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Abstract. This paper proposes a real-time control
method for optimizing the charging and discharging of
large-capacity batteries, using intelligent algorithms to
improve efficiency, scheduling accuracy and response
speed. The method improves battery utilization and
extends battery life by real-time monitoring of battery
status, load demand and grid fluctuations. An improved
multi-layer feature fusion long short-term memory
(LSTM) model is used to predict the battery state of
health (SOH), and an adaptive time window weighting
strategy is used to enhance the model's response to
short-term grid load changes. The hierarchical
reinforcement learning (HRL) framework optimizes the
scheduling  strategy  through  high-level  task
decomposition and low-level dynamic adjustment. In
order to accelerate strategy search, an adaptive particle
swarm optimization (PSO) algorithm is wused.
Experimental results show that this method is superior to
the comparative method. When the peak-to-valley
difference is 30% and the temperature is 15 degrees, the
charging and discharging efficiency is improved by up to
9.7%, and the energy consumption is optimized by up to
20%, and it can still maintain good adaptability and
stability under extreme conditions.

Key words. Large-capacity battery, Charging and
discharging control, Battery health management,
Time-varying load  prediction, Multi-objective
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1. Introduction

As large-capacity batteries are widely applied in power
systems, electric vehicles, and renewable energy storage
[1,2], battery charging and discharging control has
become a key technology to ensure efficient battery
operation, extend battery life, and improve grid stability
[3,4]. In wind farm energy storage systems, battery
control is utilized to balance the fluctuations in wind
power output and improve system stability through
precise charging and discharging management. In
microgrid frequency modulation applications, battery
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charging and discharging strategy optimization can
achieve frequency modulation to ensure the power grid’s
supply and demand balance and stable operation.
Traditional rule-based control methods cannot respond to
changes in the battery’s state of health and grid load in
real time, which often leads to inefficient battery use and
makes it difficult to adapt to the needs of complex grid
environments.

Existing research has made some progress in optimizing
battery charging and discharging control. Many studies
have focused on battery health management, using
modeling and data-driven methods to evaluate and
predict battery state to guide charging and discharging
decisions [5,6]. In terms of grid load prediction, there are
also studies that improve the precision of load fluctuation
predictions through techniques based on machine
learning [7,8] and time series analysis [9,10]. Although
existing research has made progress in battery charging
and discharging control, there are still many
shortcomings. On the one hand, the accuracy of battery
health prediction and grid load prediction needs to be
improved. On the other hand, the dynamic adjustment
strategy of each objective weight in multi-objective
optimization is not perfect, which can easily lead to
uneven optimization effects. Existing charging and
discharging control strategies have challenges in
dynamic response capabilities, local optimal problems,
and multi-objective optimization balance.

To address the above problems, this paper combines
HRL with PSO algorithm and improved LSTM model to
realize real-time control of charging and discharging of
large-capacity batteries in smart grids. For battery health
assessment, this paper improves the prediction accuracy
through multi-layer feature fusion and evaluates the
battery state based on real-time data. In power grid load
scheduling, an adaptive time window weighting strategy
is adopted in combination with Dbattery health
information to improve the responsiveness of power grid
load fluctuation prediction. Additionally, for the charging
and discharging scheduling strategy, this paper applies
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the HRL framework, which integrates global scheduling
and local control to optimize the decision-making
efficiency and precision during the charging and
discharging process. This paper makes improvements
based on the PSO algorithm to further improve the
scheduling efficiency. Through the adaptive particle
update strategy, the search behavior of particles is
dynamically adjusted to avoid local optimal solutions
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and achieve the global optimization of battery charging
and  discharging  scheduling. = Through  these
improvements, this paper realizes real-time optimization
and control of battery charging and discharging strategies,
significantly improves battery utilization efficiency and
life, and enhances the system’s adaptability to grid load
fluctuations.The structure of this paper is shown in
Figure 1.
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Figure 1. Structure of the method in this article.

2. Related Work

In large-capacity battery charging and discharging
control, many studies are devoted to optimizing the
battery charging and discharging process [11,12].
Traditional battery management methods do not consider
the dynamic characteristics of batteries and the
complexity of grid load fluctuations. In response to this,
some studies have begun to attempt to apply intelligent
algorithms such as deep learning [13,14] and
reinforcement learning [15,16] to battery management.

In terms of battery health prediction, researchers have
widely applied the LSTM model in deep learning. Some
studies use LSTM networks to predict the battery’s state
of health (SOH), remaining useful life (RUL), and
charging and discharging efficiency, providing data
support for scheduling decisions. Zhang L constructed a
lithium-ion SOH prediction model based on LSTM and
achieved an accurate prediction of battery available
capacity and RUL [17]. Zhao J used LSTM and Gaussian
process regression (GPR) models to achieve the
prediction of SOH and RUL, ensuring the prediction
accuracy and reliability = while reducing the
computational complexity [18]. In addition, there are
also studies that attempt to combine LSTM with
convolutional neural networks to further improve the
prediction precision [19,20].

121

For the prediction of power grid load, many studies have
modeled and predicted power grid load fluctuations
based on time series analysis and machine learning
methods. Luo J used a new support vector regression
model for power load prediction. In particular, in the
case of data integrity attacks, the weight function was
used to reduce the impact of malicious data and achieve
more accurate prediction results [21]. Yanmei J proposed
the EnGAT-BILSTM model, which combines graph
neural networks and bidirectional LSTM (BiLSTM)
technology and achieves short-term power load
prediction through methods such as Box-Cox
transformation, dynamic load knowledge graph, and
graph attention mechanism, significantly improving the
prediction accuracy and model robustness [22]. The
LSTM model has become the mainstream method for
load prediction due to its advantages in dealing with
nonlinear and time-varying characteristics [23,24].
However, there are still some limitations in the
responsiveness of traditional LSTM models in the face of
short-term fluctuations. Some studies have proposed a
weighted time window strategy to enhance the model’s
sensitivity to recent load fluctuations, thereby improving
prediction precision.

In charging and discharging scheduling, deep
reinforcement learning has been widely used [25,26],
especially deep Q-learning [27,28] and HRL [29,30].
These technologies guide models to learn the optimal
charging and discharging decision through reward



mechanism and adapt to complex dynamic environment.
However, they face problems such as slow convergence
speed, which limit their application efficiency in
large-scale battery systems.

To optimize the multi-objective problem of battery
charging and discharging scheduling, the PSO algorithm
is widely used because of its strong global search
capability [31,32]. However, when faced with complex
and multi-dimensional optimization problems, PSO is
prone to local optimal solutions. To this end, some
studies have proposed adaptive particle update strategies
[33,34] and hybrid optimization algorithms [35,36] to
improve search precision and global optimality.

In summary, although current research has made
significant progress in battery health prediction, power
grid load prediction, and charging and discharging
scheduling optimization in current research, existing
methods still face some challenges, such as insufficient
dynamic response capability, local optimal problems, and
balancing multi-objective  optimization. Therefore,
integrating intelligent algorithms, combined with the
time-varying characteristics of battery health and grid
load fluctuations, to propose a more efficient and
intelligent charging and discharging control strategy
remains an important direction for future research.

3. Implementation of Battery Charging and

Discharging Control Strategies
A. Battery Health Assessment and Prediction

In battery health assessment and prediction, this paper
uses improved LSTM to evaluate the battery’s state of
health in real time to ensure its optimal charging and
discharging strategy under different working conditions.
This process includes several key links, such as input
feature selection, LSTM model design and training, and
real-time prediction. Each link is critical in solving the
dynamic characteristics and battery aging problems in
battery health prediction.

Lithium-ion battery Lithium iron phosphate battery

Lithium polymer battery

Nickel metal hydride battery

Figure 2. Large-capacity batteries.
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In the selection of input features, the battery current,
voltage, temperature, discharging cycle, battery internal
resistance, and other parameters are selected based on the
impact of the battery operating state on health
assessment [37]. Figure 2 presents several common
large-capacity batteries.

The current data is recorded in amperes (A); the voltage
is expressed in volts (V); the temperature is in degrees
Celsius (°C); the internal resistance is in ohms (€2). The
battery’s charging cycle, discharging cycle, and number
of charging and discharging times are also included to
fully reflect the battery’s historical operation. These
feature data are all standardized so that each feature has a
consistent scale during the model training process to
prevent some features from having too much or too little
impact on the training process. The mean-variance
standardization method is used in the standardization
process to convert each feature to zero mean and unit
variance:

%, ST A (1)

x, represents the raw feature data at time step ¢ . After

t

standardization, the mean x_ of the feature is 0, and the

standard deviation o, is 1.

In the model design phase, this paper uses a BiLSTM
structure. The BiLSTM network can simultaneously
capture the positive and negative dependencies of
sequence data, especially in the battery state prediction
process, it can more comprehensively consider the
long-term and short-term dependencies of battery
operation data. In battery health assessment, this
structure works especially well for modeling time series
data. In the LSTM network, to effectively capture the
dependency of the battery’s state of health at different
time scales, a multi-scale feature fusion strategy is
adopted, and the current and historical state data are
taken as input. The attention mechanism is applied
between the input layer and each LSTM layer to further
enhance the model’s learning ability. To solve the
problems of gradient vanishing and gradient exploding in
training of long sequence data, the residual connection
mechanism is integrated to ensure the efficient
transmission of information in the deep structure and
improve the training efficiency and stability. A dropout
layer is set between the network layers to avoid
overfitting, and its ratio is set to 0.2 to improve the
generalization ability. In addition, the ReLU (Rectified
Linear Unit) activation function is utilized, and its strong
nonlinear expression ability improves the model’s ability
to handle complex battery states.

In the training phase, the battery data from the Xi’an
Jiaotong University battery data set is used to train the
LSTM model. 70% of the training data is used for
training, 15% for validation, and 15% for testing. The
network is optimized using the Adam optimizer during



training. To enhance the training stability and
convergence speed, the batch size is set to 64, and the
learning rate is set to 0.001. The mean-square error
(MSE) loss function is adopted, and its goal is to reduce
the difference between the battery’s state of health
predicted by the model and the actual battery’s state of
health. The parameters of the network are optimized
through the backpropagation algorithm during the
training process. 200 epochs are set in the training, and
the early stopping mechanism is adopted. When the loss
value of the validation set does not decrease significantly
for 20 consecutive epochs, the training stops to avoid
overfitting. During training, the network parameters are
optimized by the back propagation algorithm. 200
training epochs are set, and the early stopping
mechanism is adopted. When the loss value of the
validation set does not decrease significantly within 20
consecutive epochs, the training is stopped to prevent
overfitting. Hyperparameter adjustment and optimization
during the training process enable the model to
effectively predict under different battery’s states of
health, with high precision.

In the real-time prediction process, the trained LSTM
model accepts the real-time collected battery data and
dynamically predicts the battery’s state of health. The
input data includes real-time parameters, such as battery
current, voltage, and temperature. These data are input
into the LSTM network for prediction after being
standardized. A sliding window technique is utilized to
process real-time data since the battery condition varies
over time. The window size is set to 30 minutes each
time. By continuously updating the data input, the LSTM
network can precisely predict its state of health based on
the latest battery data. Each time window includes
historical data on the battery. After the BILSTM network
processes these data, a prediction of the battery’s current
state of health is obtained.

This study applies an incremental learning strategy to
improve real-time prediction precision. During battery
operation, in the face of continuously changing data,
incremental learning allows the model to dynamically
update weights to maintain prediction accuracy. The
specific method is to regularly input newly collected
battery data into the pre-trained LSTM model and
fine-tune the model parameters to ensure that it can adapt
to the effects of battery aging and environmental
changes.

B. Power Grid Load Prediction and Scheduling
Response

In the power grid load prediction and scheduling
response, an adaptive time window weighting strategy is
applied for time series prediction. This strategy
dynamically adjusts the data window size according to
the power grid load fluctuation characteristics to more
accurately capture short-term load changes. By assigning
weighting coefficients to data points in each time
window, data points close to the current moment are
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given higher weights, enhancing the model’s ability to
respond to short-term load fluctuations. Formula (2) is a
dynamic adjustment formula for window length:

o
w,=p-— ()

c
w, represents the adaptive window length at time step
t. o represents the average standard deviation of the

historical load data.

B

represents the window

adjustment coefficient.

In the preprocessing phase of power grid load data,
outliers are removed, and missing values are filled to
ensure the input data’s integrity and accuracy. In the
adaptive time window weighting strategy, the window
size dynamically changes according to the load
fluctuation situation. When the load fluctuates greatly,
the window length is shortened, and the weight
coefficients are adjusted based on the load’s temporal
characteristics. The data points within the window are
weighted in chronological order, with higher weights
assigned to data points closer to the current time.

The BiLSTM structure is used in load prediction, which
enables the model to learn the load data dependencies
from both forward and backward directions, thereby
capturing the potential trends in load fluctuations better.

During the model training phase, MSE is adopted as the
loss function. The Adam optimizer is utilized during
training. The learning rate is set to 0.001. The batch size
is 64. The training cycle is set to 200 epochs. The early
stopping mechanism is adopted to avoid overfitting. If
the validation set error no longer decreases during
training, the model automatically stops training.

In the load prediction phase, the adaptive time window
weighting strategy is used to dynamically adjust the data
window to ensure that the data in the window can
precisely reflect the characteristics of the current grid
load fluctuations during each prediction. The load
prediction results at each time step are input into the
scheduling system as the basis for charging and
discharging scheduling. The scheduling system adjusts
battery charging and discharging strategies based on the
battery health prediction results and load prediction
information. The objective function comprehensively
considers load stability, battery life, and charging and
discharging efficiency. Formula (3) shows the
optimization objective function form:

7 =3 e[ -Pl+ . SOH,+a sOC ) 3)

a,, a,,and «; are the weight coefficients of load
prediction error, battery’s state of health, and state of

charge, respectively. SOH, represents the state of



remaining battery life. SOC,

state of charge. By analyzing the importance of grid load
stability, battery health status and charge status, the
weights are initially set to 0.5, 0.3 and 0.2 respectively.
These weights will be dynamically adjusted according to
factors such as battery charging and discharging status,
health status and grid load fluctuations to adapt to
different operating conditions and ensure balance during
the optimization process.

represents the battery’s

C. HRL to Optimize Charging and Discharging
Scheduling

In optimizing the battery charging and discharging
scheduling, the HRL method is used to achieve a balance
between battery health management and grid load
fluctuations. To this end, the scheduling task is divided
into high-level and low-level decision-making. The
high-level decision-making starts from a global
perspective and formulates strategies based on the
battery’s state of health and load prediction data, aiming

High-level Decision
Global Scheduling Strategy

e #

Objective of Maximizing the Battery Life Objective of Ensuring Load Stability

Stete'of Health Load Prediction

to maximize battery life and keep the grid load stable. Its
output is the global scheduling strategy. The low-level
decision-making adjusts the charging and discharging
strategy based on the real-time battery state and
short-term fluctuations in the grid load. The input
includes real-time battery state and grid load change data,
and the output is a specific charging and discharging
power adjustment scheme. The global direction provided
by the high-level decision-making guides the low-level
decision-making that performs specific scheduling tasks
based on real-time data. Figure 3 presents the HRL
battery charging and discharging scheduling optimization
framework. The high-level decision-making generates a
global scheduling strategy every hour and passes the
strategy to the low-level decision-making module
through the parameter sharing mechanism. The low-level
decision-making collects battery SOC, SOH, temperature
and grid load data in real time with a cycle of 5 minutes,
and dynamically adjusts the charging and discharging
power according to the current state. The execution
results of the low-level decision are transmitted back to
the high-level decision-making module through the
feedback channel for the next round of strategy update.

Low-level Decision

Q-learning Optimization
Reward Function

lGiobaI Scheduling Instructions ] | Real-time Charging and Discharging Adjustment | | Battery Health, Charging and Discharging Efficiency, Load Stability
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Figure 3. HRL battery charging and discharging scheduling optimization framework.

A global objective function is designed for high-level
decision making. The objective is to maximize the
battery life and ensure the stability of the load during
battery operation. Formula (4) is the objective function:

ngoba] (St ’at) = al .£battery (St ’at )_ aZ .])load (St ’at ) (4)

represents the optimization function of

’Cbattery (St 4, )

battery life. 1 ,(s,,q,) is the variance of grid load

>

fluctuation. o, and «a, are weight coefficients for

adjusting battery life and load stability.

High-level decision-making converts the global objective
into a series of instructions that need to be executed by
the lower level. The input of the high-level
decision-making system includes the battery’s state of
health and the load prediction data. The output is the
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global scheduling  strategy. The  high-level
decision-making process includes selecting the most
suitable charging and discharging scheduling plan based
on the battery’s long-term state of health and the
prediction information of load fluctuations.

Low-level decision-making focuses on the battery’s
real-time state and the power grid’s short-term
fluctuations. When the real-time load fluctuates or the
battery state changes, the low-level decision-making is
responsible for adjusting the charging and discharging
power to adapt to the current load demand of the power
grid and the actual charging and discharging capacity of
the battery. The input of low-level decision-making is the
state variables of the battery, such as state of charge
(SOC), SOH, current, voltage, temperature, and data on
grid load changes. The output of low-level
decision-making is the charging and discharging power
adjustment scheme for the current state.



The Q-learning algorithm is utilized to optimize the
system’s decision-making process. Q-learning evaluates
the long-term rewards of taking different actions in each
state by constructing a Q-value table. In this problem, the
state space of Q-learning includes information such as
the battery’s SOC, SOH, and grid load fluctuations. The
action space is the adjustment of the charging and
discharging power. The reward function
comprehensively considers multiple factors such as
battery health, battery charging and discharging
efficiency, and the stability of grid load fluctuations.
Formula (5) shows the reward function:

R(s,.a
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)=~ {AS0CE 4 087+ 0500, ) (5

ASOC,

the deviation of the power.

AP

is the deviation of the state of charge. AP, is
ASOH,
between the current state of health and the target state of
health. B, f,,and p, are weight coefficients used to

balance different factors’ impacts on returns.

is the deviation

The training process of the Q-learning algorithm is based
on multiple real-time parameters, such as the battery’s
state of health and load fluctuations. It is updated
through a reward mechanism. Each feedback obtained
from the environment (battery state and grid load
fluctuations) updates the Q-value function to guide the
agent in selecting the optimal charging and discharging
strategy. During the Q-learning process, the system
makes decisions based on the current battery SOC and
SOH and future load changes and gradually learns an
optimal charging and discharging scheduling strategy.

The Q-learning algorithm adopts the e-greedy strategy to
balance exploration and exploitation. This strategy
adjusts the value of & during the training process and
allows a certain proportion of random exploration in the
early stage to discover the best possible strategy. As the
training progresses, € gradually decreases, and the
system gradually tends to choose the action with the
highest Q-value, thereby accelerating the convergence of
the strategy and avoiding falling into the local optimal
solution.

During training, multiple epochs of training based on a
simulation environment are used. The battery and load
fluctuations of the power grid are used as input to
simulate the charging and discharging process under
different battery conditions. Through repeated training,
the system can continuously adjust the Q-value so that
low-level decisions can make more precise charging and
discharging adjustments based on real-time battery state
and load fluctuations.

In the scheduling system, high-level decisions are
responsible for global optimization, with the main
objective of maximizing battery life and grid stability.
Low-level decisions are adjusted in real time based on
the actual battery state and load fluctuations. Low-level
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adjustments ensure that the battery is not over-charged or
over-discharged and reduce battery aging by controlling
the charging and discharging power. The system also
combines the battery health management model to
evaluate the remaining battery life in real time and
dynamically adjust charging and discharging strategies
based on this information.

In addition, when training the Q-learning algorithm, the
battery health data and the historical data of grid load
fluctuations are used, including the historical battery
charging and discharging data, load fluctuation data, etc.
After each epoch of training, the system evaluates the
performance of the current strategy and feeds the
evaluation results back to the Q-learning algorithm as a
reward signal. Q-learning optimizes charging and
discharging decisions through reward signals, allowing
the system to gradually learn the optimal charging and
discharging strategy.

During the reinforcement learning process, low-level
decisions can also make corresponding adjustments to
the battery’s short-term state of health. For instance,
when the battery enters the aging state, the low-level
decision adjusts the charging and discharging power
according to the battery’s health information to avoid
over-charging or over-discharging and protect the
long-term health of the battery. When the load fluctuates
violently, the low-level decision responds to the changes
in the power grid in real time and adjusts the charging
and discharging power to maintain the stability of the
power grid and avoid instability of the power grid due to
excessive load fluctuations.

D. Multi-objective Optimization Scheduling Scheme

The adaptive PSO method is adopted in the
multi-objective optimization scheduling scheme to
optimize the battery charging and discharging scheduling.
The objectives are to improve the battery charging and
discharging efficiency, extend the battery life, and
stabilize the grid load. The grid stability is improved, and
the battery system operates efficiently by thoroughly
optimizing these three objectives.

The implementation of the PSO algorithm starts with the
initialization of particles. Each particle represents a
potential charging and discharging scheduling strategy.
The initial position and velocity of the particle are set
according to the battery’s state of health, load demand,

and grid fluctuations. The initial particle position x, (0)

and velocity v,(0) are defined as shown in Formulas

(6) and (7), respectively:

Xi (O) = {Pcharge,i H Pdischarge,i s 7: H SOC: } (6)
Vi (0) = {APcha.rge,i > A})clischarge,i > AZ: i ASOC: } (7)



P

charge,i

and P,

discharge,i

are the initial charging and

discharging powers of particle i, respectively. 7, is the

battery temperature. SOC,; is the battery’s state of
AP AP

charge,i > discharge,i > AT; s and ASOCI are the

changes in the charging power, discharging power,
temperature, and state of charge at that moment.

charge.

The particle swarm can search in the entire scheduling
space, and the solution space covers various parameters,
such as battery charging and discharging power, battery
temperature, charging and discharging cycle, etc. The
perturbation method is used when initializing particles to
prevent the particle swarm from falling into the local
optimal solution, thereby increasing the diversity and
coverage of the search.

The fitness function is utilized to evaluate each particle’s
quality during optimization. The energy loss is calculated
to evaluate the battery’s charging and discharging
efficiency. The energy conversion efficiency during
charging and discharging directly affects the battery’s
performance. The objective of extending the battery life
depends on the depth of charging and discharging, the
charging frequency, and the charging and discharging
rate. The objective of grid load stability is to evaluate the
smoothness of grid load fluctuations, avoiding excessive
load fluctuations on the grid during battery charging and
discharging. Considering these three objectives, the
fitness function uses a weighted strategy to perform a
weighted summation of the objectives:

Si (XA ) =W Zfsfﬂciency (Xf ) F W, fisetime (Xi ) +wy 'fsmbimy (X;) (3)

frcieney (X;)  evaluates the battery charging and

discharging efficiency. W, - fipume (X,)  evaluates the

battery life extension. f,,.., (X;) evaluates the grid

load stability. w;, w,,and w; control the importance

of each objective in the fitness function, and the initial
values are 0.5, 0.3, and 0.2, respectively.

The particle update mechanism is based on the
adjustment of velocity and position. After each iteration,
the particle velocity and position are updated by
comparing the historical best position with the global
best position. Inertia weights can give particles a strong
local search capability. The adjustment of the
acceleration factor enhances the particle’s ability to
explore the global optimal solution. As the iteration
proceeds, the inertia weight gradually decreases,
ensuring that the particles can perform more refined local
searches when approaching the global optimal solution.
The particle velocity update formula adjusts the particle
search direction according to the gap between the current
particle position and the target optimal solution so that
the particle swarm gradually converges to the optimal
solution.
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In multiple iterations, the particle swarm gradually
updates pbest and gbest by continuously comparing each
particle’s fitness with the historical best fitness. When
the fitness of particles meets the predetermined
convergence criteria or reaches the maximum number of
iterations, the optimization process ends, and the optimal
charging and discharging scheduling method is the final
optimal solution.

To solve the problem of classic PSO algorithm easily
getting stuck in local optimal solutions, this paper adopts
adaptive particle update technology, dynamically
modifies the particle update method, and improves the
update amplitude of particle velocity and position. In the
case where the fitness value of particle swarm does not
change significantly and no better solution can be found
after multiple repetitions, the search ability of particles is
improved, and they are guided to leave the local optimal
solution they are currently in and enter different solution
spaces for further search.

The objective weights in the PSO algorithm are also
dynamically adjusted. Under different operating
conditions, the weight ratio of the optimization objective
is adjusted based on factors such as battery charging and
discharging conditions, battery health conditions, and
grid load fluctuations. When the battery health is poor,
the priority is to optimize the extension of battery life.
When the grid load fluctuates significantly, the weight of
load stability is increased. When the battery charging and
discharging efficiency is low, the priority is to optimize
the charging and discharging efficiency. The dynamic
adjustment of objective weights is expressed as Formulas
(9) to (11):

nefﬁ ciency

w = ©)
Neticiency T Mhitetime T Mstability
Thices
W2 — lifetime (10)
Neticiency T Mitetime T Mstability
nstabi]ity
wy = (11)

nefﬁciency + Tllifetime + Tlstability

Uefﬁcieucy H nlifetime H and nstability represent the 1mp0rtance

of charging and discharging efficiency, battery life, and
load stability, respectively.

During the entire optimization process, the balance
optimization of multiple objectives is achieved through
the design of a weighted fitness function. Each particle’s
fitness not only considers the charging and discharging
efficiency, battery life, and grid load stability but also
ensures that these three objectives can achieve optimal
balance during the scheduling process. The battery
efficiency and battery life objectives are usually
negatively correlated, so these two objectives need to be
carefully weighed during the optimization process. The



load stability objective needs to be considered together
with the battery efficiency and life objectives to avoid
excessively reducing battery efficiency while pursuing
load smoothing.

4. Real-time Control Effectiveness

Evaluation

Strategy

A. Experimental Setup

This experiment uses a simulation environment based on
Python and OpenDSS (Open Distributed System
Simulator) platform, combined with a battery model, grid
load fluctuation data, and charging and discharging
control strategy module to simulate the battery’s
charging and discharging process under various
operating conditions and load fluctuation conditions. The
battery system consists of 5 groups of lithium iron
phosphate batteries with a rated capacity of 50kWh
(nominal voltage 48V, maximum charge and discharge
current 100A), which are connected to the grid through a
bidirectional DC-AC  converter (model: ABB
ACS800-67). The load parameters are generated based
on the typical daily load data of the IEEE 123 node
distribution system, with the peak load set to 150kW and
the valley load set to 60kW. The experiment lasts for 6
months, covering data collection and load change records
at different battery operation phases. The battery’s
long-term charging and discharging process under real
working conditions is simulated, and the control system’s
adaptability under different grid load fluctuation
conditions is evaluated. The experiment records key
feature information, such as the state of health, battery
internal resistance, temperature changes, and number of
charging and discharging cycles, of 10 groups of
large-capacity lithium-ion batteries, combined with the
grid load fluctuation data with a 15-minute sampling
frequency to perform dynamic load prediction and
charging and discharging control. During the experiment,
the battery’s charging and discharging strategies are
tested under different operating temperatures (15°C,
25°C, and 35°C) and different load fluctuation intensities
(peak-to-valley differences of 10%, 20%, and 30%) to
fully simulate the battery’s diverse operating states under
actual working conditions. In addition, two special
scenarios are set up to verify the adaptability of the
control system under extreme working conditions:
high-load impact (load fluctuation range>40%) and
battery aging state (SOH<70%), to examine the
robustness of the system under conditions of battery
performance degradation and large load fluctuations.

The comparative experiment comprehensively compares
the method in this paper (abbreviated as HRL) and the
improved deep deterministic policy gradient (DDPG)
algorithm and LSTM with adaptive time window
weighting strategy to evaluate the differences in the
multi-dimensional performance of different methods.
During the experiment, 5 rounds of experiments are
conducted under the same load conditions using different
charging and discharging strategies. Each group of
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experiments runs 100 cycles, and the charging and
discharging  effects and energy  consumption
characteristics of each group of methods at different
phases are recorded.

B.  Evaluation Indicators

Experimental results are tested for significance through
variance analysis, and the adaptability and efficiency of
the method in this paper in a complex power grid
environment are fully verified through multi-dimensional
statistical analysis of the charging and discharging results
of different strategies. The specific indicators include:

1) Charging and Discharging Efficiency

This indicator is used to measure the energy conversion
efficiency during charging and discharging. The ratio of
the energy a battery receives from a charging device to
the energy actually stored in it is called the charging
efficiency. The ratio of the energy actually released by a
battery to its total energy output is called the discharging
efficiency. High charging and discharging efficiency can
improve the system’s sustainability and economy while
reducing the energy loss of the battery.

2) Charging and Discharging Energy Consumption
Optimization rate

The charging and discharging energy consumption
optimization rate is used to measure the degree of energy
consumption reduction of different strategies during
charging and discharging. By comparing the energy loss
of the battery during charging and discharging with
different methods, the proportion of optimized energy
consumption to total energy consumption is calculated.
This indicator reflects the effectiveness of the control
system in optimizing battery energy consumption.

3) Battery Health Index

The battery’s state of health is a significant indicator for
measuring battery health. During the experiment, the
battery health index is used to evaluate the impact of
different control methods on battery life and to analyze
whether the control strategy can effectively delay the
battery aging process. By real-time monitoring of factors
such as battery internal resistance and voltage changes,
the protective effect of the charging and discharging
strategy on battery health is evaluated.

9

Response Time

Response time refers to the time delay of the control
measures taken by the system according to the
fluctuation of grid load or the change of battery state. A
fast response can ensure that the battery charging and
discharging strategy can be adjusted quickly in the
real-time  grid  fluctuation, thereby  avoiding



over-charging and over-discharging, ensuring the battery
safety and the grid stability.

C. Application Effect
1)  Battery Charging and Discharging Efficiency

The battery charging and discharging efficiency is
evaluated by comparing the charging and discharging
efficiency before and after optimization. The specific
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method is to first record the battery charging and
discharging efficiency when no control strategy is
applied and then measure the battery charging and
discharging efficiency again after implementing the
optimization strategy. By calculating the percentage
increase in the optimized charging and discharging
efficiency compared to the original efficiency, the
optimization effect of the control strategy on the battery
charging and discharging process is evaluated. Figure 4
displays the improvement in charging and discharging
efficiency.
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Figure 4. Improvement in charging and discharging efficiency of each method in different environments.

The HRL method achieves significantly higher charging
and discharging efficiency than DDPG and LSTM in
various  experimental  environments, and  the
improvement of HRL’s charging and discharging
efficiency increases accordingly as the load fluctuation
intensity increases. This shows that the HRL method is
adaptable to dealing with different load fluctuation
intensities. When the load fluctuation is large, it can
quickly respond to short-term load changes through
hierarchical strategy optimization while ensuring the
stability of long-term control.

When the peak-to-valley load difference is 30%, and the
temperature is 15 degrees, the improvement in charging
and discharging efficiency of HRL reaches 9.7%, which
is significantly higher than that of other methods. This
indicates that HRL can effectively cope with large
fluctuations in load changes and reduce the impact of
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load fluctuations. In addition, in different temperature
environments, HRL also demonstrates its strong stability
and adaptability, with an improvement of up to 8.9% in
the high-temperature environment. This phenomenon
demonstrates that HRL can ensure the stability of battery
performance when the ambient temperature changes.
Compared with traditional LSTM and DDPG methods,
HRL can avoid the negative impact of temperature
changes on battery performance and continuously
optimize the charging and discharging process in
high-temperature environments through a more refined
hierarchical learning strategy.

2)  Battery State

Figure 5 presents the battery’s SOH. The change in SOH
shows which method can better protect battery health
and delay battery aging.
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Figure 5. SOH changes of each method.

The HRL method can effectively maintain the SOH of
the battery under various temperature conditions. At
25°C, the SOH in the fifth round is 88.50%, which is
more stable than that of DDPG and LSTM. In
high-temperature environments, the chemical reactions
of batteries are accelerated, causing the battery to decay
faster. HRL can reduce the negative impact of
temperature fluctuations on battery performance by
dynamically adjusting the charging and discharging rates
and optimizing strategies.

The impact of load fluctuation intensity on battery health
is also verified under different load fluctuation
conditions. As the peak-to-valley load difference
increases from 10% to 30%, HRL can maintain a high
SOH in all rounds. When the peak-to-valley load
difference is 30%, its SOH in the fifth round is 86.80%,
which is still higher than that of DDPG and LSTM. The
superior performance of HRL under high load and high
temperature proves the adaptability of this method in
dealing with extreme situations. Through continuous
environmental feedback learning, HRL can dynamically

LSTM

optimize the working state of the battery, avoid
over-charging, over-discharging, and over-heating of the
battery, protect the battery health, and extend its service
life.

3) Battery Charging and Discharging Energy

Consumption Optimization Rate

The charging and discharging energy consumption
optimization rate evaluates the effectiveness of the
control method by comparing the change in battery
system energy consumption before and after
optimization. The energy consumption optimization
percentage is calculated by comparing the battery’s
energy consumption during the charging and discharging
process with its startup energy consumption. The
optimization rate indirectly represents the control
strategy’s performance in improving system efficiency
and reducing energy loss because it shows the extent to
which battery energy consumption is reduced when
various control techniques are applied. Figure 6 presents
the results.
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The average optimization rate of the DDPG method is
around 15%, with large fluctuations, indicating that
DDPG has significant instability during multiple rounds
of control, and it is difficult to continuously and stably
improve the battery charging and discharging efficiency.
The optimization rate of the LSTM method is slightly
higher than that of DDPG, with an average of about 16%
and smaller volatility, indicating that LSTM has a certain
degree of stability in control compared with DDPG. The
average optimization rate of the HRL method is about
20%. From the box range and the number of outliers in
the box plot, the results of HRL show fewer outliers,
indicating that the optimization strategy of HRL is more
stable between different experimental rounds. In terms of
stability, HRL is actually more volatile than LSTM, as
evidenced by the wider box of HRL. This is related to
the multi-level decision-making structure of HRL.
Although it can optimize decisions at a higher level,

DDPG

15°C
25°C
35°C

1

when faced with certain complex or extreme situations,
the synergy between levels may not be stable enough,
resulting in significant optimization fluctuations. LSTM
performs relatively stably in this regard, with a small
fluctuation range, indicating that its time series-based
prediction capability can provide more consistent
performance during battery optimization.

4)  Real-time Control Response Time

Real-time control response time is used as an indicator to
evaluate the battery management system’s response
speed and control ability when facing load fluctuations,
revealing the adaptability of different methods in
dynamic environments. The data in Figure 7 shows that
the HRL method has a significantly better response speed
than the other two methods.
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Figure 7. Response time of each method to implement control.

As the temperature increases and the load fluctuation
increases, the response time of all methods increases, but
HRL still maintains a relatively short response time. At
15°C and a 10% peak-to-valley load difference, HRL’s
response time is 4.5 seconds, which is lower than 5.1
seconds of DDPG and 6 seconds of LSTM. At 35°C and
a 30% peak-to-valley load difference, HRL’s response
time is still within 12.6 seconds. In contrast, DDPG and
LSTM’s response times are 13.4 seconds and 13.5
seconds, respectively. This phenomenon demonstrates
that the HRL method can maintain a faster system
response capability through more efficient strategy
optimization when facing temperature fluctuations and
load changes.

This performance is attributed to the reinforcement
learning mechanism of the HRL method, especially in
the multi-level and hierarchical strategy optimization,
which can quickly adapt to the system’s real-time state
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changes. Compared with DDPG and LSTM, HRL
effectively reduces the dependence on global information
in the adjustment process through a hierarchical
decision-making structure, thereby having a faster
response time in real-time control. This advantage also
indicates that when facing more complex battery
management tasks, the HRL method can handle more
environmental variables while ensuring a low response
time, thereby achieving efficient control of the battery
system.

5) Adaptability in Extreme Situations

Under the two extreme conditions of high-load impact
and battery aging, the key indicators of different
strategies, such as the improvement rate of charging and
discharging efficiency and the optimization rate of
charging and discharging energy consumption, are
compared and analyzed. Table 1 lists the results.



Table 1. Adaptability analysis for extreme situations.

Scenario Method Battery charging and discharging SOH Charging and discharging energy | Real-time control
efficiency improvement rate consumption optimization rate response time
DDPG | 5.20% 84.30% | 4.50% 10.3s
E‘lﬁz;lt‘)ad LSTM | 6.10% 85.70% | 6.20% 9.8s
HRL 7.80% 87.10% | 7.50% 8.2s
DDPG | 3.40% 61.60% | 3.00% 12.1s
f;ﬁ;"y LSTM | 4.00% 63.20% | 4.40% 11.65
HRL 5.30% 67.50% | 5.70% 10.2s

Under high-load impact, HRL’s charging and discharging
efficiency improvement rate reaches 7.80%, and the
energy consumption optimization rate is 7.50%, which
are better than LSTM and DDPG. Regarding real-time
control response time, HRL only needs 8.2s. In contrast,
LSTM needs 9.8s, and DDPG needs 10.3s. Under battery
aging, HRL’s SOH drops to 67.5%; the charging and
discharging efficiency improvement rate reaches 5.3%;
the energy consumption optimization rate reaches 5.70%.
At the same time, the real-time control response time of
HRL is 10.2s. In summary, the excellent performance of
the HRL method under extreme conditions is due to its
multi-level strategy optimization, dynamic model update,
and efficient modeling of complex battery states. HRL
can significantly improve the charging and discharging

efficiency, optimize energy consumption, and shorten the
control response time through precise state perception
and adaptive control mechanisms.

6) Significance Analysis

The p-values in Table 2 are used to evaluate the
significant differences between the HRL method in this
paper and the two comparative methods under different
scenarios and conditions and to verify whether the
optimization effect of HRL on charging and discharging
efficiency, SOH, energy consumption optimization rate,
and real-time control response time is statistically
significant.

Table 2. Significance analysis results.

p-value
Scenario Method B.attery .charging. and Charging and discharg%ng Real-time control
discharging efficiency | SOH energy consumption .
improvement rate optimization rate response time
High-load impact DDPG vs HRL 0.022 0.031 0.017 0.024
LSTM vs HRL 0.027 0.035 0.019 0.018
Battery aging DDPG vs HRL 0.024 0.021 0.013 0.022
LSTM vs HRL 0.029 0.039 0.016 0.014
15°C DDPG vs HRL 0.026 0.034 0.022 0.027
LSTM vs HRL 0.023 0.037 0.019 0.021
2500 DDPG vs HRL 0.029 0.031 0.024 0.019
LSTM vs HRL 0.028 0.032 0.026 0.022
350C DDPG vs HRL 0.023 0.028 0.015 0.026
LSTM vs HRL 0.025 0.036 0.022 0.019
Peak-to-va]ley load | DDPG vs HRL 0.019 0.029 0.021 0.023
difference 10% LSTM vs HRL 0.021 0.027 0.018 0.02
Peak-to-valley load | DDPG vs HRL 0.027 0.031 0.024 0.022
difference 20% LSTM vs HRL 0.022 0.025 0.017 0.021
Peak-to-valley load | DDPG vs HRL 0.021 0.026 0.022 0.02
difference 30% LSTM vs HRL 0.023 0.031 0.019 0.022

Under high-load impact conditions, the HRL method
shows significant advantages in improving charging and
discharging efficiency, maintaining SOH, and optimizing
energy consumption, with p-values all below 0.05,
proving that the HRL method is more adaptable under
extreme load conditions. Under battery aging conditions,
the p-values of the HRL method also remain below 0.05,
indicating that it can still maintain good charging and
discharging control effects when the SOH drops below
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70%. In addition, under different temperature conditions,
the charging and discharging efficiency, energy
consumption optimization rate, and response time of the
HRL method and comparative methods show significant
differences. The p-values at 25°C are low, indicating that
the performance advantage of HRL under this
temperature condition is more significant. Under
different peak-to-valley load fluctuation conditions (10%,
20%, and 30%), the p-values of the HRL method are all



lower than 0.05, reflecting that the changes in load
fluctuation amplitude have little impact on the
optimization effect of the HRL method, further verifying
the robustness and control stability of HRL under large
load fluctuations.

7)  Load Forecasting and Calculation Time

This table systematically compares the comprehensive
performance of the three methods of HRL, DDPG and
LSTM in terms of grid load forecasting accuracy and

technical advantages of the real-time control method for
large-capacity batteries in smart grids proposed in this
paper. From the prediction results, the predicted load
value of HRL is 157.8kW, which is closest to the actual
load, indicating that the prediction method based on the
improved LSTM model and adaptive time window
weighting strategy has a stronger response ability to
short-term load fluctuations. In terms of computational
efficiency, the average time consumption of HRL is 2.7s,
which verifies that the hierarchical reinforcement
learning framework effectively balances the model
complexity and computational overhead through the

computational efficiency, intuitively reflecting the parameter sharing mechanism.
Table 3. Comparison of load forecasting and computational time.
Method Forecast Load (kW) True load (kW) Average calculation time (s)
HRL 157.8 160 2.7
DDPG 144.2 160 5.8
LSTM 143.9 160 4.2

5. Conclusion

This paper studies an optimization method based on
intelligent algorithms to solve the real-time control
problem of large-capacity battery charging and
discharging in intelligent networks. The improved LSTM
model is used to predict battery health, the adaptive time
window weighting strategy is used to improve the grid
load prediction precision, and the HRL, combined with
the improved PSO algorithm, is applied to optimize
charging and discharging scheduling. Experiments show
that this method can significantly improve battery
charging and discharging efficiency, extend battery life,
and achieve fast real-time scheduling response. The
method in this paper achieves a 9.7% improvement in
charging and discharging efficiency and a 20% energy
consumption optimization rate under the conditions of a
30% peak-to-valley load difference and a temperature of
15°C. It also maintains stable performance under
extreme working conditions and shortens the response
time to less than 8.2 seconds. Although this method has
achieved certain results, there are still some
shortcomings. For example, in some extreme cases, the
stability of HRL still must be enhanced. The dynamic
adjustment strategy of each objective weight in
multi-objective optimization can be further optimized. In
terms of battery health prediction, we can try to
introduce a multi-physics field coupling model,
combining the electrochemical reaction mechanism with
an intelligent algorithm to improve the understanding of
the internal aging mechanism of the battery and the
prediction accuracy. For grid load prediction, we explore
deep learning models that integrate multi-source
heterogeneous data such as meteorological data and user
behavior patterns to further improve the accuracy and
generalization of predictions. In terms of charging and
discharging scheduling optimization, we study the
dynamic adjustment strategy of the weights of each
objective in multi-objective optimization, develop more
efficient optimization algorithms to enhance the real-time
and adaptability of scheduling, and consider the

integration and coordinated control of distributed energy
resources to improve the stability of the entire power grid
and energy efficiency.
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