into the
multivariate domain. Like VMD, it decomposes
multivariate time series data into multiple modal
components with limited bandwidth and fixed center
frequencies, modulates the signals using the Hilbert

transform, and aims to minimize the total bandwidth as
the objective function, subject to the constraint that the
sub-modes can reconstruct the original signal. While
VMD performs variable optimization in a one-
dimensional space, MVMD requires signal modulation in
a multidimensional space to effectively enhance the
continuity and mode alignment capabilities of the model,
making it more suitable for handling complex
multivariate data. The objective function of the
variational problem corresponding to MVMD is
designed to minimize the total bandwidth of the
decomposed modes while ensuring that the sum of the
sub-modes reconstructs the original signal. The objective
function is as (9).
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Where  ,m bs t means the decomposed time signal, and
b is the number of original signals. The constraint is
about each original signal, as in (10).
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By employing MVMD, this paper aims to provide a
more accurate and robust method for decomposing the
complex multivariate PV power time series, thereby
enhancing the overall forecasting performance. Also,
Lagrange multipliers is introduced to transform the
original constrained variational problem, as in (11).

               
2

2,
, , ,

2 2

, : e ,mj tm b
m b m b t b m b b b m b

m b b m b m
L s p s t g t s t t g t s t  

            (11)

ADMM algorithm is used to calculate each sub-mode
and corresponding center frequency iteratively. The
iterative formula of decomposed signal in sub-mode is as
in (12).
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The iterative formula of the center frequency is as in (13).
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For the Lagrange multiplier b , its iterative formula is as
in (14).
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Where  is an update coefficient, used to mitigate the
influence of Lagrange transformation on the mode
decomposition results.

3. Method: Addressing Communication Equipment

Real-time PV power series and meteorological data are
commonly utilized as input features for ultra-short-term
forecasting. PV operators typically install real-time data
acquisition and transmission equipment at PV units to
enhance forecasting accuracy. However, for large-scale
distributed PV forecasting, installing data transmission
systems at every PV unit would significantly increase
equipment costs. Additionally, constructing an extensive
real-time communication system would incur
maintenance expenses and pose security risks. Given that
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PV units in close geographical proximity exhibit highly
similar power outputs, operators can select a
representative PV unit from a large number of distributed
PVs to be forecasted. This representative unit can
provide insights into the current status and future trends
of PV output in the region based on its output
information.

In this paper, clustering is used as equipment location
algorithm. Clustering is an unsupervised classification
algorithm, which can classify similar objects into
different clusters according to the specific characteristics
of the data [19,20]. It can be primarily divided into
hierarchical, density-based, and other methods.
Equipement addressing is a typical application of
clustering algorithms. In this section, large-scale
distributed PVs are grouped into several clusters
according to their processing characteristics, with real-
time data transmission equipment installed at the cluster
centers. The PV unit at the cluster center can reflect the
overall output characteristics of the cluster. The primary
goal of PV clustering here is to identify typical PV units
rather than classify PVs, making it different from
conventional clustering problems.

The distributed PV data collection point should be a
representative set of PV units that can capture the output
power characteristics of the entire PV system. To achieve
this goal, K-medoids [21] cluster analysis is used to
divide all PV units into groups based on the geographical
distribution of distributed PVs. In each group, the data
collection point is one of the most representative units,
with the smallest sum of distances to all other units in the
same category. The traditional K-means [22] clustering
algorithm is easy to apply but it only classifies objects
based on centroids, which may lead to the result of
lacking physical meaning, and is easily influenced by
outliers. In contrast, the K-medoids algorithm iteratively
optimizes the cluster center point, offering greater
stability. The cluster center can be directly used as the
equipment installation point. Therefore, K-medoids is
selected to determine the equipment installation point,
with the clustering feature being the PV power sequence
of the training set. The Euclidean distance [23] is chosen
as the distance metric, as in (15).
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Calculate the indicator ir according to the distance, as in
(16).
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Assuming n distributed PV units to be forecasted, m
PV units installed with real-time data transmission
equipment are called representative PV units, that is, the

clustering number is m . The detailed steps of the K-
medoids algorithm are as follows:

(1) Initialization of clustering center: Compute the
distances and ir values among the clustering objects.
Select m PV units with the smallest r values as the
initial clustering centers. Perform the initial clustering by
assigning each PV unit to the cluster whose center is
closest to it. After the initial clustering, compute a
distance index for each cluster.

(2) Update clustering center: Based on the updated
clustering results, identify the point within each cluster
that has the minimum total distance to other points in the
cluster and set it as the new clustering center.

(3) Update the clustering: Recalculate the distance
between each PV unit and the new representative PV unit
of its cluster Based on these recalculated distances,
reassign each PV unit to the cluster whose new center is
closest to it. After updating the clustering, recompute the
sum of distances between each PV unit and the
representative PV unit of its clustering. Compare the new
sum of distances with the previous sum. If the distance
sum remains unchanged, the algorithm terminates.
Otherwise, return to Step 2 to continue updating the
clustering center and reassigning clusters.

4. Method: Ultra-Short-Term Forecasting

In this part, ultra-short-term forecasting model is
established. This section is primarily divided into three
subsections. Section A provides a training model of the
neural network utilized, namely Graph convolutional
neural network (GCN). Section B proposes the principle
and calculation method of the GRU model to achieve an
efficient and high-precision time series prediction
method. Section C depicts the global forecasting
framework of the massive distributed PV, and shows the
flow chart.

A. Graph Convolutional Neural Network

GCN [24] is often mentioned when talking about a
neural network structure commonly used to process
graph data. A GCN is a type of neural network
specifically designed to handle data that is naturally
represented as graphs. The graph convolutional layer
within a GCN is capable of extracting spatial features
from the data while preserving the topological
information embedded in the input features. This ability
to retain the structural relationships between nodes is
what sets GCNs apart from traditional fully connected
neural networks, which do not account for the underlying
graph structure of the data. The graph convolutional
layer operates by aggregating information from a node's
neighborhood, effectively capturing the spatial
dependencies within the graph. This process allows the
network to learn more meaningful representations of the
nodes, which in turn enhances the overall fitting
performance of the model. Figure 2 illustrates the basic
structure of a single-layer graph convolutional network,

161



which retains the graph characteristics of the input data,
setting it apart from traditional fully connected neural
networks. In the context of large-scale distributed PV
power forecasting, the geographical proximity of PV
power stations plays a vital role. The outputs of adjacent
PV power stations are highly correlated due to shared
environmental conditions and similar operational
characteristics. This correlation is a key factor in
improving the accuracy of PV power forecasts. Real-
time data transmission systems are installed at
representative PV power stations. This representative
station serves as a central point for data collection,
providing critical power information that is used to
forecast the output of other PV units. By leveraging the
power information from this representative station and
the known correlation between PV outputs, the
forecasting model can make more accurate predictions.
This approach underscores the importance of considering
the geographical correlation of PV output, as it
significantly enhances the effectiveness of the
forecasting framework.

Figure 2. Structure of GCN.

Suppose network V describe massive distributed PVs,
mathematically written as a graph with two components
to describe the geographic correlation of PV output, U
and D , thus  ,V V D . In the two

components,  1 2, , , MU u u u  is a set of PV units, with
M being the number of them. The another component
D is a set of edges. Further we need to introduce an
adjacency matrix M ME R  as the spatial correlation of
PVs, representing the connection relationship.

The following formulas illustrate the calculation process
of GCN according to the single-layer graph
convolutional network in Figure 2. Given the adjacency
matrix E and input feature matrix F , the graph
convolution layer can be expressed as in (17).

     
1 1

1 1 12 2N G EG N 
  

   
 
  (17)

Where : ij
j

G E  is a degree matrix, N is the output in

the neural network that is iterated every time, here  1N

is the output of layer 1,  1 is the corresponding weight
coefficient, and Sigmoid function is chosen as activation
function    . The output layer and output sequence of
the second iteration can be represented as in (18).

      2 1 2N N  (18)

Similarly, the output layer and output sequence of the
third iteration as in (19).

      3 2 3N N  (19)

Where  2N and  3N represent the output of layer 2 and
layer 3 of the network, that is, the output layer and output
sequence;  2 and  3 represent the weight coefficients
of layers 2 and 3. The data conversion layer converts the
graph data into a forecasted PV power series.

In traditional GCN networks, the static adjacency matrix
is typically generated using geographic location data and
the topological layout. Given that PV output power is
highly uncertain and volatile, based on the PV output
sequence from the previous day, this paper proposes
constructing a dynamic adjacency matrix to establish a
DGCN network. The calculation formula of the dynamic
adjacency matrix is presented as in (20).

 
 

 
 
, 1 , 1

, 1 , 1, 1,

d ,
, 1

max d ,
i l j l

l
m l k lm k n

Y Y
C i j

Y Y
 

 

  (20)

Where ( , )lC i j is an adjacency matrix, l here means the
matrix is adopted in the l -th sample day, i and j
means the element in row i and column j , thus

( , )lC i j as a whole means the correlation of the number i
and j PV units in the l -th sample day geographically.

Y is an eigenmatrix;  , 1 , 1d ,i l j lY Y  represents the
Euclidean distance of the output sequence. n represents
the number of PV units.

Based on the adjacency matrix C calculated above, the
DGCN model constructs convolution layer, which
considers the dynamics of the graph structure. The basic
formula of DGCN is as in (21).

     
1 1

1 1 12 2
t t t t tN G E G N 

  
   

 
  (21)

Where± ²
,:t ij t

j
G E represents degree matrix at time step

t ,  1
tN represents the output of layer 1 of the neural

network at time step t .
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In DGCN, the structure of the graph can change over
time, that is, the adjacency matrix C can have different
values at different time steps. DGCN handles these
dynamics by applying GCN at each time step, while
considering the time series information, thus the
correlation of adjacent PV output is accurately described.

B. Gated Cycle Unit

Ultra-short-term PV output exhibits strong temporal
correlations, output is characterized by strong temporal
correlations, meaning that the power output at a given
moment is closely related to the outputs in the immediate
preceding moments. This temporal dependency is crucial
for accurate forecasting, as it allows models to capture
the short-term dynamics of PV power generation.
However, GCN alone struggles to achieve high-precision
time series forecasting results due to their limited ability
to model temporal dependencies. To address this
limitation, this paper proposes a high-precision
forecasting framework that integrates both spatial and
temporal correlations of large-scale distributed PV
output. This framework is based on dynamic graph
convolutional networks, which extend the capabilities of
traditional GCNs by incorporating dynamic elements that
can adapt to changing conditions over time. For the
problem of long time series forecasting, both Long short-
term memory (LSTM) and GRU models [25] have been
widely recognized for their effectiveness in addressing
the issues of gradient disappearance and gradient
explosion that are common in traditional recurrent neural
networks (RNNs) [26]. These advanced models are
designed to handle long-term dependencies and maintain
stable gradients during training, which is essential for
accurate forecasting. Between these two models, GRU
stands out for its simpler structure, fewer parameters, and
higher training efficiency. GRU incorporates update gate
and reset gate mechanisms to modulate the influence of
prior states on the current state and to selectively forget
information. Consequently, the GRU model is chosen for
time series forecasting in this paper. The detailed
calculation process is as follows:

(1) The gated units tv and tq , are calculated based on
input feature tx and historical information variable 1tf  .
The calculation formula of gated unit tv is as in (22).

  1,t v t t vv W f x e    (22)

The calculation of gated unit tq is as in (23).

  1,t q t t qq W f x e    (23)

Where, ve and qe represent deviation vector of reset unit
and update unit respectively, vW and qW represent the

weight matrixes, and    denotes activation function.

(2) Calculate hidden state ts , as in (24).

  1tan h ,   t s t t t ss W v f x e (24)

Where sW is a corresponding weight matrix of units in
hidden state, and se is also the deviation vector.

(3) Based on the above results, calculate the output
sequence of the GRU network, as in (25).

  11t t t t tf q f q s     (25)

C. Global forecasting framework

The ultra-short-term forecasting framework for massive
distributed PVs introduced is composed of three integral
components, each playing a crucial role in the overall
prediction process. These components include data
preprocessing, equipment planning, and the core PV
ultra-short-term forecasting module.

In the data preprocessing stage, MVMD is employed to
decompose the complex output sequences of multiple
distributed PV units into more manageable and
interpretable sub-modes, which not only simplifies the
data structure but also enhances the clarity of the
underlying patterns within the PV output sequences. For
the equipment planning module, the clustering feature
serves as the basis for this strategic placement, and is
derived from the decomposed modes obtained in the
previous step. The placement of equipment is determined
by K-medoids algorithm. In ultra-short-term forecasting
module of PVs, input features are constructed in
accordance with the clustering results. Subsequently, the
dynamic adjacency matrix is computed, capturing the
spatial relationships between the different PV units.
Finally, the DGCN-GRU forecasting model is
established. The DGCN component effectively captures
the spatial correlations between the PV units, while the
GRU component handles the temporal dynamics.
Together, they provide a powerful tool for forecasting
the ultra-short-term output of massive distributed PV
systems. After the model is established, network fitting is
performed to optimize the model parameters and ensure
the best possible prediction performance. The flow chart
of forecasting model is shown in Figure 3.

Figure 3. Forecasting model flow chart.
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5. Materials and Results

In this part, real PV data is employed to validate the
efficacy of the proposed algorithm. This section is
primarily divided into three subsections. Section A
provides a detailed description of the datasets and data
preprocessing utilized. Section B illustrates the modal
decomposition outcomes of the PV data and the results
of equipment placement. Section C showcases the results
of the PV ultra-short-term forecasting.

A. Dataset Description

Based on the historical operation information of 10
distributed PVs in Xiangyang, Hubei Province, this paper
uses PV output data recorded every ten minutes from
August 2, 2024 to October 31, 2024. The dataset is
partitioned such that the initial 75% serves as the training
set, while the remaining 25% functions as the test set.
During the training phase of the fundamental PV
forecasting model, given the intermittent nature of PV
output, only power data from 6:00 to 19:00 local time
were utilized, meaning each sample day comprised 84
data points. The original input features were
characterized by a power sequence from 2 hours prior to
each distributed PV forecasting moment, encompassing
12 data points. Following the decomposition of the
original data into sub-modes, these sub-modes were
employed as clustering features, and the K-medoids
algorithm was applied to select the locations for real-
time communication equipment installation. The data
transmission system was situated at the cluster center.
The output information from the PV units at the cluster
center was then selected to form the input features for the
forecasting model, enabling the ultra-short-term
forecasting of distributed PV power. Both the input
features and PV output were normalized to mitigate the
influence of installed PV capacity on the forecasting
model. This paper employs three indexes as metrics to
assess forecasting accuracy, namely mean squared error
(MSE) [27], root mean square error (RMSE) [28], mean
absolute error (MAE) [29], and R-squared value( 2R )
[30]. RMSEI is the index of RSE, as in (26).

 2
RMSE

1

1 S

s s
s

I R Y
S 

  (26)

MAEI is the index of MAE, as in (27).

MAE
1

1 S

s s
s

I R Y
S 

  (27)

MSEI is the index of MSE, as in (28).

 2
MSE
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Also, 2RI is the index of 2R value, as in (29).
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Where in the four formulas of calculating index, S is the
length of time series, or time steps of forecasting, sY
indicates the forecasting output, and sR is the data
recorded.

B. Decomposition and Clustering

MVMD algorithm is used to pre-process the PV output
sequence with sub-modes setting to 4. The mode
decomposition effect for PV0 (i.e., the distributed PV
unit labeled as 0) is illustrated in Figure 4.

Figure 4. Mode decomposition results of PV0.

As observed from the Figure 4, the original data exhibits
high complexity and significant uncertainty. MVMD can
decompose it into sub-modes with varying center
frequencies, resulting in more stable sequences. This
decomposition enhances the efficiency of subsequent
processes, such as equipment placement and PV
forecasting modeling. The quantity of real-time data
transmission systems is influenced by multiple factors,
including equipment installation costs and forecasting
accuracy requirements. In this study, 4 clustering centers
with real-time communication equipment installed are
chosen, so the number of equipment is determined as 4.

The cluster centers are determined by K-medoids
algorithm. The ultra-short-term forecasting of distributed
PVs are then carried out based on the real-time data
collected. Using the silhouette index, the influence of
change in number of clustering centers on the clustering
effect is quantitatively compared. As shown in Figure 5,
the closer the silhouette index is to 1, the better the
clustering effect. It is optimal within the range of a small
number of communication equipment when using K-
medoids clustering method to select 3 centers. Also,
using the clustering method has a better effect than
randomly choosing the placement of communication
equipment. Ultimately the identified clustering centers in
this experiment are: PV3, PV5, and PV9.
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Figure 5. Quantitative analysis results of clustering effect.

C. Ultra-Short-Term Forecasting

In the DGCN-GRN model built in this paper, the DGCN
and GRU components are set to 1 layer, with 256 nodes
set in each layer separately. The learning rate is 0.001,
the batch size is 84, the epochs is 200, the validation set
ratio is 0.2, the discard rate is 0.3, and the solution uses
the Adam optimizer. In this paper, the multi-layer

perceptron (MLP), DGCN-MLP, plain GRU and LSTM
are utilized as benchmark methods for comparison with
DGCN-GRU.The MLP model features a neural network
with two hidden layers, DGCN-MLP represents a
cascaded network structure combining DGCN and MLP,
whereas plain GRU and LSTM are commly-used
baseline methods. The overall forecasting results for
large-scale distributed PV output are presented in Table
1. The distribution of forecasting errors are illustrated in
Figure 6. From these results, the following observations
can be made:

(1) The proposed method achieves the highest
forecasting accuracy among the three comparison
methods, demonstrating superior performance under all
three-accuracy metrics. Specifically, the RMSE value of
0.0845 indicates that our forecasting method
significantly enhances the accuracy of ultra-short-term
forecasting under the background of massive distributed
PVs.

(2) DGCN-MLP outperforms the MLP model in
forecasting accuracy, suggesting that incorporating the
spatial correlation of distributed PV output effectively
improves forecasting precision.

Table 1. Forecasting results of different models.

METHOD
Accuracy parameter
RMSE(p.u.) MSE(p.u.) MAE(p.u.) 2R (p.u.)

MLP 0.0972 0.0094 0.0513 0.6454

DGCN-MLP 0.0929 0.0086 0.0840 0.8967

plain GRU 0.1018 0.0104 0.0554 0.8852

LSTM 0.1119 0.0125 0.0629 0.8593

Our method 0.0845 0.0071 0.0389 0.9063

Figure 6. Distribution of forecasting errors of different methods.
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(a) PV6 output (b) PV9 output

Figure 7. PV forecasting output.

Figure 7 illustrates the ultra-short-term forecasting
performance for PV6, which is equipped with a data
transmission system, and PV9, which is a typical PV unit
without such equipment. This comparison more vividly
highlights the effectiveness of the proposed algorithm.
As shown in Figure 7, the following conclusions can be
drawn:

(1) By fully accounting for both temporal and spatial
correlations in large-scale distributed PV output, the
forecasting model presented in this paper outperforms
the other two comparative models in terms of forecasting
accuracy;

(2) PV6, which is fitted with real-time data transmission
equipment, can precisely capture the trends in PV output
changes, resulting in high forecasting accuracy;

(3) This paper does not incorporate meteorological
forecasts as input features. Instead, it relies solely on
feedback data from nearby PV data transmission points
to forecast the output of ordinary PV units.

Consequently, the forecasting accuracy is influenced by
the proximity of these data transmission points, and the
model struggles to accurately forecast short-term
fluctuations in PV output. Furthermore, according to the
forecasting results, it can be seen that:

(1) PV3, PV5, and PV9, which are equipped with real-
time data transmission systems, enable the forecasting

model to capture the status and trends of PV output more
effectively. As a result, their forecasting accuracy is
significantly higher than that of other PV units lacking
real-time monitoring;

(2) Among PV units with installed data transmission
system, PV4 has the highest forecasting error
(RMSE=0.0345), while PV9 shows the lowest
forecasting error (RMSE=0.0593). Among PVs without
real-time information transmission system, PV6 achieves
the highest forecasting accuracy, whereas PV8 has
relatively low forecasting accuracy.

Therefore, it can be concluded that the effectiveness of
PV forecasting is influenced by several factors, including
judging the necessity of installing real-time data
transmission equipment, the inherent characteristics of
the PV unit, and meteorological conditions of different
cases.

Furthermore, by gradually removing or modifying the
components in the framework and observing the impact
of these changes on the overall performance, it is verified
that the overall performance of the framework proposed
in this paper is superior. The following experimental
groups are designed: The complete framework; Group 1:
without the component of MVMD data decomposition;
Group 2: the placement of communication equipment is
randomly determined rather than by K-medoids
clustering; Group 3: using GCN-GRU network model
instead of DGCN-GRU model. The forecasting results of
these experiments are shown in Table 2.

Table 2. Forecasting results of ablation experiments.

EXPERIMENT
Accuracy parameter
MSE(p.u.) MAE(p.u.) 2R (p.u.) Time(s)

Complete framework 0.0071 0.0389 0.9063 31.7093
Group1 0.0093 0.0496 0.9055 31.7307
Group2 0.0081 0.0606 0.9197 31.7870
Group3 0.0100 0.0773 0.9032 31.6103
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It can be seen from Table 2 that the complete framework
scores the highest in MSE and MAE, Group 2 performs
the best in the R-square value, and Group 3 has the
shortest running time. However, the R-square value of
the complete framework is close to that of Group 2, and
the running time of the complete framework is not much
different from that of Group 3. This indicates that the
complete framework has good operating efficiency while
maintaining a high forecasting accuracy. When
comprehensively considering all performance indicators,
the PV output forecasting framework proposed in this
paper, combining the MVMD sequence decomposition
method, the K-medoids clustering method and the
DGCN-GRU forecasting model, shows the superiority of
its overall performance, achieves a balance between
performance and operating time, and verifies the
effectiveness of each component. This indicates that it is
a solution that is both applicable and efficient in practical
applications.

6. Conclusion and Discussion

This paper proposes a comprehensive framework for
addressing the challenge of ultra-short-term forecasting
of large-scale distributed PV systems, encompassing
both data transmission equipment placement and PV
forecasting. Given the constraints posed by the costs
associated with data acquisition and transmission
equipment, PV manufacturers typically have the capacity
to install communication equipment in only a limited
number of PV units to aid in PV forecasting. This paper
operates under the assumption that the quantity of
communication equipment is fixed. Firstly, MVMD
algorithm is employed to process multi-dimensional PV
sequences, effectively separating distinct modes while
preserving the output correlation between adjacent power
stations. Then, utilizing the PV output sequence as the
clustering feature, the K-medoids algorithm is applied to
cluster large-scale distributed PV units. The cluster
centers are designated as real-time data transmission
points, thereby completing the selection of equipment
locations. Finally, the DGCN-GRU model is used to
analyze distributed PV output by obtaining the temporal
and spatial correlations of them, so that the accuracy of
ultra-short-term PV forecasting can be enhanced.

Future work can be carried out around the following
contents. First, determine the optimal number of
communication equipment to strike a balance between
the accuracy of PV forecasting and the economic
viability of system operation; Then, develope an
integrated system for equipment location selection and
PV forecasting. In this paper, the tasks of location
selection and forecasting are treated separately.
Integrating these tasks into a cohesive system may have
the potential to further enhance model performance.
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