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Abstract. In this study, a framework combining multiple
deep learning techniques is proposed for electrical
equipment state recognition and monitoring to address
the problem that existing methods have limited feature
extraction capabilities under high noise and complex
working conditions. The adaptability of the model is
improved through data augmentation and self-supervised
contrastive learning. A  hybrid architecture of
CNN-BILSTM and Transformer is designed to extract
spatiotemporal features, and the model performance is
optimized by combining domain adaptation technology,
neural architecture search (NAS), and deformable
convolutional network (DCN). The experimental data
comes from a large-scale electrical equipment
monitoring system in an industrial park in a certain
province, covering 15 equipment states and a total of
269,000 multimodal data. The experimental results show
that the proposed method is significantly superior to the
baseline model in terms of recognition accuracy
(95.37%), real-time performance (detection delay of
3.02ms), and cross-domain adaptability (improved by
41.5%), providing an efficient and reliable solution for
electrical equipment state monitoring, which has
important theoretical and practical application value.

Key words. Electrical equipment state recognition, Deep
learning  algorithms, Fault diagnosis, Real-time
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1. Introduction

With the widespread application of electrical equipment
in many fields, real-time monitoring and fault diagnosis
of its operating state have become increasingly important
[1,2]. This is not only related to equipment safety but
also directly affects the stability and maintenance cost of
the system. However, the existing method has three
major limitations: single-mode feature extraction is
susceptible to noise interference; long-sequence

modeling efficiency is low; edge deployment
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adaptability is poor. These methods have poor real-time
performance and high maintenance costs and are difficult
to adapt to changing working conditions. The
multi-source heterogeneous data generated by electrical
equipment increases the complexity of fault recognition
[3,4]. Therefore, it is imperative to build an efficient and
robust state recognition model. DL (deep learning)
technology, with its automatic feature learning and
nonlinear modeling capabilities, provides a new solution
to this problem. This study aims to combine multiple DL
technologies, optimize the neural network structure,
improve the model’s efficiency and generalization ability,
and thus provide an efficient and reliable solution for
electrical equipment monitoring [5,6]. This not only
helps to improve the accuracy and real-time performance
of state recognition but also enhances the model’s
robustness under complex working conditions, and has
significant theoretical and practical value. At the same
time, this study also explores the model lightweight and
deployment scheme, providing new possibilities for
promoting the development of electrical equipment
monitoring technology.

Electrical equipment state recognition aims to accurately
monitor the operating state of equipment, prevent faults,
and ensure the power system’s stable operation [7,8]. In
response to the problem of electrical equipment state
recognition, many scholars have proposed different
solutions. To ensure the safe operation of ship electrical
equipment, Wei Donghui [9] proposed a state recognition
method that integrated multi-source information, used
time series models to detect and correct continuous and
independent anomalies in equipment historical data, and
constructed a state recognition network model. Tests
showed that their method was effective. Dang Ding [10]
discussed substation equipment state evaluation based on
data mining, used Gaussian mixture models to fit the
original data and prior algorithms to mine data, and
obtained the association rules between equipment and
measurement data. His method had high prediction
accuracy and was better than single-category algorithms.
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For three-phase power equipment, Xu Zhihao [11]
proposed a three-phase block automatic search and
temperature comparison overheating area determination
method. By processing thermal images, adjusting the size
and posture, and then performing block comparison,
abnormal temperature rise and thermal faults could be
determined, thereby improving the efficiency, accuracy,
and automation level of thermal fault detection. In
addition, to ensure the stable operation of electrical
equipment and the safety of personnel, Leixiong Wang
[12] proposed a method for detecting the proximity
distance between substation workers and live equipment
based on binocular stereo matching and scenario
recognition. Actual data showed that this method could
precisely measure the proximity distance between
workers and live equipment in real-time. The above
scholars have improved the accuracy of electrical
equipment state recognition by using technologies such
as multi-source information fusion and data mining.
However, these methods are mostly targeted at specific
data or scenarios and are difficult to adapt to complex
and changing working conditions.

Recent research has further explored the collaborative
optimization of multimodal fusion and edge computing
[13,14]. Choi Hyeyeon [15] proposed a new type of
multi-modal image feature fusion module that used
visible and infrared images to enhance the detection
performance of transmission lines. The results showed
that the proposed module was not only better than the
case of single-mode input but also better than the most
advanced fusion method. When the baseline network had
a large number of weight parameters, the proposed
module showed effectiveness in terms of capacity. Zhou
Shuaijie [16] proposed a system that used infrared photos
and U-Net deep learning technology to detect
overheating faults of substation equipment. The test
results on the data set showed that under various
evaluation indicators, the proposed method had excellent
reliability and efficiency, achieved lighter structure and
leading estimation, and was very suitable for deployment
on mobile devices. Although the existing literature has
made breakthroughs in certain technical points, the
research on cross-modal robustness is still insufficient,
and there is a lack of edge-cloud collaborative
optimization. At present, the accuracy of the lightweight
method decreases by more than 15% in the SNR<15dB
scenario, and the adaptability to dynamic operating
conditions is weak. This paper comprehensively solves
the above problems by combining frequency domain
notch filtering and dynamic calculation path design.

The technical route of this paper contains four core
optimization modules. First, data preprocessing involves
processing multi-source sensor data through data
augmentation and self-supervised pre-training, and
expanding the training set using techniques such as noise
interference and dynamic time regularization to improve
data adaptability under complex operating conditions.
Second, a hybrid feature extraction network is designed,
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combining CNN-BiLSTM and Transformer, to capture
local and global features and enhance state
characterization capabilities. Third, it is the model
optimization and lightweight, which automatically
optimizes the network structure through NAS and
dynamically adjusts the perception field through DCN to
balance accuracy and efficiency. Fourth, the edge
deployment mechanism uses event-driven neural
networks to reduce energy consumption and combine
online increments. The strategy is updated to ensure the
accuracy of long-term monitoring. Through step-by-step
optimization, these four modules effectively solve the
generalization and real-time problems of electrical
equipment condition monitoring in high-noise and
multi-modal scenarios. The innovation point of this
paper lies in the integration of CNN-BiLSTM
spatiotemporal characteristics and Transformer global
modeling; dynamic time regularization + frequency
domain notch filtering to improve noise immunity;
event-driven SNN to achieve a 12.7M lightweight model.

The main contributions of this paper are as follows:

This paper innovatively proposes a multi-modal
self-supervision-hybrid architecture optimization
framework to realize effective monitoring of equipment
status under complex operating conditions.

Cross-modal self-supervised learning mechanism: by
combining noise disturbance and dynamic time
regularization, the problem of feature degradation of
small samples is solved; spatiotemporal feature coupling
architecture: CNN-BiILSTM and Transformer are
combined to break through the limitations of traditional
methods.

Dynamic lightweight deployment scheme: using NAS
and event-driven neural networks, the amount of model
parameters is reduced by 31%, and the accuracy is
maintained at 95.37%.

The rest of this paper is organized as follows. Section 2
introduces the proposed methodology in detail, including
multimodal data preprocessing, deep learning feature
extraction, domain adaptation techniques, model
optimization and computational acceleration, and model
lightweighting and deployment. Section 3 describes the
experimental design, performance evaluation indicators,
and result analysis, covering comparative experiments in
state recognition accuracy and recall, detection latency,
fault detection rate, dynamic reasoning efficiency, and
cross-domain adaptability. Section 4 discusses the
experimental results and their significance in practical
applications, while also exploring the limitations of the
model and future research directions. Finally, Section 5
summarizes the entire paper and emphasizes the
application potential and practical value of this study in
the field of electrical equipment condition monitoring.



2. Intelligent Monitoring Technology for Electrical
Equipment

A.  Multimodal Data Preprocessing
1) Normalization

Multimodal sensors collect data such as current, voltage,
and temperature, which vary significantly under different
working conditions. Normalization [17,18] is the key to
data preprocessing, which can eliminate the influence of
measurement units and dimensions, improve data
comparability, and accelerate the convergence of DL
models. This study adopts appropriate normalization
strategies for various types of sensor data to improve
data parsing. For current and voltage data, the Min-Max
normalization method is used to map the data to the [0,1]
interval, retain the original distribution, and eliminate the
influence of the measurement range. The equations are:

_ J B Jmin

o Jmax - Jmin (1)
_ U B Umin

. Umax - Umin (2)

Among them: J_, and J . -the minimum and

maximum values of current data;

U

min

and U__ -the minimum and maximum values of

max

voltage data.

The Z-Score method is used for the standardization of
temperature data, and the constraints of mean p =0

and standard deviation 9=1 conform to the
thermodynamic equation of the equipment to ensure that
the characteristic distribution is consistent with the
physical laws.

According to the characteristics of electrical equipment
signals, a multi-stage noise filtering strategy is designed.
The wavelet threshold denoising method is used to
eliminate transient spike noise while retaining the
important mutation characteristics of the signal. For the
sensor failure problem, time series interpolation
technology is used to repair the data loss caused by
random masks, and the physical model of the device is
combined to ensure the rationality of the interpolation.
To eliminate electromagnetic interference, a frequency
domain notch filter is used to filter out power frequency
harmonic interference, 50/60Hz, and frequency doubling
interference. These methods are combined with
normalization techniques to ensure that the input data
can truly reflect the actual noise distribution of electrical
equipment.
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2)

Data Augmentation

To reduce the overfitting problem caused by limited
training data, this study uses multi-modal data
augmentation techniques including Gaussian noise
disturbance, dynamic time regularization, amplitude
scaling, and random masking to generate diverse training
samples. At the same time, through the self-supervised
learning framework, the comparative learning is used to
pre-train the model so that the unlabeled data can be used
to learn more robust features, thereby reducing the
dependence on labeled data. Data augmentation
technology can enrich the diversity of the training set,
improve the model’s adaptability to different working
conditions, and reduce overfitting [19-21]. Considering
that the current, voltage, and temperature data in the
actual environment are affected by many factors, this
study uses a variety of data augmentation methods to
more realistically simulate the operating state of the
equipment. First, to enhance the robustness of the data,
Gaussian noise perturbation is applied. By adding
random noise to the original data

sequence A={a,,a,,~-,a,} , a new data sequence
’ ’ r ’
A :{al,ap...’am}

shown in equation (3):

m

is generated. The calculation is

a =a +e, g~N(O,82) 3)

¢ follows a normal distribution with a mean of 0 and

a standard deviation of 9° . Its standard deviation is
adjusted according to the sensor noise level to ensure the
physical rationality of the data. Gaussian noise
perturbation can simulate actual interference and errors,
making the training data more realistic. This study also
applies dynamic time warping technology to perform
nonlinear transformation on the signal time axis to
generate enhanced data with time variability. Dynamic
time warping (DTW) technology adjusts the signal time
alignment to change the time series relationship of data
points, but maintains the overall trend, which is suitable
for processing equipment timing changes under different
loads [22].

DTW technology is a powerful technique used for
aligning and comparing time series data that may vary in
speed or timing. In the context of electrical equipment
state  recognition, DTW allows for nonlinear
transformations of the signal time axis, enabling the
model to simulate differences in signal cycles or time
alignment under varying loads or working conditions. By
adjusting the time series relationship of data points while
maintaining the overall trend, DTW helps the model
adapt to different equipment operating states, improving
its sensitivity to timing changes and enhancing its ability
to detect anomalies or faults. This method is particularly
valuable for handling unsteady signals, load fluctuations,
and transient events, making it a critical tool for
improving the robustness and accuracy of state
monitoring systems.



In addition to Gaussian noise, impulse noise (random
position amplitude mutation +20%) and sensor failure
simulation (random mask ratio 10%-30%) are added.
Dynamic time regularization is extended to multi-scale
time distortion (+15% timing offset), and load fluctuation
enhancement (random amplitude scaling +25%) is
introduced to cover actual operating conditions such as
equipment start-stop and load switching.

After that, amplitude scaling and random masking
techniques are further used to enhance data diversity.
Amplitude scaling simulates the impact of load changes
on signals by making the signal amplitude change

randomly within a certain interval,
A'=pA, B~pu(09,1.1), and S obeys a uniform

distribution on the interval £(0.9,1.1) . Combining

these technologies, the multimodal data augmentation
strategy of this article not only improves the
generalization of the training set but also makes the DL
model more adaptable to the state of complex electrical
equipment, providing more reliable data support for
subsequent state recognition and monitoring. Finally, this
article plots the original data points and the data points
after using data augmentation technology. The results are
shown in Figure 1:
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Figure 1. Original data points and data points after using data augmentation technology. Figure 1(A). Original data points; Figure
1(B). Data points after data augmentation technology.

Figure 1(A) and Figure 1(B) show that Gaussian noise
perturbation (green line) adds random noise to the
original signal, making the signal fluctuate more
violently. This simulates the signal changes caused by
environmental interference, sensor errors, etc., during the
operation of electrical equipment, enhances the diversity
of data, and helps the model better cope with uncertain
and noisy data, making it more robust. Dynamic time
warping (red dashed line) applies nonlinear changes by
adjusting the signal time axis, simulating the differences
in signal cycle or time alignment under different loads or
working conditions. This helps the model adapt to
different equipment working states and improves
sensitivity to timing changes. Amplitude scaling (gray
line) simulates load changes by randomly scaling the
signal amplitude, reflecting changes in equipment
workload, so that the model can adapt to different load
conditions. Random occlusion (black dashed line)
simulates sensor failure or data loss by shielding part of
the signal data, enhancing the model’s fault tolerance
when data is missing. These technologies enrich the
training dataset and effectively simulate interference,
load changes, and sensor problems in the real world,
improving the model’s adaptability and robustness,
reducing overfitting, and enabling the model to better
generalize to different working conditions.

In this study, a multi-modal confrontation enhancement
technique is proposed to improve the model’s robustness
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to noise. By designing an amplitude scaling method
based on physical laws and combining the equipment
load model, an enhanced sample that meets the actual
operating constraints of electrical equipment is generated.
At the same time, anti-noise injection technology is
introduced to simulate malicious signal interference and
strengthen the model’s defense capabilities. In addition, a
cross-modal consistency enhancement mechanism is
proposed to improve the reliability of multi-source
information fusion. The experimental results show that
under the electromagnetic interference of SNR=10dB,
the accuracy of the model is only slightly reduced by
1.5%, which significantly improves the noise tolerance
compared with the traditional method, proving its
practical value in the industrial environment.

3) Self-supervised Learning

Due to the high cost of obtaining labeled data, an
effective use of unlabeled data is crucial to improving
model performance. This study uses self-supervised
learning [23-25] in the pre-training stage to deeply
explore the features of data such as current, voltage, and
temperature. Using the contrastive learning framework, a
self-supervised learning model based on a twin network
is constructed. The model consists of two neural
networks with shared weights, which receive paired
input data a;, and g, and calculate their embedded



is set as the similarity

and g, , and the InfoNCE

(Information Noise-Contrastive Estimation) loss function
is used to optimize the similarity measure, so that the
model can learn data features more effectively. The
equation is:

representations.  z (a( i )

measure of samples a;

exp(z(aj,ai)/(p)
Z;exp(z(aj,a,)/w)

K =-log “)

Among them: ¢ -the temperature parameter, which is

used to adjust the smoothness of the softmax function;

L -the number of negative samples, usually randomly
determined in the mini-batch.

To improve the effect of self-supervised learning, a data
augmentation strategy is used to construct sample pairs.
Random smoothing, timing jitter, Gaussian noise
perturbation, and other methods are applied to the
original signal to generate variants to help the model
learn stable features. At the same time, a projection head
is applied for feature transformation, which consists of
two layers of fully connected networks and maps the
features to a high-dimensional space to improve the
feature separability, as shown in equation (5):

s;=Vy-0(Vg) )

Among them: g, -the original features of input data;

V, and V, -the trainable parameters of the projection
head;

o -the non-linear activation function.

In this study, InfoNCE is selected instead of Triplet Loss,
which is mainly based on the three major needs of
electrical equipment monitoring. First of all, under strong
electromagnetic interference, InfoNCE significantly
reduces gradient fluctuations and enhances noise
robustness through multi-negative sample comparison.
Secondly, InfoNCE’s in-batch negative sampling
mechanism improves computational efficiency and meets
the real-time processing needs of power system time
series data. Finally, the temperature parameters of
InfoNCE can be dynamically adjusted, and multi-modal
feature alignment can be adjusted to adapt to nonlinear
changes in the state of electrical equipment, but the fixed
boundary of Triplet Loss cannot be done. Therefore,
InfoNCE is better than Triplet Loss in terms of noise
robustness, computational efficiency, and cross-modal
adaptability, and is more suitable for electrical equipment
monitoring scenarios.
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Electrical equipment condition monitoring needs to
combine multi-modal data such as current, vibration, and
thermal imaging to overcome the shortcomings of a
single signal. The current signal is susceptible to
electromagnetic interference; the vibration signal is
sensitive to the position of the sensor; the time resolution
of the thermal imaging data is low. Through cross-modal
consistency enhancement technology, multi-modal fusion
can solve the blind spot of single-mode and maintain a
high accuracy rate in the case of 30% sensor failure,
showing its robustness under complex operating
conditions.

B. Deep Learning Feature Extraction

In the task of electrical equipment state monitoring,
sensor signals contain rich spatial features. This study
uses a one-dimensional convolutional neural network to
extract these features and combines DCN [26,27] to
improve the model’s adaptability to complex signals.
First, the data of R consecutive time steps is constructed

as an input tensor A4 € Z*” , where D represents the
number of sensor channels, and each channel
corresponds to a different monitoring signal. The

convolution layer uses a filter W e Z"” ofsize L to
extract local features. The equation is:

D L1
8 = O-(Zd:121:o Vidi 4aa TE ) (6)

Among them: v, ,, -the weight of the i -th convolution

kernel on the d -th channel;
¢, -the bias term.

To improve the model’s multi-scale feature capture
capability, a multi-scale convolution strategy is adopted.
Through parallel calculation of convolution kernels with
different receptive fields, the channel dimensions are
spliced to form a multi-scale feature representation [28].
It can be expressed as:

G = Concat (Conu, (4),Conu, (4),Conu, (4)) (7)

Equation (7) allows the model to simultaneously focus
on short-term patterns and long-term trend changes,
thereby improving the perception of different signal
patterns. To reduce computational redundancy and
improve adaptability to non-stationary signals, this study
uses DCN to replace traditional maximum pooling. DCN
dynamically adjusts the sampling position by learning
the offset parameter, making the convolution operation
more adaptable to the non-uniform pattern of the signal.
Its equation is:

p— ! —
e, =V, x4, a;,,= Ajiiia,, ®



Among them: e, -the adjusted sampling position;

A, -the learnable offset.

After the application of DCN, the model has a stronger
ability to parse sudden changes and non-uniform signals,
improving the accuracy and robustness of electrical
equipment state recognition.

Sensor data has time series dependence, and CNN can
only capture local time information and cannot model
global time dependence [29-31]. Therefore, this study
uses the BILSTM (Bidirectional Long Short-Term
Memory) network [32-34] to model CNN output features
to simultaneously capture the previous and next time
dependency information and improve the accuracy of
abnormal state recognition. If the feature sequence

extracted by CNN is G =(g,,g,,"-.g&, ), where g, is

the feature of the r th time step, the calculation of
BiLSTM is shown in equation (9)-equation (13):

ho=0(V,g +0,g,+¥) )
j.o=0(V,g,+0,g, ,+y,) (10)

¢, =o(Vg +0g +e,) (1)

d, =h 0d,_ +j Otanh(V,g, +0,8, ,+y,) (12)
g, =e Otanh(d,) (13)

Among them: %, j ,and e, -the forget gate, the input
gate, and the output gate;

tan 4 (-) -the hyperbolic tangent activation function;

d, -the cell state;

O -the element-by-element multiplication.

The two-way timing modeling of BiLSTM adopts the
joint representation of the forward hidden state E and
the backward hidden state E , and its information

entropy satisfies H(lTr @ hj) > max {H (hj),H (/T, )} ,

proving its ability to characterize unsteady signals.
Transformer's self-attention mechanism scales the dot
product attention equation

R
Attention (Q, K, W) = softmax {%}W , and the
k

convergence speed is 42% higher than that of LSTM in
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long-sequence modeling.

LSTM uses a gating mechanism to solve the gradient
vanishing and exploding problems in RNN (Recurrent
Neural Network) training [35-36]. Compared with
one-way LSTM, BiLSTM shows significant advantages
in the condition monitoring of electrical equipment.
Through two-way timing modeling, it can not only
capture the forward dependence of the sensor signal but
also capture the backward dependence at the same time.
This feature makes BiLSTM particularly excellent when
dealing with complex timing modes such as load
mutations and unsteady signals. In the face of scenarios
such as current fluctuations or transient failures,
BiLSTM can use backward timing information to
supplement and improve the local characteristics of
forward timing, thereby significantly improving the
model's ability and sensitivity to abnormal states.

LSTM and CNN focus on local temporal and spatial
features, respectively, and have limited modeling of
global temporal relationships. Therefore, to optimize the
temporal modeling of BiLSTM, this study applies the
Transformer structure and uses its self-attention
mechanism to learn global features across time steps to
enhance the comprehensive representation of the
equipment state. Unlike LSTM, Transformer is not
restricted by sequential dependencies, which can directly
focus on the entire time series, realize global information
interaction, and improve the modeling efficiency of
long-term dependencies. The Transformer input is the

feature sequence G'=(g/,g,,---,g;) extracted by

LSTM, and the query (Q ), key (K ), and value ( W)

matrices are obtained after linear transformation. The
equation is:

Q=G K=GV, W=G"V,, (14)

Among them: V,, Vi, and V, -the learnable weight

matrices. The input features are mapped to different
subspaces, and then the similarity scores are calculated
through Q and K . After softmax normalization, the
weighted W is obtained to obtain the self-attention
weight.

The self-attention mechanism enables the model to
self-learn the dependencies of different time steps,
effectively capture the global features of the electrical
equipment state, and improve the anomaly detection
accuracy. To strengthen the model expression, this study
applies multi-head attention, performs self-attention
calculations in multiple subspaces, and splices the results
to capture multi-dimensional global information. At the
same time, to reduce the computational overhead of long
time series data, a factorized self-attention is used to
reduce the complexity through low-rank matrix
decomposition and adapt to long time series modeling.
Finally, the global features of Transformer are fused with
the temporal features of LSTM, and the features are



transformed through the fully connected layer and the
normalization layer.

C. Field Adaptation Technology

The data distribution of state recognition and monitoring
of electrical equipment changes under different working
conditions, affecting the model’s performance. To
address this problem, during the training process, this
article adopts domain adaptation technology to adjust the
data distribution of different working conditions through
adaptive batch normalization to stabilize the DL model’s
performance. Domain adaptation aims to reduce the
distribution difference between training data and actual
application data, so that the trained model can be
effectively applied to actual scenarios. This article adopts
AdaBN (Adaptive Batch Normalization) to automatically
adjust the network normalization according to the data
features during the training process. Traditional batch
normalization mainly standardizes the input to accelerate
training and reduce internal covariate shift, but the effect
is not good when the data distribution is inconsistent.
The AdaBN method adaptively adjusts the normalization
process, dynamically adjusts parameters, realizes
adaptive adjustment of the model in different domains,
and maintains stable performance.

The AdaBN method optimizes network parameters by

applying a domain adaptive loss function to adapt to
M,

different data domains. Assuming that {(aj,bj )} Cis
Jj=1

M,
the source domain data and {(al.’ ,b/ )} is the target
i=1

domain data, the input data of the source domain and the

target domain are represented by a; and a ,

respectively, and their corresponding labels are also
represented by b; and b , respectively. To achieve

adaptation between the two domains, the AdaBN method

adds an adaptive factor to adjust the normalization of the
target domain data. The equation is:

. (a6 -0,
é; =7[“3 ]+(1—y)("3 J (15)

Among them: 6.

and & -the mean and standard
deviation of source domain data;

6. and 8 -the mean and standard deviation of target
domain data;

y -the adaptive factor, which can balance the influence

between the source domain and the target domain.

Equation (15) shows that when normalizing the target
domain data, in addition to considering its own mean and
variance, it also combines the statistical information of
the source domain, effectively reducing the distribution
difference between the two domains.

In the training of the model, the working state of the
equipment under different environments, loads, and
operating conditions produces different feature
distributions, which is difficult to deal with by traditional
methods. This method is effective, making the model
more flexible to deal with feature changes and ensuring
accurate monitoring. AdaBN can also improve the
model’s robustness through adversarial training, using
adversarial networks to simulate the distribution
differences between the two domains, so that the model
can learn to share features across domains, further reduce
distribution differences, and enhance generalization
capabilities. The network model combining CNN+LSTM
and Transformer structures in this article is shown in
Figure 2:
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D. Model Optimization and  Computational
Acceleration

1) Neural Architecture Search

NAS provides an automated solution that can

automatically find the optimal network structure. By
defining the search space, strategy, and evaluation
performance, the most suitable DL model for the task is
found. In NAS, the search space containing various basic
operations such as convolution, pooling, and jump
connection is first defined, and each operation is
represented as £, . The design of the search space is

crucial to the search efficiency and the final architecture
performance. Assuming that the optional operations of

operation E; in the search space are D, ,D,,--D, ,

the search space is Ej ={Dj.],Dj2,---Dj,} . Then, NAS
uses the search strategy to automatically select the
architecture. This article adopts the RL (Reinforcement
Learning) strategy to guide the search process through
the reward and punishment mechanism to find the
optimal network structure. RL adjusts the strategy

parameter & to maximize the expected reward 7(5),

thereby obtaining the DL model that is most suitable for
the electrical equipment state recognition task. The
equation is:

1(5)=B, , [T(x)] (16)

Among them: 7-the probability distribution defined by

the strategy parameter, reflecting the possibility of
generating the architecture at each time point.

NAS can optimize the model depth, width, and
inter-layer relationship, and improve the expressiveness
and accuracy of complex time series data. At the same
time, proxy tasks are used to quickly evaluate the
architecture and reduce computational costs.

2)  Application of Deformable Convolution

Traditional convolution uses a fixed receptive field to
extract features, which is limited to the complex dynamic
working conditions of electrical equipment and difficult
to capture subtle changes in local features. To improve
the model’s adaptability to changes in the state of
electrical equipment, this study uses DCN to replace
traditional convolution. DCN can dynamically adjust the
position of the convolution kernel to make its receptive
field more flexible, adaptively focus on key areas,
effectively extract features, and improve state monitoring
performance. If the output of the original convolution

operation is b(g,) , then the deformable convolution

output is as shown in equation (17):

b(40) =22, x@(90)-a(g0+4, +4q,) (17)
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Among them: R -the effective area of the convolution
kernel;

(g, ) -the weight of the convolution kernel at position

qm 5

a(q,+q, +Aq,) -the eigenvalue corresponding to the

position adjustment after data input;

Ag,, -the convolution kernel offset.

DCN predicts the offset Ag, through an additional

convolution layer, guides the movement of the
convolution kernel, adapts to changes in the state of
electrical equipment, and precisely captures subtle
changes in local features. At the same time, DCN has
high computational efficiency, adaptively adjusts the
receptive field, and captures detailed features without
increasing computational overhead. It is suitable for big
data scenarios of real-time monitoring of electrical
equipment state, ensuring accuracy while improving
real-time performance and efficiency.

3)

Dynamic Inference

To improve real-time performance and reduce overhead,
this article adopts a dynamic inference mechanism. This
mechanism adaptively adjusts the calculation path
according to the complexity of the input data, so that the
model can flexibly select the amount of calculation under
different inputs, significantly improving efficiency. The
core of dynamic inference is to evaluate the input
complexity and select the appropriate calculation path.

For each input sample, its complexity d(a) is
calculated by a lightweight evaluation function h() ,

and the calculation requirements are judged according to
the features to achieve complexity quantification.
Low-complexity samples are processed using simplified
paths, while high-complexity samples are processed
using more complex calculations.

The core of the dynamic reasoning mechanism lies in the

complexity evaluation function h() adaptively
adjusting the calculation path. In this study, A(-) is
defined as a quantitative indicator of the complexity of
the input sample, and its equation is as follows:

h(a):a.Cfeature(a)+ﬂ'ctemporal(a)+7/.cnoise(a) (18)

Among them: C;

&

aure (@) -the feature complexity of the

input data a, measured by extracting the local feature
variance from the lightweight convolutional layer;

Clemporal (a) -the timing-dependent complexity and



two-way hidden state entropy calculation based on
BiLSTM output;

C

e (@) -the noise level, estimated by the energy
distribution of the frequency domain signal and the

baseline deviation;

a, P ,and y -the weight parameters, used to balance

the influence of different dimensions on complexity. In
the experiment, they are set to 0.6, 0.3, and 0.1,
respectively.

The output value range of the function #(:) is [0,1].

The lower value represents a simple sample (such as a
normal operating state), and the higher value represents a
complex sample (such as a transient fault or a strong
noise scenario).

The dynamic inference mechanism selects the best
calculation path based on the complexity of the input
sample and the preset threshold «x . If the complexity

d(a) is less than the threshold « , the inference
process g, () is simplified, otherwise the complete

inference g, (a) is performed. Its selection rule can

be expressed as follows:

b(a)‘{g“g'"(a)’ wdla)<x (19

g (a), otherwise

The dynamic inference mechanism intelligently adjusts
the calculation path according to the complexity of the
input data, improving the inference efficiency while
ensuring accuracy. In electrical equipment monitoring, it
reduces unnecessary calculations, avoids waste, and
maintains high-precision recognition. This mechanism
flexibly adapts to different calculation requirements,
enhances the model’s real-time performance and
efficiency, and provides an efficient solution for
intelligent monitoring.

E. Model Lightweighting and Deployment
1) Application of Event-driven Neural Network

Due to the limited resources of edge computing
environment, this article applies event-driven neural
network-SNN  (Spiking Neural Network) as a new
network architecture. SNN simulates the working mode
of biological nerves, ensuring performance while
reducing energy consumption and improving real-time
inference speed to achieve effective intelligent
monitoring under low power consumption. The

membrane potential W, (r) of neurons in SNN changes

over time and is affected by the pulses of other neurons.
The process is expressed by the equation:
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. dW,(r)
" dt

=-W, (r)+ TZ Ry (r) (20)

Among them: 7, -the membrane time constant;

T -the membrane resistance;

u;, -the interneuronal connection weight;
z, (r) -the neuron pulse output at a certain time point.

When the membrane potential Wj(r) reaches the

threshold W, , the neuron emits a pulse and resets the
W,

reset

membrane potential to . Then, the rate encoding

method is used to convert the traditional DL model into
SNN, and the continuous activation value is converted

into pulse frequency. The pulse frequency f(4)

corresponding to the activation value can be expressed
as:

;) (21)

1+ e @

r(2)=

Among them: « and A, -the adjustable parameters,

controlling the function shape of the activation value to
pulse frequency.

Through rate coding, the activation value of the
traditional DL network is mapped to the pulse sequence
of the SNN, so that the model can operate effectively in
the event-driven neural network. SNN not only improves
energy efficiency but also has adaptability. In the
monitoring of electrical equipment, the state often
changes suddenly, and the traditional neural network
requires a lot of computing resources. However, SNN
uses an event-driven mechanism to update only when the
state changes, avoiding redundant calculations and
improving real-time performance.

2)  Online Update Mechanism

To ensure that the model adapts to the state changes of
electrical equipment, this article proposes an online
update mechanism based on incremental learning. The
mechanism updates the model regularly to reflect the
latest state of the equipment in real-time and keep the
monitoring efficient and accurate. The equipment state
may change with load, environment, etc., requiring the
model to adapt flexibly. The online update mechanism
improves the model’s adaptability through incremental
training to meet this requirement. The model uses the
trained network to extract features from new data and
matches them with historical data to detect new
anomalies or trends. Feature matching aims to minimize
the difference between new and old data, which can be
achieved through a specific objective function. The



objective function equation is:

L (Anew > Ahislory ) = min "F (Anew )_ F (Ahis“"y )" (22)

Among them: 4, -the newly collected dataset;

4

Listory ~the historical dataset;

F () -the feature extraction function, which measures the

feature difference between new data and historical data.

When feature matching detects a change in equipment
state, the incremental training is started. To reduce
computational overhead, a fine-tuning strategy is adopted,
which only requires retraining the model’s last few layers
instead of retraining the entire model. Assuming that the
weight of the original model is W, and the weight

w

new

after update is the optimization goal is to

minimize the loss function to update the weight and add
a regularization term to ensure the model’s stability and
prevent overfitting. The model integrates L2
regularization (a weight attenuation coefficient of 0.0001)
and Dropout (a ratio of 0.3) to suppress parameter
overfitting. The dynamic inference mechanism reduces
redundant  parameter updates through adaptive
calculation paths, further reducing the overfitting risk.
The optimization objective equation is:

w

new = argmin L (AposW )+ | =W (23)

Among them: 7 -the regularization parameter;

”W W
update amplitude.

|2 -the penalty term, controlling the model

The fine-tuning strategy only trains part of the network

layer, reduces the computing cost, realizes real-time
update of edge equipment, and meets the requirements of
low power consumption and high real-time performance.
The online update mechanism enables the model to
reflect the changes in equipment state in a timely manner,
maintaining high accuracy and stability. Through
real-time data collection, incremental training, and
adaptive equipment state changes, the problem of offline
training timeliness is solved, and the model adaptability
and robustness are improved.

3. State Recognition Performance Evaluation
A.  Experimental Design

The experimental data of this study comes from a
large-scale electrical equipment monitoring system in an
industrial park in a certain province. This system has
been monitoring and warning the state of high-voltage
circuit breakers and related power equipment for a long
time. The data is collected from high-voltage circuit
breakers with a voltage level of 110kV and above in
multiple substations in the park, including circuit
breakers on the main transformer outlet side, busbar
connection, and important load branches, ensuring the
comprehensiveness and representativeness of the data.
To ensure the timeliness and completeness of the data,
this study uses industrial-grade smart sensors for data
collection. The data is transmitted back in real-time
through industrial Ethernet and wireless modules, with a
collection cycle of 1 second, and stored in the form of
time series, ensuring the high timeliness and high
accuracy of the data. The dataset covers four modes:
current, voltage, vibration, and thermal imaging, and
comprehensively monitors various working conditions of
the equipment. The experiment aims to verify the
effectiveness of the DL method of this article combining
CNN + BILSTM with Transformer in electrical
equipment state recognition, with special attention to its
adaptability and classification accuracy under complex
working conditions. The data collected in this article is
shown in Table 1:

Table 1. Basic information of the dataset.

Serial number | Equipment state Data volume Data sources

1 Normal operation 50000

2 Overload 30000 Sensor array monitoring data
3 Short circuit 25000

4 Poor contact 20000

5 Equipment aging 15000 long-term monitoring

6 Load fluctuation 18000 Variable load experiment

7 Voltage dip 12000 Grid fluctuation record

8 Abnormal frequency 14000 Spectrum analyzer

9 Abnormal vibration of equipment 16000 Vibration sensor

10 Insulation degradation 13000 Insulation tester

11 Partial discharge 11000 ultrasonic sensor

12 Overheat 14000 Thermal imaging instrument and temperature sensor
13 Loose circuit 10000 On-site maintenance

14 Nonlinear load 12000 Variable frequency drive

15 Transformer abnormality 9000 Transformer state monitoring
16 Total data volume 269000
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The experimental data of this study includes 15 different
equipment states (see Table 1 for details), which not only
includes common fault types such as overload, short
circuit, poor contact, and equipment aging, but also
covers more complex operating conditions such as
instantaneous voltage drop and abnormal frequency. In
the data acquisition link, a variety of actual situations are
simulated, such as sensor noise (including Gaussian
noise and pulse interference), data deletion phenomenon
(realized by random masking technology), and
processing of unsteady signals (with the help of dynamic
time regularization method). At the same time, a variety
of sensors such as current, voltage, vibration, and
thermal imaging are wused for synchronous data
acquisition to ensure that the modes of the acquired data
are highly diverse. In addition, the experimental data
fully covers the entire life cycle of the equipment (for
example, aging equipment accounts for 26% of the data
set) and truly reflects practical application scenarios such
as temperature fluctuations (in the range of -20°C to
60°C) and load mutations (changes between 20% and
120% of the rated load).

The experimental data is divided into 70% training set,
15% validation set, and 15% test set to ensure a balanced
distribution of categories. The training set is used for
model parameter optimization; the validation set is used
for hyperparameter tuning and regularization strategy
selection; the test set is used for final performance
evaluation. The data set division is shown in Table 2:

Table 2. Data set division.

Data set Sample size (total 269,000) Proportion
Training set 188,300 70%
validation set | 40,350 15%
Test set 40,350 15%

The AdamW optimizer is used for model training, and
the parameters are set to S, =09, S, =0.999, and

weight decay=0.0001. The initial learning rate is 0.001,
and the cosine annealing strategy is used to reduce it to
0.0001 to balance the training speed and accuracy. The
batch size is 64, which ensures stable training and
reasonable video memory usage. The training is up to
100 rounds, combined with the early stop strategy
(patience=10) to avoid overfitting. The weighted cross
entropy loss function is used to deal with data imbalance,
and the category weight is inversely proportional to the
sample frequency. The parameters are jointly adjusted by
grid search and Bayesian optimization to ensure that the
model is optimal. The experiment is conducted on an
NVIDIA V100 GPU cluster, using PyTorch 1.12.1 and
CUDA 11.3. Data preprocessing relies on NumPy 1.21
and SciPy 1.7.3, and the model deployment is optimized
based on TensorRT 8.4.

This study selects five state recognition methods as
baseline  comparison  methods:  Graph  Neural
Network-optimized long short-term memory network
(GNN-LSTM), variational autoencoder-convolutional
neural  network  fusion  model  (VAE-CNN),
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self-supervised learning-driven deep forest model
(SSL-Deep forest), and multi-scale feature extraction
time convolution network (Multi-Scale Temporal
Convolutional ~ Network, @ MSTCN). GNN-LSTM
combines graph neural network and long short-term
memory network, which is suitable for processing sensor
data with physical connection relationship; VAE-CNN
integrates variational autoencoder and convolutional
neural network and performs well in feature extraction
and reconstruction error optimization; SSL-Deep forest
drives the deep forest model through self-supervised
learning, which can effectively use unlabeled data to
improve performance; MSTCN uses multi-scale time
convolution network, which is good at -capturing
multi-scale features in complex time series. Using these
methods as comparison baselines, the comprehensive
performance advantages of this method in recognition
accuracy, recall rate, anomaly detection delay, fault
detection rate, dynamic reasoning efficiency, and
cross-domain adaptability can be comprehensively
evaluated, and its robustness and efficiency under
complex working conditions can be verified. The above
four baseline methods are compared with the method in
this article, and the recognition accuracy, recall rate,
anomaly detection delay, fault detection rate, dynamic
inference efficiency, and cross-domain adaptability under
the five different methods are compared.

Model  configuration:  GNN-LSTM's  dual-graph
convolutional layer (GCN) and 256-unit bidirectional
LSTM, VAE-CNN's layer 3 encoder (number of channels
[64, 128, 256]) and inverse convolutional decoder,
SSL-DeepForest's 500 trees and information gain
splitting criteria, and MSTCN's 5 convolutional core
scales (2-8).

For GNN-LSTM, an adjacency matrix is constructed
based on the physical connection between the device
sensors, and the cosine annealing strategy is used to
dynamically adjust the learning rate, initially setting to
0.001 and gradually reducing to 0.0001. To prevent
overfitting, a Dropout layer is added between GCN and
LSTM, with a retention rate of 0.5.

For VAE-CNN, the encoder uses a (3x3) convolution
core with a step size of (1,1), and the output channel
gradually increases to [64, 128, 256]. The decoder uses a
(4%4) inverse convolution kernel with a step size of (2,2),
and the activation function uses ReLU. During training,
it is designed to minimize the weighted sum of the
reconstruction error and the KL divergence, and the
weight is set to 0.1.

SSL-DeepForest conducts 50 rounds of self-supervised
pre-training through rotating prediction tasks. The depth
of each tree in the forest does not exceed 10. The
information gain is used as the division standard, and the
original sensor data is directly used.

MSTCN uses a multi-scale convolution kernel and
uniformly adopts the LeakyReLU activation function.
The training terminates when the validation loss is not



improved for 10 consecutive rounds. All models are
implemented through PyTorch 1.12.1 on NVIDIA V100
GPUs, and the relevant code and hyperparameters have
been disclosed. These settings ensure comparability with
the methods in this article.

B. Experimental Results
1)  Recognition Accuracy and Recall Rate

The recognition accuracy reflects the ability of the model

100

A

95

920

Accuracy (%)

85

—— CNN+LSTM+Transformer

to distinguish between normal and abnormal, ensuring
the stable operation of the system and timely detection of
faults; the recall rate reflects the proportion of abnormal
events actually detected by the model. A high recall rate
can avoid underreporting and ensure system safety. The
combination of the two comprehensively evaluates the
model performance, provides a basis for optimizing
resource allocation and improving monitoring efficiency,
and ensures real-time monitoring of equipment state and
infrastructure safety. The recognition accuracy results of
different methods in this article under different test times
are shown in Figure 3:
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Figure 3. Recognition accuracy and recall rate results. Figure 3 (A). Comparison of recognition accuracy results; Figure 3 (B).
Comparison of recall rate results.

According to Figures 3 (A) and 3 (B), the average
recognition accuracy and recall rate of the method in this
article in 50 tests are 95.37% and 94.34%, respectively,
which are significantly higher than 85.22% and 84.36%
of GNN-LSTM, 86.90% and 85.76% of VAE-CNN,
84.70% and 83.89% of SSL-Deep forest, and 83.16%
and 81.88% of MSTCN. From a single point of view, the
proposed method shows high accuracy in the initial stage
and gradually improves with the increase of the number
of tests, with the highest accuracy and recall reaching
97.80% and 96.51%. This shows the model’s excellent
learning ability and adaptability. In contrast, although the
other four methods have also improved, their overall
performance is not as good as that of the proposed
method. MSTCN has the lowest accuracy in the entire
test process, with the highest accuracy and recall of only
85.44% and 85.41%. Although VAE-CNN is slightly
inferior in the early stage, it gradually improves in the
later stage, showing potential. From the above data, it
can be seen that the proposed method achieves efficient
recognition and monitoring of the electrical equipment
state. This strategy enhances the model’s perception,
stability, and robustness, ensuring a higher recognition
accuracy. High accuracy also provides a basis for
optimizing resource allocation, which helps to improve
the monitoring system’s overall efficiency and
cost-effectiveness and ensure the infrastructure’s safe
operation.

2)  Detection Delay

Detection delay reflects the response speed of system
fault recognition and alarm. Low delay can help the
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model respond at the early stage of the fault, reduce risks
and losses, and provide more response time for operation
and maintenance personnel to ensure the system’s safety
and stability. To this end, this article first tests the
abnormal detection delay time of 5 methods under 15
equipment states. The results are shown in Figure 4:
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Figure 4. Comparison of detection delay time.

According to the results presented in Figure 4, the
proposed method achieves an average detection delay of
3.02 ms across 15 equipment states, which is
significantly lower than the delays observed for the
baseline methods: 5.55 ms for GNN-LSTM, 6.38 ms for
VAE-CNN, 6.14 ms for SSL-Deep forest, and 7.60 ms
for MSTCN. Notably, the proposed method demonstrates
the shortest detection delay in multiple states. For
instance, in equipment state 4, the detection delay of the



proposed method is only 2.14 ms, where the delays for
the other four methods are 5.83 ms, 6.35 ms, 7.08 ms,
and 7.80 ms, respectively. These findings indicate that
the proposed method consistently outperforms the
baselines in terms of detection speed. The reduced
detection delay not only provides operation and
maintenance personnel with additional response time but

also enhances the system’s stability and security, which
is critical for ensuring the safe operation of infrastructure.
Consequently, the proposed method exhibits significant
practical advantages in real-world applications.

Subsequently, this article also counts the detection time.
The results are shown in Table 3:

Table 3. Comparison of detection time.

Equipment state This article(s) GNN-LSTM (s) VAE-CNN(s) SSL- deep forest(s) | MSTCN(s)
1 0.67 1.76 1.65 2.54 1.34
2 0.73 1.44 1.81 2.25 1.75
3 0.62 1.68 1.55 2.25 1.32
4 0.71 1.73 1.70 2.34 1.68
5 0.65 1.76 1.73 2.21 1.35
6 0.57 1.79 1.90 2.33 1.76
7 0.66 1.63 1.82 249 1.68
8 0.61 1.69 1.88 2.39 1.69
9 0.58 1.72 1.61 2.60 1.63
10 0.60 1.73 1.70 221 1.47
11 0.53 1.38 1.52 2.69 1.50
12 0.61 1.62 1.88 2.60 1.46
13 0.61 1.43 1.92 243 1.77
14 0.66 1.46 1.74 248 1.51
15 0.56 1.72 1.59 2.51 1.77

According to the data in Table 3, the detection time of
this method for equipment 1 and equipment 15 is 0.67
seconds and 0.56 seconds, respectively, and the average
detection time of 15 groups of equipment is 0.62 seconds.
The detection time of GNN-LSTM method for
equipment 1 and equipment 15 is 1.76 seconds and 1.72
seconds, respectively, and the average detection time is
1.64 seconds. The detection time of VAE-CNN for the
above two equipment is 1.65 seconds and 1.59 seconds,
respectively, and the average detection time is 1.73
seconds. The detection time of SSL-Deep forest for the
above two equipment is 2.54 seconds and 2.51 seconds,
respectively, and the average detection time is 2.42
seconds. The detection time of MSTCN for these two
equipment is 1.34 seconds and 1.77 seconds, respectively,
and the average detection time is 1.58 seconds. It can be
seen that in multiple states, this method shows the lowest
detection time. This is because this method adopts
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advanced feature extraction technology and adaptive
mechanism, which can more precisely capture the subtle
changes in the state of electrical equipment, thereby
effectively improving the timeliness and reliability of
electrical equipment state monitoring.

3) Fault Detection Rate

A high fault detection rate reflects the model’s ability to
actually detect faults, effectively reducing missed reports
and ensuring system reliability and safety. This provides
accurate information for operation and maintenance
personnel and timely maintenance and repair and reduces
damage and downtime. This article divides faults into
severe faults and mild faults and tests the fault detection
rates under different methods. The results are shown in
Figure 5:

B CNN+BiLSTM+Transformer

B GNN-LSTM
VAE-CNN
I SSL- deep forest
B MSTCN
X 95
T
=
—
=
N
8
o 85
<
3
=
ol [T
75 |

123456789101112131415
Equipment State

Figure 5. Fault detection rate results. Figure 5(A). Severe fault detection rate; Figure 5(B). Mild fault detection rate.
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As shown in Figure 5(A), the average severe fault
detection rate of the method in this article under 15
equipment states reaches 98.82%, which is significantly
higher than 87.22%, 84.82%, 87.38%, and 82.36% of
GNN-LSTM, VAE-CNN, SSL-Deep forest, and MSTCN.
For equipment state 11, the severe fault detection rate of
this method is as high as 99.50%, while the other four
methods are 86.54%, 83.62%, 89.16%, and 84.64%,
respectively. As shown in Figure 5(B), in terms of mild
fault detection, this method is also excellent, with an
average detection rate of 94.75%; the mild fault detection
rates of GNN-LSTM, VAE-CNN, SSL-Deep forest, and
MSTCN are 83.56%, 81.62%, 84.93%, and 80.14%,
respectively, and their average values are all lower than
this method. For mild fault detection of equipment state
6, the detection rate of this method reaches 96.37%,
while the detection rates of the other four methods are

82.61%, 80.19%, 84.77%, and 81.55%. This method
shows high efficiency and accuracy in handling complex
working conditions. It can be seen that this method has a
high detection rate, can precisely capture subtle changes
in electrical equipment, and improves its stability.

4)  Dynamic Inference Efficiency

Dynamic inference efficiency reflects the model’s speed
and resource utilization in processing real-time data.
Efficient inference can quickly recognize the state and
respond, reducing failure delays. Therefore, improving
inference efficiency can enhance system responsiveness
and ensure efficient and reliable monitoring. To this end,
this article compares the inference time and throughput
on different time slices. The results are shown in Figure
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Figure 6. Dynamic inference efficiency results. Figure 6(A). Inference time and throughput of CNN+BiLSTM+Transformer; Figure
6(B). Inference time and throughput of GNN-LSTM; Figure 6(C). Inference time and throughput of VAE-CNN; Figure 6(D).
Inference time and throughput of SSL-Deep; Figure 6(E). Inference time and throughput of MSTCN.

As shown in Figures 6(A), 6(B), 6(C), 6(D), and 6(E),
the inference time of the proposed method is between
100.65-128.37ms, and the throughput is between
445-584 on different time slices. The average inference
time is only 112.91ms, and the average throughput is
about 506 samples per second. In contrast, the inference
time of GNN-LSTM is between 131.18-168.40ms, and
the throughput is between 201-344. The average
inference time and throughput are 148.55ms and about
269 samples per second, respectively. The VAE-CNN
inference time is between 141.45-179.38ms, and the
throughput is between 236-377. Its average inference
time and throughput are 159.51ms and about 298
samples per second, respectively. The SSL-Deep forest
inference time is between 192.98-227.39ms, and the
throughput is between 195-335. Its average inference
time and throughput are 210.08ms and about 272
samples per second, respectively. The inference time of
the MSTCN method is between 161.96-199.43ms, with
an average of 181.16ms; the throughput is between
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284-422, with an average of about 343 samples per
second. It can be seen that the method in this article
significantly improves the efficiency of dynamic
inference by optimizing the model structure and
calculation strategy, and provides more timely and
reliable technical support for electrical equipment state
monitoring. Compared with the single-mode model, the
average inference delay of the multi-mode method in this
paper in the state of 15 types of equipment is reduced by
34.7%, and the cross-domain adaptation time is also
shortened by 41.5%. In the case of poor contact,
combined with vibration and current signals, the fault
detection rate has been greatly improved, which shows
the strong analytical ability of multi-modal composite
faults.

The loss on the training and validation sets during
training is monitored, and the performance of the models
with and without the regularization measures is
compared. The result is shown in Figure 7:
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Figure 7. Model performance with or without regularization. Figure 7(A). Performance of the model with regularization; Figure 7(B).
Performance of the model without regularization.

Figure 7(A) demonstrates the training and validation loss
changes after employing data augmentation, Dropout,
and L2 regularization. The training loss decreases from
0.9 to 0.048, and the validation loss decreases to 0.052,
which is a small difference indicating no overfitting. In
contrast, although the training loss of the model without
regularization in Figure 7(B) is low, the validation loss
bounces back to 0.147 after the 50th round, showing
overfitting. Regularization keeps the wvalidation loss
smooth, while the unregularized model oscillates
violently. In addition, the regularized model converges
faster and has lower generalization error. The
experimental results show that the regularization strategy
reduces parameter redundancy and enhances the model’s
robustness and generalization ability.

Then, the model scale data is added to the dynamic
inference efficiency analysis. The model complexity

results are shown in Table 4:

As can be seen from Table 4, the method in this paper

has a significant improvement in model complexity
compared to GNN-LSTM and VAE-CNN. The parameter
volume is only 12.7M, which is reduced by 31.0% and
41.2%, respectively, and it is lighter. The FLOPS is 9.8G,
which is lower than the other two methods, and the
computing efficiency is increased by 31.4% and 41.3%,
respectively. The inference delay is reduced to 112.91 ms,
shortened by 24.0% and 29.2%, which is suitable for
edge device deployment.

5) Cross-domain Adaptability

Cross-domain adaptability is the key to maintaining the
model’s performance under different conditions,
ensuring the system’s stable operation in multiple
scenarios. It can cope with changes such as equipment
aging and temperature fluctuations and improve system
reliability and maintenance efficiency. This article uses
adaptation time as an evaluation indicator to test the
cross-domain adaptability of 5 methods under different
equipment conditions. The results are shown in Table 5:

Table 4. Model complexity.

Model Parameter quantity(M) FLOPS(G) Reasoning delay(ms)
CNN+BiLSTM+Transformer 12.7 9.8 112.91
GNN-LSTM 18.4 14.3 148.55
VAE-CNN 21.6 16.7 159.51

Note: FLOPS is calculated based on the input sequence length L=128.

Table 5. Comparison of adaptation time.

Equipment state | CNN+BiLSTM+Transformer (s) GNN-LSTM (s) | VAE-CNN(s) | SSL- deep forest(s) | MSTCN(s)
1 13.24 25.98 33.07 28.09 31.74
2 14.92 24.08 34.42 29.19 33.32
3 14.12 26.32 32.57 29.29 31.95
4 14.03 27.56 33.99 28.31 31.75
5 13.75 27.55 34.88 28.98 32.51
6 13.32 25.34 32.99 30.15 32.91
7 14.19 25.23 35.94 28.12 30.45
8 13.20 26.11 33.54 29.22 33.55
9 14.35 25.21 34.57 28.92 32.23
10 13.09 26.88 32.83 28.59 30.75
11 14.29 24.98 34.04 28.00 32.99
12 13.78 27.76 35.67 27.37 31.71
13 13.71 25.84 35.33 28.08 32.63
14 13.17 27.29 35.38 30.65 33.63
15 14.19 26.32 33.88 30.19 33.41
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According to Table 5, the average adaptation time of this
method is 13.82 seconds, which is significantly better
than 26.16 seconds, 34.21 seconds, 28.88 seconds, and
32.37 seconds of GNN-LSTM, VAE-CNN, SSL-Deep
forest, and MSTCN methods. From the perspective of a
single equipment, for equipment state 1, the adaptation
time of this method is 13.24 seconds, while the
adaptation times of the other four methods are 25.98
seconds, 33.07 seconds, 28.09 seconds, and 31.74
seconds, respectively. This shows that the cross-domain
adaptability of this method is better, and this better
adaptability helps to better improve the system’s
robustness. Electrical equipment can more quickly
respond to changes such as equipment aging, ambient
temperature, and load changes, thereby improving
system reliability and maintenance efficiency. Table 3

shows that the average adaptation time of this method in
15 equipment states is only 13.82 seconds, which is more
than 40% lower than other methods. This is due to the
dynamic adjustment of the feature distribution by AdaBN,
so that the model quickly converges in the target domain
(such as aging equipment, temperature fluctuation
scenarios).

Ablation experiment: to verify the effectiveness of
BiLSTM, the following comparative experiments are
designed: Model A: CNN + one-way LSTM +
Transformer; Model B: CNN + BiLSTM + Transformer
(The method in this article). Under the same data set and
training configuration, the accuracy rate, recall rate,
detection delay, and fault detection rate of the two are
compared. The results are shown in Table 6:

Table 6. Test results of different models under the same data set and training configuration.

Model Accuracy (%) Recall (%) Delay (ms) Fault detection rate (%)
CNN+LSTM+Transformer 93.21 92.45 3.89 96.12
CNN+BiLSTM+Transformer 95.37 94.34 3.02 98.82

According to Table 6, the BILSTM model is significantly
better than the one-way LSTM model in performance.
Specifically, from the point of view of accuracy, the
BiLSTM model in this article reaches 95.37%, which is
2.16 percentage points higher than the 93.21% of the
one-way LSTM. This shows that two-way timing
modeling can more fully capture the front and rear
dependencies of sensor signals, especially in unsteady
conditions. In terms of recall rate, the model in this paper
also surpasses the 92.45% of one-way LSTM with
94.34%, reducing the risk of missed inspections. In
addition, in terms of detection delay, the 3.02ms of the
model in this paper is significantly lower than the 3.89ms
of the one-way LSTM, indicating that the two-way
structure improves the feature extraction efficiency. In

terms of fault detection rate, the model in this paper is
98.82%, which far exceeds the 96.12% of one-way
LSTM, especially in complex fault modes. The
performance is more accurate. In the overload and poor
contact scenarios, the detection rate of the model in this
paper is as high as 99.2% and 99.5%, which far exceeds
the one-way LSTM. In short, BiLSTM has
comprehensively improved feature extraction, real-time
response, and fault sensitivity through the integration of
two-way timing information, fully proving its advantages
in the monitoring of complex electrical equipment.

Subsequently, the effects of different loss functions on
performance are quantified through ablation experiments.
The results are shown in Table 7:

Table 7. The impact of different loss functions on performance.

Loss function Accuracy (%) Convergence speed (number of rounds) Anti noise capability (SNR=10dB)
InfoNCE 95.37 48 94.82%
Triplet Loss 91.23 67 86.45%

According to Table 7, the InfoNCE loss function has
significant advantages in the identification of the state of
electrical equipment. Its accuracy rate (95.37%) is 4.14%
higher than Triplet Loss (91.23%), indicating that
multi-negative sample comparison is more effective in
mining data features. Especially in multi-modal data
fusion, the dynamic temperature parameter t alleviates
the feature matching problem of Triplet Loss. In terms of
convergence speed, InfoNCE (48 rounds) is 42% faster
than Triplet Loss (67 rounds), thanks to its in-batch
negative sample mechanism, which reduces the
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dependence on artificial triplet construction. In a noisy
environment with SNR=10dB, the accuracy rate of
InfoNCE is more stable, with a decrease of only 0.55%,
while the Triplet loss drops by 8.78%, indicating that
InfoNCE has stronger noise immunity. These verify the
applicability of InfoNCE in the monitoring of electrical
equipment.

After that, the model’s performance is tested under
different training data volumes (10%-100%). The results
are shown in Table 8:



Table 8. Comparison of model performance under different training data volumes.

Data volume ratio CNN+BILSTM+Transformer(%) GNN-LSTM(%) VAE-CNN
10% 89.72 95.37 74.31
30% 92.15 81.32 79.44
50% 94.03 84.17 82.65
100% 95.37 85.22 86.90

According to Table 8, when the amount of data is only
10%, the accuracy rate of this method has reached
89.72%, far surpassing the 76.45% and 74.31% of
GNN-LSTM and VAE-CNN, showing the advantages of
data augmentation and self-supervised learning on small
samples. With the increase of data volume, the accuracy
rate of this method continues to lead, at 30%, 50%, and
100% of the data volume, respectively, and it is higher
than the baseline model by 10.83%, 9.86%, and 8.47%.
Even with the full amount of data, the method in this
paper can still maintain a high accuracy rate of 95.37%,
far surpassing other models. The experimental results

fully prove that combined with regularization, domain
adaptation, and other technologies, the method in this
paper shows excellent generalization performance in
both data scarcity and sufficient scenarios.

Cross-domain and noise sensitivity experiment: in the
cross-domain test, the average accuracy of the model
under high temperature (40°C), high humidity (80%RH),
and strong electromagnetic interference scenarios
decreases by only 1.2% (94.15%—92.95%). The results
are shown in Table 9:

Table 9. Noise sensitivity test results.

Noise type/proportion CNN+BiLSTM+Transformer(%) GNN-LSTM(%) VAE-CNN(%)
Gaussian noise 10% 94.82 87.33 85.14
Pulse noise 20% 93.17 83.45 81.62
Random Mask 30% 92.44 79.81 78.33

Table 9 shows that when Gaussian noise accounts for
10%, the accuracy rate of this method is 94.82%, which
exceeds GNN-LSTM and VAE-CNN by 7.49% and
9.68%, respectively, showing the strong anti-interference
resistance to random noise. When the impulse noise
increases to 20%, the method in this paper still maintains
an accuracy rate of 93.17%, while the performance of the
two baseline models declines significantly. Under the
extreme conditions of 30% random mask, the accuracy
rate of this method is only slightly reduced to 92.44%,
while the other two models decrease significantly. In

addition, the average accuracy of the model under high
temperature, high humidity, and strong electromagnetic
interference is almost unaffected. The experimental
results fully prove that the method in this paper has
successfully resisted all kinds of noise interference
through techniques such as dynamic feature fusion, and
is very suitable for complex industrial environments.

Comparison of SOTA methods: finally, the method of
this article is compared with the latest models such as
GraphSAGE and TCN. The results are shown in Table 10:

Table 10. Performance comparison with SOTA method.

Model Accuracy(%) | Inference latency (ms) Cross-domain adaptability time (s)
CNN+BiLSTM+Transformer | 95.37 112.91 13.82
GraphSAGE 89.15 132.47 21.45
TCN 87.62 128.33 19.71

As can be seen from Table 10, the method in this paper is
comprehensively superior to top models such as
GraphSAGE and TCN in terms of performance
indicators. The accuracy rate is as high as 95.37%, which
is 6.22% and 7.75% higher than GraphSAGE and TCN,
respectively, indicating that it is more accurate in feature
extraction in the status recognition of complex electrical
equipment. The inference delay is only 112.91ms, which
is 14.8% and 12.0% lower than GraphSAGE and TCN,
proving that NAS optimization and dynamic inference
mechanisms have improved computational efficiency.
The cross-domain adaptation time is only 13.82 seconds,
which is significantly shortened, indicating that AdaBN
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technology can quickly respond to scenarios such as
equipment aging. Under strong electromagnetic
interference, the accuracy of this method is only reduced
by 1.5%, highlighting its noise robustness. In short, the
method in this paper provides a highly reliable solution
for industrial equipment monitoring.

Finally, to verify the rationality of the complexity
evaluation function h() , a comparative experiment is

designed in this study to test its output value in different

equipment states. The experimental results are shown in
Table 11:



Table 11. Output values in different device states.

DeViCG status Cfeature (a) Clemporal (a) Cnoise (a) h (a)
Normal operation 0.12 0.18 0.05 0.17
Load mutation 0.35 0.42 0.1 0.39
Strong electromagnetic interference 0.28 0.3 0.45 0.41
Transient short circuit fault 0.65 0.72 0.2 0.7

According to Table 11, the /()

identify samples of different complexity. During normal
operation of the device, the value of h(a) is very low,

function can well

only 0.17, which allows the model to choose a simplified
path for fast inference. However, in the case of transient

short-circuit failure, the value of h(a) is significantly
increased to 0.70, and then the model switches to the full
path to ensure the accuracy of fault detection. In addition,
through ablation experiments, it is found that if the #(-)

function is removed, the average reasoning time of the
model is significantly increased, an increase of 28.3%.

This proves the important role of the 4(-) function in

improving the efficiency of model inference.

To clarify the contribution of core technologies such as
DCN, Transformer, and AdaBN, four sets of ablation
experiments are designed in this study. As shown in
Table 12, the performance impact is verified by gradually
removing or replacing key components.

Table 12. Component ablation experiment results.

Component configuration Accuracy (%) | FLOPS (G) grrri)es s(s)domaln adaptation ?SIII\tIIR:?(I;deB)capablhty
Baseline(CNN+BiLSTM) 93.21 12.5 18.2 92.1
+Transformer 95.1 13.8 16.7 93.8
+DCN(Replace traditional convolution) | 95.37 9.8 14.3 94.8
+AdaBN(Domain adaptation) 95.37 9.8 13.8 94.8

According to Table 12, after joining Transformer, the
accuracy rate of the basic model (CNN+BiLSTM)
increases by 1.89%, demonstrating its powerful global
feature modeling capabilities. After adopting DCN, the
model parameters are reduced by 23.5%, and the
accuracy rate is still as high as 95.37%, proving the
effectiveness of DCN dynamic feature sampling. After
AdaBN is enabled, the cross-domain adaptation time is
shortened, and the accuracy rate decreases in high
temperature scenarios, which shows the domain
adaptation value of AdaBN. After removing the dynamic
reasoning mechanism, the model delay increases, but the

accuracy rate decreases only slightly, indicating that the
mechanism has achieved a balance between efficiency
and accuracy.

To verify the model’s generalization ability, this study
uses 5-fold cross-validation to evaluate the
CNN-BiLSTM-Transformer architecture. The data set is
randomly divided into 5 mutually exclusive subsets, of
which 4 are used for training and 1 is used for validation.
This process is repeated 5 times, and finally, the average
performance Criteria is taken. The experimental results
are shown in Table 13:

Table 13. Cross-validation test results.

Criteria Result describe
Average accuracy 95.12% £ 0.41% The mean and standard deviation of 5-fold validation
Validation set test set gap <1.5% Indicating that the model is not significantly overfitting

Insulation degradation (13000)

F1-score: 89.7% + 0.8%

Average performance and stability of small sample categories

Partial discharge (11000)

Fl-score: 91.3% + 0.6%

Average performance and stability of small sample categories

According to Table 13, the CNN-BiLSTM-Transformer
model shows excellent performance in 5-fold validation,
with an average accuracy of 95.12%, and the
performance of the validation set is similar to that of the
test set, indicating no overfitting phenomenon. For small
sample categories such as insulation degradation and
partial discharge, the model effectively addresses the
challenge of class imbalance through data augmentation
and self-supervised pre-training, with F1 score averages
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of 89.7% and 91.3%, respectively. By combining
hierarchical sampling, adversarial regularization, and
AdaBN's domain adaptation mechanism, the model
exhibits balanced performance across all categories,
especially in critical scenarios such as insulation
degradation where performance is stable. Experimental
results have shown that the model has high accuracy and
strong generalization ability, making it suitable for
monitoring complex electrical equipment.



C. Discussion

The experimental data is collected by industrial-grade
sensors, which comprehensively covers the entire life
cycle of the equipment and various environmental
parameters, such as temperature, humidity, and load.
Through the use of multi-modal enhancement technology,
the model’s adaptability to noise, various fault types, and
changes in complex operating conditions have been
significantly improved. Specifically, the relevant data on
equipment aging accounts for 26% of the overall data,
which is highly consistent with the actual statistical
results of the industrial site. In addition, the results of
cross-domain testing further confirm that this article’s
model has excellent stability when dealing with unknown
scenarios. Under extreme low temperature (<-30°C)
conditions, the fault detection rate of the method in this
paper has been reduced to 89.4%, which is 5.97% lower
than at room temperature, showing that the robustness to
extreme environments needs to be strengthened. At the
same time, although the amount of model parameters
(12.7M) is less than that of VAE-CNN (21.6M)), it is still
high compared to the lightweight model MobileNet
(5.2M), so further research is needed on compression
techniques such as knowledge distillation.

In this study, a noise treatment strategy that deeply
integrates knowledge in the field of electrical equipment
is proposed, and the model’s robustness is significantly
enhanced through three major innovation points. Firstly,
the nonlinear relationship between equipment power and
current is used to generate enhanced samples close to
actual load fluctuations. Secondly, FGSM technology is
used to generate confrontation samples, effectively
simulate and resist real attacks such as malicious signal
injection, and ensure that the model still maintains an
accuracy rate of up to 93.17% under directional
interference.  Finally, through the cross-modal
consistency mechanism, the characteristic alignment of
multi-modal data such as current, vibration, and thermal
imaging in the noisy environment is realized, and the
system stability when a single sensor fails is guaranteed.
These innovations have made the model more than 92%
accurate in noisy environments under the ISO 13374
standard, providing a highly credible solution for the
field of electrical equipment monitoring.

InfoNCE’s comparative learning mechanism is very
suitable for electrical equipment monitoring. Its
exponential similarity measure can effectively capture
nonlinear changes in the state of the equipment, which is
more stable than the hinge loss function of Triplet Loss,
and the gradient stability is increased by 41.5%.
Moreover, InfoNCE performs well in the case of small
samples. When the sample size is less than 10,000, the
characteristic consistency is still 92%, which is much
higher than Triplet Loss. In the multi-modal fusion
scenario, the joint optimization of InfoNCE and DCN
dynamic  convolution significantly reduces the
cross-modal feature alignment error. This is due to the
fact that its temperature parameter t can dynamically
adjust the characteristic spatial distribution to adapt to
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the multiphysics coupling characteristics of the device,
while Triplet Loss cannot cope with the multi-modal data
distribution offset. Therefore, InfoNCE not only
improves the feature robustness but also speeds up the
computational efficiency, and provides theoretical
support for multi-source heterogeneous data modeling
under complex operating conditions.

The combination of DCN and Transformer leverages
dynamic convolution and global attention mechanisms to
enhance the information entropy of the hybrid
architecture, thereby improving feature robustness and
cross-time step dependency modeling. The integration of
AdaBN plays a crucial role in reducing accuracy
fluctuations during cross-domain testing, demonstrating
its  strong domain  generalization  capabilities.
Furthermore, the dynamic inference mechanism
effectively reduces inference delays when the threshold
value is set at t=0.3. However, this comes at the cost of a
slight decrease in accuracy, indicating that t=0.5
represents the optimal balance between computational
efficiency and model precision.

This study employs mathematical
mechanism analysis to delve into the theoretical
advantages of the hybrid architecture. BiLSTM’s
bidirectional timing modeling enhances characteristic
entropy, significantly improving the analytical power for
unsteady  signals. Meanwhile, the self-attention
mechanism of the Transformer optimizes the complexity
associated with long-sequence modeling, leading to a
marked improvement in training efficiency. Additionally,
DCN’s dynamic convolution enhances the model’s
ability to characterize non-uniform signals by refining
local feature sampling. These theoretical insights provide
robust support for the technical approach adopted in this
research, conclusively demonstrating the method’s
superiority in addressing complex operational scenarios.

modeling and

This study significantly improves the accuracy and
robustness of electrical equipment condition monitoring
by combining deep learning technologies such as CNN,
BiLSTM, and Transformer. However, compared with the
time series prediction method based on multiplication
neurons proposed in recent studies, this method shows
different technical advantages in dynamic time modeling
and feature extraction. In Nigam’s study [37], a hybrid
method combining multiplication neurons and nonlinear
filtering is proposed to simulate terrain contours and
optimize time series prediction performance. This
method significantly improves the model’s ability to
represent nonlinear signals by optimizing the time delay
parameters, especially when processing
multidimensional time series data. In contrast, this
method focuses more on capturing local and global
features under complex working conditions through
dynamic convolutional networks and self-attention
mechanisms, while using domain adaptation technology
to improve the model’s cross-domain generalization
ability. These two methods have their own focuses, but
both emphasize the importance of nonlinear features in
time series modeling, providing complementary



technical paths for future research.
4. Conclusions

This study proposes an efficient electrical equipment
state recognition and monitoring system that combines
multiple deep learning techniques, which significantly
improves the performance under complex working
conditions. The results show that the method performs
well in recognition accuracy (95.37%), detection delay
(3.02ms), and cross-domain adaptability (average
adaptation time 13.82 seconds), far exceeding the
baseline model. Through dynamic convolutional
networks and adaptive batch normalization, the model
has made breakthroughs in non-uniform signal
processing and cross-domain generalization capabilities,
while the number of parameters is reduced to 12.7M,
which is suitable for edge device deployment. However,
in an extremely low temperature environment (<-30°C),
the fault detection rate drops to 89.4%, indicating that the
model’s robustness to extreme conditions still needs to
be optimized. In addition, although the computational
efficiency has been significantly improved, there is still
room for research on model compression technology. In
summary, this study provides an efficient and reliable
solution for electrical equipment state monitoring, which
has important theoretical and practical value. In the
future, multi-device collaborative monitoring technology
can be further explored to enhance practicality.
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