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Abstract. This study applies the DDPG (Deep
Deterministic Policy Gradient) algorithm to optimize the
dynamic frequency response of PV (photovoltaic)- ES
grid- connected systems under high- dimensional
continuous control. A high-fidelity model incorporating
PV output, ES SOC (State of Charge), and frequency
dynamics was developed from operational data. An
actor- critic architecture with target networks and
experience replay trains the control strategy for precise
ES charging/discharging. Compared to PID
(Proportional- Integral-Derivative), fuzzy control, DQN
(Deep Q-Network), and PPO (Proximal Policy
Optimization), DDPG reduces maximum frequency
deviation to 0.45 Hz, lowers average oscillation
amplitude to 0.52 Hz, delivers a 7.1 s response, and
achieves 85% charging/discharging efficiency and 75%
ES utilization, extending SOC safe- range duration.
DDPG enhances system stability and offers a
cost- effective solution for new- energy frequency
regulation.
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1. Introduction

Against the backdrop of the global energy transition and
the deepening of the low-carbon economy, the
large-scale grid connection of renewable energy [1,2] has
become an inevitable trend in the development of the
power system. PV power generation [3,4] has been
rapidly promoted due to its advantages of being clean,
environmentally friendly and renewable, but its output
power fluctuates significantly due to natural conditions
such as weather and sunshine, posing a severe challenge
to the stability of the power grid (PG) frequency. ES
(energy storage) systems [5,6], as an important
supplement to PV fluctuation regulation, can not only
smooth PV output, but also achieve rapid frequency

response, thereby ensuring the safe operation of the PG.
Traditional frequency regulation methods often fail to
meet the requirements due to insufficient response speed
and regulation accuracy when facing high-frequency
fluctuations and instantaneous load changes [7,8].
Therefore, exploring new intelligent control technologies
has an important theoretical and practical significance.

In the current power system, PV power generation [9,10]
has a random and volatile output, which leads to
intensified grid frequency fluctuations, obvious
frequency deviations and oscillations, and puts
tremendous pressure on grid stability. Traditional PID
control [11] or fuzzy control methods have problems
such as insufficient response and inaccurate regulation
when dealing with high dynamic changes, making it
difficult to give full play to the frequency regulation
advantages of ES systems. The various physical and
economic constraints in the system, including ES power
limitation, SOC management, grid-connected inverter
capacity [12], and power slope, further increase the
difficulty of regulation. Therefore, achieving fine
regulation, rapid response, and efficient energy balance
of the PV-ES grid-connected system under multiple
constraints has become a key issue that needs to be
solved urgently. As an important branch of deep
reinforcement learning, the DDPG algorithm [13,14]
provides a new idea for dynamic frequency response
control with its excellent decision-making optimization
ability in high-dimensional continuous action space. The
DDPG algorithm can effectively suppress frequency
deviation and oscillation under the premise of satisfying
multiple physical and economic constraints, thus
providing theoretical support and practical reference for
the grid-connected control of new energy.

This paper applies the DDPG algorithm into the dynamic
frequency response optimization of the PV-ES
grid-connected system, and systematically constructs a
frequency regulation control model that takes into
account multiple constraints. In view of the volatility of
PV output and the physical limitations of the ES system,
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a comprehensive mathematical model including
frequency regulation power balance, full response, ES
power and SOC, inverter power limit and power slope
constraints is constructed, which truly reflects the actual
operation of the new energy grid-connected process. By
designing an intelligent control strategy based on DDPG
and through the careful construction of state, action and
reward functions, the algorithm can converge quickly in
a high-dimensional continuous control environment and
achieve precise suppression of frequency deviation and
oscillation. This paper uses the actual data of a province
in northwest China as the background, uses
high-frequency historical data and day-ahead forecast
data to conduct simulation experiments, compares and
analyzes traditional control methods and other
reinforcement learning methods, and verifies the
effectiveness and robustness of the proposed method in
practical applications. The research results of this paper
provide a new technical path for large-scale
grid-connected frequency regulation of new energy,
filling the research gap in the field of dynamic frequency
regulation optimization under complex constraints.

This paper has a clear organizational structure and is
divided into seven sections. Section 1: Introduction
explains the frequency regulation challenges of
photovoltaic-energy storage grid-connected systems and
the shortcomings of traditional methods, and proposes
the research value of the DDPG algorithm. Section 2:
Related Works reviews the progress of traditional
frequency regulation technologies and reinforcement
learning, and points out the limitations of existing
research. Section 3: PV-Energy Storage Grid-Connected
System builds the system’s physical architecture and
mathematical model, covering photovoltaic output,
energy storage SOC, inverter behavior, and grid
frequency dynamic response. Section 4: DDPG
Optimization details the design of the algorithm
architecture, reward function, and constraint embedding
mechanism, and explains the training process and
strategy optimization method. Section 5: Example
Simulation constructs a simulation environment based on
real-world data to compare the performance metrics of
DDPG and traditional methods. Section 6: Results and
Analysis verifies the advantages of the algorithm from
multiple dimensions, including frequency deviation,
oscillation, response time, energy storage efficiency, and
SOC management. Section 7: Conclusions summarizes
the findings and outlines future directions for
optimization. The full paper systematically demonstrates
the efficiency and feasibility of DDPG in dynamic
frequency regulation through theoretical modeling,
algorithm innovation, and experimental verification.

2. Related Works

Traditional frequency regulation methods mainly rely on
classical control technologies such as PID control [15],
fuzzy control [16] and robust control, which can achieve
basic frequency regulation under a single working
condition. When faced with intermittent and volatile
renewable energy such as PV power generation [17,18],

traditional control strategies often fail to meet the
instantaneous response requirements of the PG, and there
are problems such as response delay and inaccurate
regulation amplitude. To meet the above challenges,
advanced methods such as model predictive control,
optimization algorithm and adaptive control have been
proposed to achieve precise control of frequency
regulation while ensuring safe operation of the PG. In
addition, as an important supplement to smoothing PV
output and alleviating grid fluctuations, the role of ES
systems [19,20] in dynamic frequency response has
gradually been valued. By establishing a joint
mathematical model of PVs, ES and loads, this paper
explores how to achieve system power balance and
frequency stability under multiple constraints. Through
in-depth analysis of the ES charging and discharging
process [21,22], SOC management, and grid-connected
inverter characteristics, the influence of various
constraints on frequency response performance is
revealed. Although existing research has achieved certain
results in theoretical modeling and control algorithms,
most of them rely on traditional optimization methods,
which makes it difficult to take into account response
speed, regulation accuracy, and multiple operating
constraints at the same time, limiting its application
effect under complex working conditions. This provides
a theoretical basis and research space for the further
introduction of new intelligent control strategies,
prompting the academic community to begin to focus on
using deep learning and reinforcement learning methods
to improve traditional frequency regulation strategies,
and strive to achieve fast and precise dynamic regulation
while meeting system safety and economic requirements.

With the rapid development of artificial intelligence and
deep learning technologies, the application of deep
reinforcement learning methods [23,24] in the field of
power system control has gradually emerged and has
become an important means to solve the shortcomings of
traditional control methods. In particular, DDPG [25,26]
has attracted more and more attention from scholars due
to its outstanding performance in continuous action space.
When dealing with high-dimensional, multi-constrained
problems, DDPG [27,28] can directly output continuous
control quantities by constructing an actor-critic network
structure to achieve precise regulation of the charging
and discharging process of the ES system, thereby
reducing grid frequency deviation and oscillation. In
terms of microgrid dispatching, energy management, and
frequency control, the DDPG method [29,30] has shown
significant advantages. Its rapid response and online
learning capabilities provide an effective solution to the
uncertainty brought about by the access of new energy.
In view of the physical constraints and economic
indicators of the system, scholars have gradually
explored embedding multiple constraints into the reward
function design to achieve real-time monitoring and
optimization control of key parameters such as ES SOC,
charging and discharging power, inverter capacity
[31,32], and power slope [33,34]. Current research
mainly focuses on optimization under a single control
objective or simplified constraints, and has not fully
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considered the comprehensive impact of various
constraints in actual system operation. Therefore, under
strict physical and economic constraints, using the
DDPG algorithm to achieve high-precision, fast-response
dynamic frequency regulation is still a difficult problem
that needs to be solved.

3. PV-ES Grid-Connected System

A. PV-ES Grid-Connected Power Generation

The PV-ES grid-connected power generation system
plays multiple roles in the power system. It not only
promotes the high-proportion access of new energy, but

also improves the frequency regulation capability and
operational reliability of the system. Through the
effective regulation of PV output fluctuations by the ES
system, the system can quickly absorb or release
electrical energy, smooth out grid frequency fluctuations,
and ensure that the system remains stable under load
changes and power generation fluctuations. In addition,
its intelligent control mechanism enables efficient
coordination of energy production, storage and
consumption, optimizes the grid operation structure, and
reduces the demand for backup capacity.

The PV-ES grid-connected power generation system is
shown in Figure 1.

Figure 1. PV-ES grid-connected power generation system.

In the PV-ES grid-connected power generation system,
the superior dispatching agency plays an important role
in overall planning and decision-making, and is
responsible for formulating the overall operation plan
and emergency dispatching strategy. The data monitoring
system can collect the operating status, environmental
parameters and power output information of PV power
stations and ES power stations in real time, providing
accurate data support for subsequent coordinated control.
The coordination control module analyzes and
comprehensively judges the collected data in real time
according to the preset plan code, coordinates the energy
flow between the subsystems, adjusts the output of the
grid-connected inverter through optimization instructions,
and realizes efficient connection and energy exchange
with the PG. PV power stations use advanced PV
modules to convert solar energy into direct current,
which is then connected to the PG after conversion by
the inverter. ES power stations store and release electric
energy through high-efficiency battery packs, balance
load fluctuations, and ensure the stability of the grid
frequency. The various components work together to
form an intelligent and integrated energy management

system, providing technical support and security for the
high-proportion access of new energy.

B. Mathematical Model Establishment

The output power of PV modules is affected by
environmental factors such as irradiance and temperature.
Its basic output power model is described as:

      PV PV,ref ref
ref

1
I t

P t P T t T
I

       (1)

 PVP t is the actual output power of the photovoltaic
module at time t . PV,refP is the nominal output power

under reference conditions.  I t is the actual solar
irradiance at time t . refI is the reference irradiance.
 is the temperature coefficient, which reflects the
effect of temperature change on the output power.  T t
is the actual temperature of the module at time t .
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The mathematical model of the ES system is mainly used
to describe the charging and discharging process and the
evolution of the energy state. Its basic form is:

   
   

  
dis

ch ch
dis

self
rated

P t
P t

SOC t t SOC t t D SOC t
E





      (2)

The self-discharge characteristics are described by the
function   selfD SOC t , considering the constant
proportional decay:

    selfD SOC t SOC t  (3)

In formula 3,  is the self-discharge rate.

The inverter converts DC (direct current) power into AC
(alternating current) power, and its conversion efficiency
is expressed as:

   AC inv DCP t P t  (4)

In Formula 4, inv is the inverter efficiency.

 AC inv,maxP t P (5)

By satisfying Formula 5, the inverter is prevented from
overloading.

For the grid frequency response model, a differential
equation based on power-frequency characteristics is
used to describe it. The grid has an inertia constant M
and a damping coefficient D, and the grid frequency
dynamic response is:

     
d
d
f t

M D f t P t
t


    (6)

In formula 6,  f t is the frequency deviation, and

 P t is the power regulation of the system at time t ,
which reflects the energy exchange and frequency
regulation relationship between the inverter and the grid,
and provides a dynamic response indicator for
optimizing the control strategy.

4. DDPG Optimization

A. Algorithm Architecture and Reward Function

In the frequency regulation control of PV-ES systems,
since the system state and control variables are
continuous, traditional discrete action space
reinforcement learning algorithms are difficult to apply
directly. This paper adopts the DDPG algorithm, which
can achieve efficient policy optimization in continuous
action space.

The DDPG optimization process is shown in Figure 2.

Figure 2. DDPG optimization process.
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The target network in DDPG is a soft-updated delayed
copy of the actor and critic. The target network is used in
DDPG to generate the target Q value, which acts on the
loss target of the critic. Through soft updates, it helps
reduce the correlation and non-stationarity between the
actor and the critic. The stabilizing effect of the target
network is reflected in: by smoothing changes and
decoupling the target from the rapidly changing online
network, the divergence of the model is slowed down.
This can greatly improve the stability and convergence of
the model.

In the DDPG algorithm, the target network is a delayed
copy of the online Actor and Critic networks, called the
target Actor and the target Critic, respectively. They only
gradually synchronize the online network parameters
with a small soft update coefficient τ after each training,
rather than completely copying them, so as to provide a
relatively stable Q target value in the Critic loss
calculation. Specifically, the target Critic calculates
Q_target in combination with the action output of the
target Actor in the next state, and optimizes the mean
square error with the current Critic estimate. This
delayed update mechanism effectively reduces the
non-stationarity of the target value and reduces the
training variance, thereby improving the convergence
and stability of the algorithm.

In the DDPG algorithm architecture used in this study,
the Actor network uses a three-layer fully connected
layer structure (256-256-128 neurons), the hidden layer
uses the ReLU activation function to enhance the
nonlinear expression ability, and the output layer uses the
Tanh function to map the action to [-1,1] and linearly
scale it to the charge and discharge power range; the
Critic network uses a dual-input branch structure (state
input 256-128-64, action input 64-32), and after splicing,
it outputs the Q value through two layers of fully
connected layers (128-64), all using ReLU activation.
The network is initialized using the He normal
distribution, the optimizer uses Adam (Actor learning
rate 0.0001, Critic learning rate 0.001), and the target
network synchronizes parameters through soft updates
(  =0.001). Batch normalization is used to process state
input during training, and Ornstein-Uhlenbeck noise
(  =0.15,  =0.2) is added to the Actor output layer to
improve exploration efficiency. The experience replay
buffer capacity is set to 1e6, and the batch sampling size
is 64, which fully implements the continuous control
mechanism of the deep deterministic policy gradient
algorithm.

The goal of the Critic network is to minimize the MSE
(Mean Squared Error) loss function, and the update rule
is:

      2, , ,
,Q Q

s a r s D
L Q s a y 

    
 (7)

The target value y is given by the Bellman equation:

  , Qy r Q s s          (8)

In Formula 8,  is a discount factor used to balance
short-term and long-term rewards.

The Actor network optimizes the policy by maximizing
the value estimated by the Critic network:

     , Q
s D a a s

J Q s a s 


  

  


 
    

 
 (9)

The policy parameter  is updated through gradient
ascent, so that the policy action a in state s can obtain
a higher Q value.

To prevent instability during the strategy update process,
DDPG uses a target network to stabilize training. The
target network parameters are soft updated:

 1Q Q Q       (10)

 1         (11)

In the PV-ES joint frequency regulation system, the key
to reinforcement learning is to reasonably design the
state, action and reward function so that the agent can
learn an effective regulation strategy.

The system state needs to be able to fully reflect the
dynamic characteristics of the PG, including: grid
frequency, PV output, SOC of the ES system, and
historical frequency deviation. The state variable is
expressed as:

     PV, , , 1 , 2 ,t t ts f P t SOC f t f t       (12)

The actions of the agent represent the charging and
discharging power of the ES system, satisfying the
physical constraints of the equipment:

min maxtP a P  (13)

In formula 13, minP and maxP are the maximum
discharge capacity and maximum charging power,
respectively.

In the output layer of the Actor network, the Tanh
activation function is used to normalize the action output
to [-1,1] and map it to the charging and discharging
power range through linear transformation:
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  max min
min tanh

2t t
P P

a P s  


   (14)

The design of the reward function balances two aspects:
reducing frequency deviation and reducing oscillation to
ensure that the ES system operates within a safe range.
The basic reward item can be designed as the negative
sum of squared frequency deviations, with the formula:

 2t tr f   (15)

reft tf f f   (16)

In formula 16, reff is the rated frequency.

To reduce oscillation, an oscillation amplitude penalty
term is added:

 2 1t t t tr f f f        (17)

In Formula 17,  is a weight coefficient used to adjust
the impact of the oscillation penalty term.

The final reward function is expressed as:

   2
1 ,t t t t t tr f f f s a           (18)

 ,t ts a is a constraint penalty term.

B. Constraints and Training Process

In the intelligent frequency modulation control based on
DDPG, multiple constraints are comprehensively
considered to ensure the response performance and
operation safety of the system. The following constraints
are embedded in the reward function so that the agent
can take into account the steady-state and dynamic
characteristics of the system during the optimization
process.

Constraints on the balance of power involved in
frequency modulation:

demand1

N
ii
P P


   (19)

In formula 19, iP represents the power change of the
i-th frequency modulation device. demandP is the power
demand caused by load change.

Frequency modulation resources should be able to
provide the required response capability within the
specified time to ensure the frequency stability of the

system:

response limitT T (20)

In formula 20, responseT is the resource response time,
and limitT is the specified maximum allowable response
time.

The charging and discharging power of the ES system is
subject to the maximum power limit:

ch dis
max storage maxP P P   (21)

The state of charge of the ES system must be kept within
a reasonable range:

min maxtSOC SOC SOC  (22)

The output power of the inverter is limited by the rated
power, and the actual output power of the inverter is less
than the rated power. In order to avoid excessive power
mutations affecting system stability, the power change
rate is limited:

max
d
d
P R
t
 (23)

In formula 23, d
d
P
t

is the power change rate, and maxR

is the maximum allowable power change rate.

The ultimate goal of the frequency modulation system is
to maintain the system frequency within the allowable
range, and the frequency deviation should be minimized:

limitf f  (24)

The power of the PV system is affected by weather and
equipment conditions. Consider the maximum output
power limit:

max
PV PVP P (25)

In order to improve the stability of training, an
experience replay buffer is established to store historical
interaction data to break the impact of data correlation on
training and improve sampling efficiency.

In the model optimization phase, the training process
randomly samples a batch of data from the experience
replay buffer and uses the Critic network to calculate the
value estimate of the current policy. In order to make the
Critic network's value assessment of the environment
more accurate, the training process continuously
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minimizes the temporal difference error and adjusts the
parameters of the Critic network to make its estimated
value closer to the actual reward value.

In order to ensure the convergence and stability of the
algorithm, the DDPG algorithm uses a target network
mechanism. The target network is a copy of the Actor
network and the Critic network, but its parameter update
speed is slow and is updated using the exponential
sliding average method. This approach is used to prevent
instability caused by rapid changes in strategies during
training and improve the training efficiency and
convergence of the algorithm.

5. Example Simulation

A. Basic Data

This paper selects a PV-ES grid-connected system
actually operated in a province in northwest China as the
research object, and uses the actual PV output data and
day-ahead forecast data of the region for 10 consecutive

days to build a simulation environment. In the
calculation example, the installed capacity of the PV
power station is 90MW, and the real-time frequency data
of the system is directly obtained from the website of the
British Elexon company [35] to ensure the authority and
timeliness of the data source. Through multi-source data
fusion, the regional climate, irradiance fluctuations and
the response characteristics of the ES system are fully
considered, and the dynamic frequency regulation
performance of the system under the condition of high
proportion of PV access is deeply analyzed.

The data in this article are derived from the actual
operation data of the photovoltaic-energy storage system
in a province in northwest China and the public
frequency data of the UK Elexon power grid. After
cleaning, a simulation environment is constructed. The
parameter settings are in line with engineering practice
and physical constraints to ensure the non-sensitivity,
legality and public availability of the data.

The calculation example parameters are shown in Table 1.

Table 1. Example parameters.

Parameter Value Parameters Value

Data duration 10 days Day-ahead forecast lead time 24 hours
Time interval 1min ES discharge efficiency 80%
ES lifespan 18 years Inverter efficiency 96%
ES charging efficiency 82% ES maximum discharge power 45MW
Capacity cost 4805 yuan/MWh ES minimum SOC 20%
Self discharge rate 0.03% ES rated energy capacity 150MWh
PV installed capacity 90MW Maximum power slope 0.5MW/min
Accuracy of irradiance
measurement ±5% Ambient operating

temperature range -10℃ ~ 50℃

The collected historical output data and frequency data
are fully cleaned to ensure the quality and reliability of
the input data. In view of the missing value problem in
the original data, the mean filling method is used to
reasonably fill it in to ensure data continuity. For the
detected outliers, such as data points with sudden
changes or excessive noise, Z-Score analysis is used to
eliminate or correct them to avoid model deviation
caused by abnormal data. The data from different data
sources are converted into a unified format and
time-aligned to eliminate the inconsistency between data
collection and ensure that the simulation platform has
high accuracy and reliability when simulating the actual
system operation status.

In this study, mean filling was used to handle missing
values in the data preprocessing stage, and abnormal data
points were removed based on the Z-Score method
(threshold ±3). Comparing the data distribution before
and after cleaning, the original PV output power data
showed a right-skewed distribution (skewness = 1.82),
and the skewness was reduced to 1.05 after mean filling,
but it introduced an underestimation of the tail

fluctuation; Z-Score processing reduced the data
standard deviation from 0.23MW to 0.18MW, which
may have filtered out some effective extreme values.

Based on the pre-processed historical data and forecast
data, a mathematical model of the PV module, ES system,
and inverter and grid interface is established to fully
reflect the dynamic characteristics and constraints of
each component in actual operation. The above physical
model is coupled with the model describing the
frequency response characteristics of the PG to form a
complete system simulation framework. The DDPG
algorithm is embedded in this framework, and through
real-time interaction with the simulation environment,
the system status is collected, control actions are
executed, and feedback rewards are obtained to achieve
dynamic optimization of the frequency regulation
process. Through this comprehensive simulation
platform, the effectiveness of the algorithm in
suppressing frequency deviation and oscillation in actual
systems is effectively verified, providing a scientific
basis and optimization strategy for the frequency
regulation control of PV-ES grid-connected systems.
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This study faces hardware limitations in edge
deployment: the memory limit of edge devices (<8GB)
prompts the use of model distillation technology to
compress network parameters to 42% of the original size,
and compresses the inference delay to 18.9ms through
parameter quantization (8-bit fixed-point operation) and
computational graph optimization.

This study implements explicit modeling of
high-dimensional constraints in the DDPG framework by
constraining embedded reward functions and dynamic
weight adjustment mechanisms: the reward function
integrates frequency deviation, oscillation penalty and
SOC safety constraints (  =0.15,  =0.5). Compared
with the dual Q network of TD3 and the maximum
entropy method of SAC, the violation rate of
multi-dimensional physical/economic constraints is
reduced while ensuring policy convergence. Through the
soft update mechanism (  =0.001) and constraint-aware
sampling of experience replay, the constraint satisfaction
rate and control accuracy in high-dimensional continuous
action space are significantly improved.

B. Model Training and Evaluation

During the DDPG model training process, the Actor
network and the Critic network are initialized to ensure
that the model parameters have a good initial distribution.
The initialization parameters include network structure,
learning rate, discount factor, and soft update coefficient,
which play a key role in the training effect. In actual
operation, an experience replay buffer is established to
store historical interaction data, and random sampling is
used to break the time correlation between data. In the
simulation environment, the preset exploration strategy is
used to enable the agent to fully explore the continuous
action space. To ensure the stability and convergence of
the algorithm, the target network is used for soft update,
so that the target network parameters slowly track the
changes in the main network parameters to avoid drastic
fluctuations during training.

DDPG initialization parameters are shown in Table 2.

Table 2. DDPG parameter initialization.

Parameter name Parameter value Function
Actor learning rate 0.0001 Control the update speed of actor network parameters, affecting strategy output
Critic learning rate 0.001 Control the update speed of critic network parameters, affecting value estimation
Discount factor 0.99 Balance short-term and long-term rewards, determine future reward discounts
Soft update factor 0.001 Ensure smooth update of target network and stabilize training process
Batch size 64 The amount of data sampled during each update affects update efficiency
Replay buffer size 1000000 Store historical interaction data to ensure sample diversity
Exploration noise scale 0.1 Adjust the randomness of the exploration process to promote strategy exploration

In the simulation experiment, in order to
comprehensively evaluate the effect of the DDPG
frequency modulation control strategy, a series of key
indicators were designed to quantitatively analyze the
system's frequency response, ES utilization, and energy
conversion performance. For the frequency response, the
maximum frequency deviation, RMS of the frequency
deviation, and MAE were recorded. Among them, the
maximum frequency deviation reflects the extreme value
of the system's frequency deviation from the rated value
under disturbance, which is defined as:

  max refmaxf f t f   (26)

The RMS and MAE of the frequency deviation are
calculated by the following formulas:

  21

1 N
reft

RMS f t f
N 

  (27)

  ref1

1 N

t
MAE f t f

N 
  (28)

To evaluate the frequency oscillation characteristics, the
difference between the peak and valley values of the

frequency fluctuation was recorded, and the oscillation
period and its decay rate were analyzed. The response
time is defined as the time required for the frequency to
stabilize within a certain error range from the occurrence
of disturbance, which reflects the system's adjustment
speed to abnormal events.

In terms of evaluating the performance of the ES system,
the charging and discharging efficiency, ES utilization
rate, and SOC stability indicators were examined. The
charging and discharging efficiency is used to measure
the energy conversion effect of the ES system, and its
calculation formula is expressed as:

storage
out

in

E
E

  (29)

inE and outE represent the energy charged and
discharged by the ES system, respectively. The ES
utilization rate reflects the energy utilization rate of the
ES system during the frequency modulation process,
while the SOC stability index counts the proportion of
time that the system SOC operates within the safe range
to prevent overcharging or over-discharging. To verify
the superiority of the DDPG algorithm, the simulation
experiment can also compare traditional control methods
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(PID control, fuzzy control) and other reinforcement
learning algorithms (DQN, PPO), and conduct a
comprehensive evaluation from multiple angles such as
response speed, control accuracy and energy
management efficiency.

6. Results and Analysis

A. Frequency Deviation

The main function of frequency deviation analysis is to
evaluate the stability of the power system under
disturbance conditions and the effectiveness of the
frequency control strategy. The deviation of the grid
frequency reflects the balance between the power
generation and the load demand. Excessive frequency
deviation may cause equipment damage, deteriorate the
power quality, and even trigger the system protection
mechanism, causing a large-scale power outage. By
analyzing the maximum frequency deviation (deviation
extreme value), RMS and MAE, the frequency
fluctuation characteristics of the system are quantified to
ensure the safety and reliability of PG operation.

The frequency deviation comparison results are shown in
Figure 3.

Figure 3. Frequency deviation results.

Traditional PID control and fuzzy control performed
relatively poorly in terms of frequency deviation, with
maximum frequency deviations of 0.80 Hz and 0.75 Hz,
respectively, and high RMS and MAE values, indicating
that these two methods are difficult to quickly and
accurately adjust the grid frequency in the face of grid
disturbances, resulting in large fluctuations. In contrast,
the DQN and PPO methods based on deep reinforcement
learning have achieved significant improvements in
frequency regulation, with their extreme values reduced
to 0.65 Hz and 0.60 Hz, respectively, and RMS and
MAE indicators also decreased. These methods can more
effectively capture system dynamics and respond in a
timely manner through intelligent policy learning. The
DQN method optimizes the strategy by discretizing the

action space. Although it can improve the frequency
response to a certain extent, its expression ability is
limited in the continuous action space. The PPO
algorithm improves the training stability and policy
update efficiency by optimizing the cutting strategy, and
performs better than traditional methods. These two
methods still have certain limitations, especially when
dealing with high-dimensional continuous control
problems and complex constraints, their frequency
regulation accuracy and response speed still have room
for improvement. The reinforcement learning-based
method has the ability to adapt and learn online, and can
adjust the control strategy according to the actual
operating status, which significantly improves the
frequency stability.

The DDPG algorithm achieved the best results in all
indicators, with a maximum frequency deviation of only
0.45 Hz, RMS of 0.18 Hz, and MAE of 0.15 Hz, which
shows that DDPG has obvious advantages in reducing
grid frequency fluctuations. The main reason is that the
DDPG algorithm uses a continuous action space to
directly output control commands. Compared with DQN
and PPO, which require discretization, its strategy
expression ability is stronger, and it can more finely
control the charging and discharging actions of the ES
system to achieve more accurate frequency regulation.
Taking into account the extreme value, RMS and MAE
indicators of frequency deviation, DDPG far exceeds
other methods in control accuracy, making it an ideal
choice for addressing the challenges of frequency
regulation in high-proportion PV-ES grid-connected
systems. The control strategy based on DDPG achieves
efficient and stable control of the grid frequency by
learning and adapting to complex system dynamics and
multiple constraints, providing strong technical support
and theoretical basis for the frequency regulation of
renewable energy grid connection.

Compared with traditional PID, fuzzy control and
discrete reinforcement learning methods (such as DQN,
PPO), the DDPG algorithm directly outputs continuous
power instructions through deterministic policy gradients,
significantly improving the frequency regulation
accuracy and response speed. At the same time, it
dynamically balances the frequency deviation
suppression, oscillation attenuation and safe operation
requirements of the energy storage system through the
constraint-aware reward function. Theoretical analysis
shows that this method effectively solves the information
loss problem of traditional methods in the discretization
process through end-to-end optimization of the
continuous control space. The deterministic
characteristics of its policy gradient reduce the impact of
high-frequency noise on control stability, and the explicit
modeling of multi-dimensional physical/economic
constraints provides an explainable mathematical path
for dynamic frequency control of new energy power
grids.

The robustness test results are shown in Table 3.
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Table 3. Robustness test results.

Noise type Noise level MAE (Hz) RMS (Hz) Response time(s) SOC safety time (h)
Gaussian noise (photovoltaic) 5% 0.18 0.22 7.8 22.5
Sensor drift ±2% 0.17 0.21 7.6 22.8
Prediction error 10% 0.19 0.24 8.1 22.3
Adversarial disturbance 15% 0.21 0.26 8.5 21.9

DDPG remains robust under noisy input: under the
influence of Gaussian noise, sensor drift, etc., the
performance of this algorithm still maintains high
stability.

This study uses the DDPG algorithm to achieve essential
innovation in the control strategy in the continuous
action space: the deterministic policy gradient
mechanism it adopts breaks through the expression
limitations of discrete methods such as DQN/PPO, and
achieves continuous output of control quantity through
the actor-critic dual network architecture

(256-256-128/256-128-64-128-64). Combined with the
experience replay and soft update mechanism, it provides
an interpretable mathematical modeling and scalable
engineering implementation path for the dynamic
frequency control of the new energy power grid.

B. Frequency Oscillation

The difference between the peak and valley values of the
frequency fluctuation is measured to measure the
oscillation amplitude, and the results are shown in Table
4.

Table 4. Oscillation amplitude.

Days PID control (Hz) Fuzzy control (Hz) DQN (Hz) PPO (Hz) DDPG (Hz)
1 0.90 0.85 0.75 0.70 0.55
2 0.92 0.88 0.76 0.68 0.53
3 0.89 0.84 0.74 0.69 0.54
4 0.91 0.87 0.73 0.67 0.52
5 0.93 0.86 0.75 0.70 0.51
6 0.90 0.85 0.74 0.68 0.53
7 0.92 0.88 0.76 0.69 0.52
8 0.91 0.87 0.75 0.67 0.51
9 0.90 0.86 0.74 0.68 0.52
10 0.93 0.88 0.76 0.70 0.50

The oscillation amplitude of the traditional PID control
method remained in the range of 0.89–0.93 Hz during the
10-day test, with a high average value, indicating that the
system experienced severe frequency fluctuations when
encountering disturbances and could not be quickly
stabilized. Although the fuzzy control method improved
the control accuracy to a certain extent by using fuzzy
reasoning, its oscillation amplitude was still between
0.84–0.88 Hz, failing to significantly reduce the
oscillation level. In contrast, the DQN and PPO methods
based on reinforcement learning reduced the oscillation
amplitude by adaptively adjusting the control strategy.
The oscillation amplitude under DQN control was
0.73–0.76 Hz, while the PPO method was reduced to
0.67–0.70 Hz. The most prominent control strategy
based on the DDPG algorithm had the lowest oscillation
amplitude, with the data showing 0.50–0.55 Hz, and the
overall fluctuation amplitude was significantly smaller
than that of other methods. As a key indicator reflecting
the dynamic response of the system, the oscillation
amplitude is directly related to the stability of the PG
frequency and the safe operation of the equipment.
Traditional control methods use fixed parameters and
preset models, which are difficult to cope with the
uncertainty of renewable energy generation, while
reinforcement learning methods continuously optimize
control strategies through online learning. In particular,

the DDPG algorithm takes advantage of the continuous
action space to achieve more precise power regulation
and reduce frequency oscillation, which provides strong
technical support for frequency regulation control in the
context of high-proportion renewable energy grid
connection. As the control strategy changes from
traditional methods to advanced reinforcement learning
algorithms, the system oscillation amplitude shows a
trend of gradual reduction, indicating that the advantages
of intelligent control methods in dynamic frequency
modulation are becoming increasingly obvious.

The DDPG method shows excellent stability and
consistency in reducing the oscillation amplitude.
Compared with PID and fuzzy control, the oscillation
amplitude of DDPG is not only lower in value, but also
has very small fluctuations in the data of each day,
indicating that its control strategy has high robustness
and adaptability. Although reinforcement learning
methods (such as DQN and PPO) can respond to system
dynamics to a certain extent, their oscillation amplitude
is still slightly higher than DDPG due to the problem of
action discretization or insufficiently refined policy
updates in handling continuous control tasks. DDPG
directly generates precise control signals by utilizing the
actor-critic structure and continuous action outputs,
achieving fine-grained power management during the
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charge and discharge regulation of ES systems. The
application of experience replay and target network in
DDPG algorithm makes the training process more stable,
the strategy update smoother, and further reduces the
oscillation phenomenon caused by noise and uncertainty.
The excellent performance of DDPG in dynamic
frequency modulation is attributed to its excellent
continuous decision-making ability and adaptive control
mechanism, which effectively improves the control
accuracy of the system to transient disturbances.

Analyzing the period of frequency oscillation and its
attenuation characteristics over time can more
comprehensively reflect the frequency oscillation. The
oscillation period and attenuation rate are shown in
Figure 4.

Figure 4. Oscillation period and decay rate.

The oscillation period of traditional PID control is as
long as 8.0 seconds, and the decay rate is only 0.70,
indicating that it responds slowly during the frequency
oscillation decay process and the oscillation energy is
difficult to release quickly. Although fuzzy control has
improved slightly, with the oscillation period reduced to
7.5 seconds and the decay rate increased to 0.74, it is still
difficult to meet the strict requirements of dynamic
frequency modulation for high-proportion renewable
energy grid connection. In contrast, the DQN and PPO
methods based on reinforcement learning performed
better, with DQN shortening the oscillation period to 6.8
seconds and the decay rate reaching 0.78, showing its
ability to suppress oscillation energy. PPO further
reduces the oscillation period to 6.2 seconds and
increases the decay rate to 0.83, indicating that its
stability improvement is more obvious. The most
outstanding method is the DDPG method, with an
oscillation period of only 5.5 seconds and a decay rate of
up to 0.90, showing that it has a significant advantage in
fast decay frequency oscillation. In general, the
shortening of the oscillation period and the improvement
of the attenuation rate reflect the enhanced adaptability
and suppression ability of the control strategy to the
system oscillation characteristics. DDPG achieves fine
control of complex dynamic characteristics through
continuous action output and actor-critic structure. It
enables the system to dissipate excess energy in the

shortest time and stabilize the grid frequency, thus
providing a more reliable and efficient frequency control
solution for PV-ES grid-connected systems.

C. Dynamic Response Time

The response time is measured by recording the time
required from the occurrence of disturbance to reaching
steady state. The response time results of 1-10 days are
shown in Figure 5.

Figure 5. Response time.

Figure 5 shows the response time of 1-10. The traditional
PID control method generally has a longer response time,
with an average response time of 12.1 seconds. The
fuzzy control response time is slightly lower, but the
average response time is 11.6 seconds, indicating that the
traditional method based on fixed parameter adjustment
has a large lag when dealing with sudden disturbances in
the PG. The DQN method using reinforcement learning
strategy performed relatively better, with an average
response time of 10.1 seconds, and PPO further
compressed the average response time to 9.1 seconds.
This shows that the reinforcement learning method based
on policy optimization can adjust control instructions
more quickly and improve the dynamic response of the
system. The most outstanding one is the DDPG
algorithm, whose response time is generally maintained
between 7.0 and 7.5 seconds, which is much lower than
other methods, fully demonstrating the advantages of
DDPG in the continuous action space. DDPG directly
generates continuous control signals through the
actor-critic structure, avoiding information loss in the
discretization process, and improving training stability
by using the target network and experience replay
technology. This enables the model to quickly and
accurately capture system state changes, timely adjust
the charging and discharging actions of ES equipment,
and achieve efficient control of grid frequency. The
DDPG algorithm shows higher real-time and adaptability
in dynamic frequency control, effectively reduces the
risk of grid frequency fluctuations, improves the overall
stability and safety of the system, and provides an
advanced and reliable solution for grid frequency
regulation under high proportion of new energy grid
connection.
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D. Charging and Discharging Efficiency and ES
Utilization

The charging and discharging efficiency reflects the
energy conversion level of the ES equipment, which
directly affects the frequency regulation accuracy and
economic benefits; the ES utilization rate measures the
adequacy of energy use. The two together ensure the
efficient and stable operation of the system and provide
solid support for the economic security of the PG. The
results of the charging and discharging efficiency and the
ES utilization rate are shown in Figure 6.

Figure 6. Charging and discharging efficiency and ES
utilization.

Charging and discharging efficiency is an important
indicator to measure the ratio of actual output and input
energy of ES system in the process of energy conversion.
Its level directly affects the energy regulation ability and
economy of the system in the process of dynamic
frequency modulation. The charging and discharging
efficiency of the traditional PID control method is only
75%. This is mainly due to its fixed parameters and
simple adjustment strategy, which makes it difficult to
flexibly adjust according to the instantaneous demand of
the PG. Fuzzy control has improved the control accuracy
to a certain extent through fuzzy rules, increasing the
efficiency to 77%, but there is still the problem of not
responding quickly enough to environmental changes.
The DQN and PPO methods based on reinforcement
learning showed obvious advantages in charge and
discharge efficiency, reaching 80% and 82% respectively.
This shows that these methods can better adapt to
dynamic environments, continuously optimize charge

and discharge strategies through online learning, and
reduce losses in the energy conversion process. In
particular, the DDPG method, due to the use of
continuous action output and actor-critic structure, can
finely control the charge and discharge process of the ES
system, and its charge and discharge efficiency reached
85%, greatly improving the overall energy utilization
efficiency of the system. This shows that DDPG has
better energy conversion performance in dynamic
frequency modulation, and also reflects its technical
advantages in reducing grid frequency fluctuations and
improving response speed, thus providing solid technical
support and economic benefit guarantee for the safe and
stable operation of the grid.

The ES utilization rate reflects the actual energy
utilization of the ES system during the frequency
modulation process. The ES utilization rate of PID
control is only 60%, which shows that the traditional
method has a large waste in the energy utilization
process and cannot give full play to the potential capacity
of ES equipment. Although fuzzy control has improved
and the utilization rate has increased to 63%, it is still
limited by the limitations of its control strategy. The
DQN and PPO methods based on reinforcement learning
achieved 68% and 70% ES utilization respectively,
thanks to their online learning and adaptive adjustment
mechanisms in the control strategy, which enabled the
ES system to more effectively capture changes in grid
demand and reasonably allocate energy. The most
competitive DDPG method achieved 75% ES utilization,
significantly higher than other methods. This advantage
is mainly due to the outstanding performance of DDPG
in continuous control tasks. Its actor network can
generate more sophisticated charging and discharging
control signals, thereby maximizing the energy
utilization efficiency of the ES system while ensuring
frequency stability. Higher ES utilization can reduce
system operating costs, extend the service life of ES
equipment, and provide more reliable energy support for
grid frequency regulation.

E. SOC Management

This paper counts the time that SOC is maintained in the
safe range to prevent overcharging or over-discharging.
The comparison of the time that SOC is maintained in
the safe range is shown in Table 5.

Table 5. The time that SOC is maintained in the safe range.

Days PID control (h) Fuzzy control (h) DQN (h) PPO (h) DDPG (h)
1 20.0 21.0 22.0 22.5 23.0
2 19.8 21.0 22.2 22.6 23.1
3 20.1 21.1 22.0 22.5 23.2
4 20.0 21.2 22.1 22.4 23.0
5 20.2 21.0 22.3 22.7 23.3
6 20.0 21.1 22.2 22.6 23.1
7 20.1 21.2 22.2 22.5 23.2
8 20.0 21.1 22.3 22.6 23.1
9 20.2 21.2 22.2 22.7 23.3
10 20.1 21.0 22.3 22.5 23.2
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Different control methods have significant differences in
the length of time that the ES system SOC is maintained
within the safe range. This indicator directly reflects the
sophistication and stability of each control strategy for
ES equipment energy management. The traditional PID
control method has fixed adjustment parameters and
lacks adaptive capabilities, resulting in an average daily
safe operation time of 20.1 hours. It is prone to
overcharging or over-discharging, which reduces the
overall utilization and safety of the ES system. The fuzzy
control method processes the input variables through
fuzzy inference rules, which slightly improves the safe
operation time to an average of 21.1 hours, but the
control accuracy is still insufficient when facing changes
in grid load and fluctuations in new energy output. In
contrast, the DQN and PPO methods based on
reinforcement learning effectively capture system state
changes through online learning and strategy
optimization, making the charging and discharging

process of the ES system more accurate, thereby
achieving an average safe operation time of 22.2 hours
and 22.6 hours respectively, showing strong adaptive
control capabilities. After adopting the DDPG algorithm,
its continuous action output and actor-critic structure
make the control strategy more refined, and adjust the ES
charge and discharge rate in real time, so that the SOC
can be maintained in the safe range for a longer time,
reaching an average of 23.2 hours, which is significantly
better than other methods. During the grid frequency
modulation process, DDPG can effectively avoid the
safety hazards caused by excessive energy fluctuations in
the ES system, improve the utilization rate of ES, and
extend the service life of the equipment, providing a
solid guarantee for the stability of the grid frequency.

The comparison between battery degradation and
economic performance indicators is shown in Table 6.

Table 6. Comparison between battery degradation and economic performance indicators.

Algorithm Average number of
cycles per day Average depth of discharge Annual capacity decay

rate
Battery replacement
cost ($/kW)

PID 3.2 65% 2.8% 142
Fuzzy control 2.9 62% 2.5% 131
DQN 4.1 58% 3.1% 156
PPO 3.8 55% 2.9% 148
DDPG 4.7 52% 3.4% 168

DDPG maintains SOC stability through high-frequency
charging and discharging (4.7 times/day), but the annual
capacity decay rate rises to 3.4%, which is 21.4% higher
than PID. Although its low discharge depth (52%) slows
down single-time loss, the increase in the number of
cycles accelerates electrode material fatigue. In terms of
economy, frequent actions increase the cost of battery
replacement, highlighting the contradiction between
control accuracy and equipment life. It is recommended
to introduce a battery aging model to dynamically adjust
the charge and discharge thresholds to extend the life
cycle of the ES system while ensuring frequency
regulation performance.

This study uses a dynamic frequency control strategy
optimized by DDPG to significantly reduce the demand
for spare capacity configuration, reduce battery aging
losses caused by overcharging/discharging of energy

storage systems, and indirectly reduce carbon
emission-related costs by increasing the photovoltaic
absorption rate. For high-penetration photovoltaic power
grids, the algorithm adopts continuous action space
control and dynamic constraint embedding mechanisms.
Its distributed Actor-Critic architecture supports
multi-region collaborative control. Theoretical analysis
shows that its computational complexity has a linear
expansion characteristic, which is suitable for modular
deployment of large-scale power grids, and the
deterministic characteristics of the policy gradient can
effectively deal with the dimensional disaster problem in
high-frequency regulation scenarios.

F. Computational Efficiency

The comparison of algorithm calculation efficiency is
shown in Table 7.

Table 7. Algorithm calculation efficiency.

Algorithm Average single round
training time (s) Memory usage (GB) Parameter tuning

complexity
Real-time decision
delay (ms)

PID 0.02 0.1 High 0.1

Fuzzy control 0.05 0.2 Medium 0.3

DQN 12.8 4.5 Low 15.2

PPO 9.6 3.8 Medium 12.1

DDPG 21.4 6.7 High 18.9

159



DDPG has the longest training time (21.4s/round) and
the highest memory usage (6.7GB) due to continuous
action space optimization, but its control accuracy
advantage is significant. Traditional methods (PID, fuzzy
control) have low computational cost, but are difficult to
adapt to dynamic scenarios due to fixed strategies.
DQN/PPO strikes a balance between resources and
performance, but discrete actions limit its accuracy.
Actual deployment requires a balance between real-time
requirements and hardware resources. It is recommended
to use lightweight DDPG variants or hybrid architectures
to reduce latency in high-frequency power grid
scenarios.

In this study, a lightweight network structure
(Actor/Critic network is controlled within 3 layers
respectively) is used in the algorithm design stage to
reduce computing latency, and the data stream
processing efficiency is optimized through the
experience replay buffer. When deployed at the edge,
DDPG can compress the delay of single-step reasoning
through parameter quantization (and calculation graph
optimization) to meet the real-time requirements of the
power grid control loop. In view of the memory
limitations of the edge devices of the ES system (<8GB),
the model distillation technology is used to compress the
network parameters while maintaining control accuracy.
Future research will explore FPGA-based hardware
acceleration solutions to further balance algorithm
complexity and real-time response requirements.

7. Conclusions

This study innovatively introduced the DDPG algorithm
into the dynamic frequency response optimization of the
photovoltaic-energy storage grid-connected system,
breaking through the limitations of traditional discrete
control methods. DDPG shows significant advantages in
continuous action space optimization, effectively
suppressing frequency deviation and oscillation, and its
control accuracy, response speed and energy storage
efficiency are better than traditional methods. The study
reveals the mechanism of continuous action space
optimization for multi-constraint system regulation,
achieving the simultaneous improvement of energy
storage energy conversion efficiency and utilization rate,
and ensuring the safe operation range of SOC. This
achievement provides a solution for frequency regulation
of high-proportion new energy grid-connected that takes
into account real-time, economic and safety.
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