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Abstract. A rough set combined with an ant colony
algorithm is used to extract the non-forced vibration signal
from the measured transmission line galloping
displacement signal, which is used as the risk feature
recognition index. In the real model test, the transmission
line's six split line segment shift time history is measured
across multiple channels to identify the galloping
frequency, vibration mode, and damping ratio of the
transmission line. At the same time, MATLAB simulation
is employed to verify the algorithm's accuracy and
computation time. The results show that the accuracy of
the proposed algorithm in identifying the galloping
frequency, vibration mode, and damping ratio is 98%,
97.6%, and 98.5%, respectively, with calculation times of
16s, 18s, and 17.5s. Therefore, in multi-channel modal
analysis, a rough set combined with the ant colony
algorithm can effectively address the problem of
dangerous feature identification of transmission line
galloping.
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1. Introduction

With the continuous expansion of the construction scale of
transmission networks, the galloping problem of the
transmission line is becoming more and more serious,
threatening the safety of the power grid. Transmission line
galloping causes changes in vibration form, frequency,
motion trajectory, and line damping. How to make an
effective judgment scheme according to the changes of the
above indicators is an urgent problem to be solved [1].

Currently, methods for evaluating transmission line
galloping mainly include numerical simulation, wind
tunnel tests, field tests, and other approaches. Japan, the
United States, and several other countries have established
galloping testing bases, and China in 2010 set up a
comprehensive testing facility in Xinmi City, Henan
Province [2]. How to observe the galloping process of
transmission  lines and analyze the galloping
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characteristics thoroughly remains a key challenge [3].
Domestic researchers tend to rely on single-channel
eigenvalue analysis for transmission line galloping, which
often overlooks the more detailed insights obtainable
through multi-channel comprehensive analysis that
combines numerical simulations, wind tunnel tests, and
field measurements [4]. This leads to less accurate
identification of essential galloping features.

Significant vibrations in multi-line systems often result
from the combined effects of gusts and self-excited
responses. Single-channel mimicry cannot reliably
identify higher-order vibration modes or distinguish
between similar frequency components [5]. Additionally,
such methods have low accuracy in detecting negative
damping effects and struggle to effectively resolve
displacement and acceleration signals [6].

To address these limitations, this paper suggests
integrating Rough Set Theory with the Ant Colony
Optimization (ACO) algorithm. While both methods have
been individually applied to signal processing and
optimization problems [7], their combined use remains
relatively unexplored in the context of power line
galloping analysis. The rough set method improves data
integrity by filtering noise and grouping semi-structured
data. Conversely, the ACO is used to optimize feature
identification based on frequency, damping ratio, and
modal parameters. This hybrid approach allows for a more
reliable early warning system and increases the
interpretability of modal interactions across multiple
observation channels.

Compared to traditional ACO-based models [8], the
inclusion of rough sets addresses the common problems of
premature convergence and trapping in local extrema
within search processes. Moreover, unlike fuzzy
logic-based methods or neural models used in vibration
feature recognition [9], the proposed approach offers a
more transparent and controllable framework for
managing both quantitative and qualitative feature sets.

At the same time, threshold, penalty, and weight



constraints are embedded into the model to improve
prediction accuracy and feature clustering. The approach
not only supports higher computation speed and
robustness but also delivers better classification outcomes
in identifying galloping modes across different test
configurations.

2. The -calculation flow and index selection of
transmission line galloping under the multi-channel
state

Modal identification can test the vibration response of the
transmission line by simulating the transmission signal
and environment, and identify the galloping
characteristics combined with the feedback signal.
Multi-channel mode requires a random decrement of data
and calculation of eigenvalues [10]. The non-forced
vibration signal is obtained by random decrement, and the
structural modal parameters are obtained by eigenvalue. In
recent developments, researchers have emphasized the
significance of using adaptive signal decomposition
techniques such as Ensemble Empirical Mode
Decomposition (EEMD) and Wavelet Packet Transform
(WPT) to preprocess multi-channel vibration data. These
methods help isolate relevant signal modes and reduce the
influence of environmental noise more efficiently than
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conventional filtering [11]. By applying adaptive
thresholding to the decomposed components, especially
when embedded within modal analysis pipelines, these
techniques can enhance the clarity of modal
characteristics before feeding into a Hankel matrix-based
singular value decomposition. This is particularly
important when dealing with non-stationary galloping
signals that exhibit time-varying modal content.

In the multi-channel modal analysis, the low-channel filter
should be used to eliminate the high-frequency noise [12],
and the elimination frequency of the filter should be
higher than the structural frequency to avoid the
attenuation of the effective frequency. Based on the above
multi-channel modal analysis, the non-forced vibration
signal is separated, the Hankel matrix is constructed, and
the singular value analysis is carried out to obtain the
optimal control matrix [13], the system matrix and
observation matrix, and the corresponding modal
parameters. The specific analysis process is shown in
Figure 1.

The specific evaluation indicators are obtained based on
the relevant domestic literature and foreign research data,
as shown in Table 1.
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Figure 1. The deal process of transmission line galloping is under multi-channel conditions.

Table 1. Identification index of the galloping hazard of the transmission line.

The Index category Test points The Controllability with other indicators
Modality Single half wave 3 0.23
Double half wave 2 0.77
Three half-waves 1 0.57
Non-forced vibration the frequency 3 0.32
signal Damping ratio 2 0.43
Displacement of the measuring point | 1 0.44
Measuring point trajectory 3 0.32
the direction 2 0.23

Note: the reliability and validity are <0.7.
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3. Construction of transmission line galloping model
under multi-channel mode

A. The rough set processing of line galloping data

In transmission line galloping analysis, the rough set M
method is applied to establish the non-forced vibration
signal, perform simulations, and build related databases.
The rough set technique then preprocesses the data,
filtering it based on structural modal parameters. A
threshold p and weight @ are set according to the

requirements of transmission line galloping [14].
Deviations in test results, denoted as Ax , arise due to
environmental factors, materials, and measurement tools.
The rough set eliminates irrelevant frequencies using the
threshold and weight, avoids local extrema, and enhances
the accuracy of the calculated results.

To manage semi-structured and uncertain data in power
line monitoring, fuzzy logic principles have been
integrated into the preprocessing phase of rough sets.
Fuzzy-rough hybrid models enable smoother transitions
between attribute granules, leading to more robust
decision boundaries for modal identification tasks[15].
This is particularly beneficial when handling directional
attributes, where polarity (+/-) and trajectory
(“extend”/“shorten”) may become inconsistent due to
transient wind conditions or measurement noise. The
hybrid approach improves the rule induction phase and
increases clustering accuracy in hazard characterization.

Genetic algorithm
for galloping data

/

The data in the rough set is discrete, so the clustering
coefficient should be adjusted to enable continuity
analysis. The eigenvalue judgment coefficient A is used
in a rough set to cluster data with a correlation greater
than 0.7, helping to further simplify the rapidly changing
data. Since the galloping direction, galloping degree, and
other data components are semi-structured [16], they need
to be standardized. In this paper, attributes are represented
as vectors. The rough set facilitates the organized
arrangement of feature data, improving pre-processing
capabilities. The specific formula is provided below.
Therefore, in this paper, applying a rough set and forming
feature vectors enhances data processing and continuity
analysis, with the results shown in Formula (1).

M {x, %y, %, } =Z;1:]pxi +ox,_, —Ax (1)

B.  The ant colony algorithm analysis of galloping data

When the galloping situation of the transmission line is
complex, the ant colony algorithm should be used for
comprehensive analysis. Although the ant colony
algorithm can analyze the line galloping data gradually, it
cannot perform the analysis of a large amount of data. A
rough set can cluster a large amount of data, reduce the
overall number of initial data points [17], and improve the
calculation speed and accuracy. Therefore, a rough set can
improve the ant colony algorithm. The specific
recognition scheme is shown in Figure 2.
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Figure 2. The risk feature identification of transmission line galloping under multi-channel mode.

Figure 2 shows that a rough set should be used to identify
dangerous features of transmission line galloping. Then,
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each identification index should be analyzed with an ant
colony algorithm [18]. Meanwhile, the frequency and



damping should be comprehensively examined, and the
identification results should be output.

C. The galloping hazard feature recognition model
based on rough set and ant colony algorithm

Construction of the objective function of line galloping. It
is assumed that the dangerous feature identification target
of galloping is x, i is the number of dangerous features,

J 1s the channel mode, and x; is the dangerous feature

of any transmission line. The calculation results are shown
in Formula (2).

minF,,; =

Zj(p-f<xt'j"xz'j>1)'Sij+¢(yy‘ )) (2)

Where, S.

i

Is the judge effect of the j channel mode,

g( yi/.) is the impact rate of j channel mode on line

galloping, and T is the dangerous feature identification
process of line galloping, the calculation results are shown
in Formula (3).

g(yij ) = 'xiyijz'—] 3)

The galloping state can be classified into types, such as a
stable state (g, ), a single half wave (b,), a double half

wave, and a three-half wave. Classification is performed
by comparing observed characteristics derived from the
multi-channel analysis against thresholds and patterns

defined by industry standards (B,) and refined by

adjustment coefficients (C,

i

) to account for specific line

properties and environmental factors.

H(yi/'):HZiTleb, "G (4)

Among them, the galloping judgment standard is the
industry standard, which is represented by B, . According

to the adjustment coefficient of the line, the whole data of
the line is obtained, and the adjustment coefficient is
generally less than 0.3, and the constraint standard is
improved. At the same time, the upper limit and the lower
limit of the constraint are set. The specific calculation is
shown in Formula (5)

Z(X>H)=S$'Z:in:o%'f[xy (l_xij*l)j| ®)
min (X,

Among them, the maximum value judgment function of
galloping amplitude is max(X ,H ) , the minimum value

judgment function is min(X JH ) , the optimal constraint

function is f[x,./.(l—x..

el )J , and the constraint condition

adjustment function is S, .
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D. The construction of hazard feature identification
matrix under multi-channel mode

The efforts of a rough set on the algorithm mainly focus
on three areas: improving the standard data, changing the
direction of the data, and optimizing the data matrix.
Therefore, the primary changes of a rough set are twofold:
standardizing the data and optimizing the number matrix,
as shown in Formula (6).

’.1 . x," ryi'
20|20
S e

The joint matrix of galloping amplitude x, and the

X, H,=U.U

galloping frequency is y, , and Ujjzl o H,
represents the adjustment coefficient of the matrix |E| ,
which is mainly the numerical change of the adjustment
X., H,.

g

[jﬂ

Assuming that the abnormal galloping data changes sound,
the abnormal data set / should be constructed as shown
in Formula (7).

v :{1’...\)”,‘,'2...‘,0_} (7)

The abnormal data set 7 is constructed to form a
corresponding matrix u , and its calculation process is
shown in Formula (8).

®)

i i

After determining the control relationship u; between

the data, the rough set function should be calculated, as
shown in Formula (9).

minF(u. Vv,

i Vi

):a'z,':lﬁ'zjzluz; (xij _Vi) )

Where, 7

H,, . The calculation of v, Frequency variation Center as

is the degree of control between X, and

i

shown in formula (10).

X..
J a-

(xi/ _Vf)

Relationship between dangerous eigenvalues of galloping
on different lines as shown in formula (11).

V.

TS . Y (x,-v,) (10)
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Weight assignment should be carried out for abnormal
galloping amplitude values to form a galloping data list
until all data analysis is finished. Matrix construction is
carried out to ensure that the judgment results conform to
abnormal values, and it is combined with weights to form
the output of comprehensive judgment. For the galloping
of the same line, continuous monitoring should be carried
out to form corresponding data sets, and the optimal data
content X and the optimal frequency H should be
output. The abnormal data that meets the evaluation
criteria should be selected to complete the data judgment.
If there is no abnormal data, it means that there is no
abnormal value in galloping, and normal monitoring can
be carried out. Therefore, each transmission line will form
a fixed abnormal data set, giving -corresponding
weights w, =1/n, , and compare the data sets to complete

(11

i
1
Z[-l|:Ax__ —.

ij i

the analysis of the whole regional power grid and
establish the data set of the power grid D ={X} Cut-off

constraint is / , then any cut-off constraintin X is u;,
u, ={X,xH,} . The control between the cut-off constraint

and the Actual hazard judgment is shown in formula (12).

Zp >elnlFl,]

12
() = t¢ (12

The galloping warning calculation of any line is shown in
Formula (13).

o(X,H)=r,(H)-Ar,(H) (13)

The calculation process of weight assignment between
different lines is shown in Formula (14).

H)[>,0 ) (14)

Among these weights, the weight associated with
galloping amplitude is mainly used to identify the
characteristics across different line amplitude values.
Continuous monitoring of the same line involves forming

data sets over time, identifying the optimal features (X )
and frequency parameters (H ) for analysis. Data points

meeting evaluation criteria (potentially involving
thresholds related to the constraint setting in Formula 5)
are selected for hazard judgment. If no abnormal data is
detected, regular monitoring continues. Each transmission
line develops a set of detected "abnormal" data and
corresponding weights, allowing for a comprehensive
analysis across the regional power grid.
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To further refine the output judgment mechanism, the
model can incorporate reinforcement learning techniques
where weight adjustments are dynamically updated based
on reward functions derived from system accuracy or
alarm performance. For example, recent studies have
shown the benefits of using Deep Q-Networks (DQN) in
online power system monitoring to adaptively reconfigure
sensor weighting schemes and threshold limits in real time
[19]. This feedback-driven approach ensures that the
galloping identification model stays adaptive and
responsive to emerging fault patterns or environmental
changes, reducing false positives and improving real-time
warning accuracy.

E. The actual hazard judgment results output of the
genetic algorithm matrix

The integrated RS+ACO model produces the final hazard
judgment results. This involves synthesizing the
information obtained from the RS-processed data, the

ACO's optimization of feature combinations, and the
calculated warning indices and weights. The process
requires constraining the analysis to the relevant

monitoring data, comparing data across different lines,
and integrating additional factors like voltage, current, and
power flow to provide a comprehensive risk assessment.
Assuming that the normalized values of different factors
are Kk, the calculation is shown in Formula (15).

H(y,), =n[1,2Z:

A,+B, +C,

—1“"ai

(15)

The normalized values of different factors (k) are

calculated and combined with the identified hazard
characteristics. This combination involves standard values

(4,.B,.C.,)

ai ®

representing different states, processed

values (v,) , and specific constraints or iterations (k) .

The rough set ensures data continuity before this final
combination step, preparing the data for clustering or
direct output. The final early warning indicator ( XH, , as

attempted to be represented in Formula 16) is calculated
by combining the various elements processed by RS and
ACO, including judge effects (S, ), weights (,), feature

values ( x; ), and reference values based on standards and

coefficients, taking into account different cut-off

constraints ( H, ).

F. Different cut-off constraints have different effects
on dangerous eigenvalues

For the shortcomings of risk factors in transmission line
galloping, multi-channel simulation and rough value
filling should be carried out to complete the whole early
warning analysis, and the specific calculation is shown in
Formula (16).
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(16)

where, H,
Iteration coefficient.

is a different cut-off constraint and A is the

The calculation steps of the Actual hazard judgment
results. The specific steps are as follows:

Stepl. Construct a rough set of the impact of such
exercise on dangerous eigenvalues, and form

X:{xn,xm--- x.} and Hz{h”,h]z,--- h} sets.

at )

Step2. The dataset is constrained. The Frequency variation
Center V of the data is calculated, the weights of Cut off
constraint and the dangerous eigenvalues are obtained,
and the iterative operation is carried out. If the calculation
results X and H are greater than max{} [20], the
results shall be included in the -calculation results;
otherwise, they shall be eliminated. If the calculation
result is less than min{}, the result shall be included in the
calculation result.

Step3. When all the Hazard characteristic index H ( Yy )k

are traversed, output X, , otherwise, repeat step 2.

4. The cases of dangerous characteristics identification
of transmission line galloping

A. The research data of dangerous characteristics

The data of 8 characteristic identification indicators in
Table 1 are collected as samples in the real transmission
line comprehensive test base, and they are analyzed using
MATLAB software. The testbed consisted of a scaled

transmission line segment. This segment was a supported
beam with dimensions approximately 6.5 cm in length, 6
cm in width, and 0.8 c¢cm in thickness, made of material
selected to simulate the scaled mechanical properties of a
conductor bundle. Key material properties included an

elastic modulus of 2.10x10° Pa, Poisson's ratio of 0.29,
and a density of 7.92x107° Kg/m®.

The test setup used controlled excitation methods to
generate vibrations that mimic wind-induced galloping
and self-excited oscillations. This involved both applying
controlled forces and base excitation. A signal generator
produced excitation signals, including white noise, to
replicate the random nature of turbulent wind. The
vibration exciter, which applied forces to the line segment,
was mechanically isolated from the test frame to reduce
external vibrations and ensure measurements reflected
only the response of the line segment itself.

Piezoelectric sensors were strategically placed along the
line segment (six split line segments, as mentioned in the
abstract) to enable multi-channel measurement of
displacement and acceleration signals. Data collection was
conducted at a sampling rate of 20 kHz, which is
sufficient to capture the dynamics of the induced
vibrations.

The measurements captured the transmission line's
response under controlled excitation, providing data on
displacement, frequency, damping ratio, and mode shape
characteristics. While conducted under controlled lab
conditions, the experimental setup inherently involved
some level of noise from sensors and the mechanical
system. The white noise excitation introduced a controlled
form of variability. The multi-channel measurements
allowed for the observation of spatial variations in
vibration along the line, which is crucial for identifying
different modal states. The data collected over 8 hours,
partitioned into 1-hour segments for analysis, are
summarized in Table 2.

Table 2. The judge's content of the test.

Identification index 1~2h 2~3h 3~4h 4~5h 5~6h 6~7h 7~8h
The frequency 300 303 292 302 309 310 299
Damping ratio (%) 243 26.2 28.4 26.4 272 28.4 27.4
Displacement of measuring point (cm) 32.8 34.1 31.4 33.8 32 33.2 343
Measuring point trajectory (Lengthen and shorten) extend | shorten | extend shorten | extend | extend | extend
the direction (+-) + + + + + + +

B. The Accuracy of Hazard Feature Identification
under Multi-channel Mode

Accuracy is essential for identifying the dangerous traits
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of transmission line galloping. Combining the rough set
with the ant colony algorithm enhances the local search
strategy and improves the accuracy of the calculation
results. The specific evaluation outcomes are shown in
Figure 3.
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Figure 3. The judge's accuracy of dangerous eigenvalues.

The analysis results above indicate that the algorithm
proposed in this paper has high accuracy and stability for
detecting the danger of galloping lines, suggesting that the
calculation method for the galloping line is sound.
Additionally, regarding numerical fluctuations, the
algorithm demonstrates low volatility, supporting early
warning for galloping. Overall, this paper concludes that
the algorithm is reliable and precise, capable of supporting
the detection of amplitude galloping in transmission lines
and improving danger prediction. The enhanced
performance and stability are mainly due to the
effectiveness of the rough set in pre-processing raw data,
improving data continuity, and structuring inputs for the
ACO algorithm.

The change of the dance amplitude of the previous
algorithm fluctuates wildly, mainly due to the lack of
continuity of the wvalues. Still, the rough set of the

algorithm proposed in this paper can better carry out
numerical simulation and calculation and improve the
stability of the calculation results [21].

C. The Index Analysis of Transmission Line under
Multi-channel Mode

Taking frequency and damping rate as the primary
indicators, it is found that the accuracy of different
indicators exceeds 95%, and their variation remains
relatively stable. This is because rough set pre-processes
transmission line galloping data and enhances initial data
processing capabilities. The system matrix, structure
matrix, and observation matrix built using rough set
methods can eliminate redundant data, maintain stability
during calculations, and improve the accuracy of results.
The findings are shown in Figure 4.
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Figure 4. The actual hazard judgment results.
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As can be seen from Figure 4, the change of different the aggregation degree of indicators is improved, and the
hazard feature identification indicators is stable without optimization of the evaluation of different indicators is
significant change. This shows that the rough set has realized.

better pre-processing of feature identification indicators,

Table 3.The judge's time of test(seconds).

Identification index Single half wave Double half wave Three half-waves
The rough set combined ant colony | the frequency 16.2 18.3 17.6
algorithm Damping ratio 16.1 17.9 17.2
Vibration 16.4 18.1 17.8
The ant colony algorithm the frequency 13.1 15.2 11.2
Damping ratio 13.5 15.1 11.5
Vibration 13.2 153 11.4
Differences in the comparison of results (p) 0.024 0.025 0.015
As can be seen from Table 3, there are significant the data processing capacity. At the same time, the
differences in the dance frequency and vibration of the galloping results of the transmission line were compared
two methods (p=0.024, 0.025, and 0.015). The method for early warning and simulation tests, and the specific
proposed in this paper is shorter in terms of test time, results are as follows.

mainly because it can pre-process the data and improve
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Figure 5. The test results of different methods of line dance
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As shown in Figure 5a and 5b, the proposed algorithm
performs well in testing for line dance and detects two
galloping transmission lines. In comparison, the ant
colony algorithm fails to identify the galloping lines.
Additionally, the recognition performance of the proposed
algorithm is superior.

D. The Amplitude Between Different Indicators

The amplitude of vibration serves as a key indicator of

galloping severity. Its precise identification, obtained from
the multi-channel non-forced vibration signal after
filtering, is essential for a thorough hazard analysis.
Amplitude measurement accurately captures the combined
effects of factors such as environmental conditions,
measurement noise, and the complex interactions of
modal responses. Typically, higher amplitude values
indicate a greater risk. Figure 6 shows a comparison of the
vibration amplitude over time calculated with the
standalone ACO algorithm versus a simulated response.

Simulated Response Comparison
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In Figure 6, it can be seen that the fit of the calculation
results in this paper is better and shows an upward trend.
This indicates that the algorithm proposed here can more
accurately match the multi-dimensional line amplitude
and produce the overall calculation results. The fit of
previous algorithms is poor, fluctuating up and down,
which suggests a lack of adjustment signals, especially
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constraints, during the fitting process. Therefore, the fit
value demonstrates that the calculations in this paper are
reasonable, produce better results, and maintain accuracy.
The process of calculating the fit value shows that this
algorithm performs better, highlighting the important role
of weight and constraint conditions in maintaining the
rationality of the fit, as shown in Figure 7.
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Figure 7. The controllability of the dangerous eigenvalue regimen and different indices of the dangerous eigenvalue.
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As shown in Figure 7, the five indicators have improved
amplitude control. The combination of rough set and ant
colony algorithm achieves better amplitude because of the
combined results of threshold, weight, and system matrix.

5. Conclusions

This paper proposes a joint algorithm combining rough set
and ant colony methods to address the problem of
inaccurate identification of dangerous characteristics in
transmission line galloping. The algorithm analyzes the
identification of damping, frequency, and other indices.
Simultaneously, thresholds, weights, and other constraints
are set to prevent local extremum issues during calculation.
MATLAB simulation results demonstrate that the
proposed algorithm achieves 98%, 97.6%, and 98.5%
accuracy in judging galloping frequency, vibration mode,
and damping ratio, respectively. The calculation times are
16s, 18s, and 17.5s, respectively, indicating the method's
effectiveness. This improvement is due to the clustering
process of the rough set, the practical constraints imposed
by thresholds and weights, and the elimination of
redundant data from the structure, control, and
observation matrices. The simulation also shows that the
hazard feature recognition model developed can perform
multi-channel modal analysis, with results surpassing
those of a single ant colony algorithm and offering higher
accuracy.

The improved performance results from several factors:
The rough set effectively handles data inconsistencies,
noise, and redundancy through filtering, clustering, and
standardization, providing a clean and organized input for
ACO. Enhanced Optimization: The data space enables
ACO to perform a more efficient and accurate search for
the best feature combinations indicating danger. Robust
Framework: Using constraints based on industry standards
and adjustment coefficients, along with matrices derived
from processed modal parameters, ensures stability and
reliability in the calculation process.

While the proposed method shows notable improvements,
there are areas for future work: Individual Index Analysis:
The current work concentrates on the combined effect of
indicators. Future research should involve more detailed
differentiation analysis of how each specific risk
characteristic index (e.g., frequency deviation versus
damping change) influences the overall hazard assessment.
Experimental Details and Robustness: Although
experimental data was utilized, providing a more detailed
discussion of noise levels, sensor errors, and their effects
on the algorithm—potentially including reporting mean
accuracy and standard deviation over multiple runs or
testing under varying simulated noise levels—would
enhance the experimental validation. Comparing against
additional baseline methods (e.g., classical modal analysis
techniques) under challenging scenarios would also add
value. Integration with Monitoring Systems: Future efforts
could focus on integrating this hazard identification
method with existing SCADA systems or digital twin
models of the transmission network for continuous,
automated monitoring and early warning. This would
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involve defining the data pipeline from sensors to the
algorithm and incorporating the outputs into a power grid
management system.
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Appendix A
Table A: Key Variables and Their Significance
Variable Significance
X; Value of dangerous feature i for channel/line ;.
Vi Galloping characteristic data (e.g., frequency, damping) for channel/line ;.
Sl.j The "judge effect” or contribution score of channel j to feature i .
¢( y)“ The "impact rate" or weight of channel j 's characteristics on the overall galloping state.
ij
B, Reference value based on industry standards.
C, Adjustment coefficient for feature 7.
X Overall dangerous feature identification target/metric.
H A set of hazardous characteristics or parameters.
u; Element of the matrix u# representing relationships or processed data.
v, Frequency variation center for feature i .
Degree of control or relationship strength.
0'( X, H) Calculated galloping warning index based on features X and hazard levels H .
W, Weight assigned to line or feature i .
A The clustering coefficient is used in Rough Set processing.
PsW Threshold and weight parameters used in Rough Set filtering.
Vi Maximum amplitude value (or other relevant reference value).
H, A specific cut-off constraint.
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