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Abstract. Ultra-large-scale power grids present a critical
problem: the inherent contradiction between the need for
accurate dynamic modeling and the demand for real-time
performance in crucial tasks such as topology state
assessment and fault location. This paper aims to resolve
this challenge by introducing a collaborative method
leveraging SGC (Simplified Graph Convolution) and an
improved DySAT (Dynamic Self-Attention Network).
The core objective is to provide an efficient and precise
solution for both rapid topological state evaluation and
accurate fault localization in such complex systems. To
achieve this, a sparse adjacency matrix is first
constructed based on adjacency truncation and
Kirchhoff's law dynamic pruning. SGC then quickly
outputs topological state evaluation through double-layer
graph convolution and time window splicing.
Subsequently, when an anomaly is triggered, the
improved DySAT is called to locate the fault. This
DySAT incorporates dynamic adjacency matrix
generation, a timing attenuation mechanism, and
multi-head attention optimization to strengthen the
coupling of spatiotemporal features. Experiments show
that SGC achieves a 0.92 accuracy rate in detecting
two-phase short-circuit faults at the node level, with a
single inference taking 2.85ms; the improved model
achieves a fault localization error of 110.59 meters on the
high-voltage line, approximately 21.9% lower than the
benchmark DySAT, thereby offering an efficient and

accurate solution for smart grid operation and
maintenance.
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1. Introduction

As the scale of power systems expands and the
complexity of new energy grid connection increases,
real-time status assessment and fault location of
ultra-large-scale power grids have become the core
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challenges to ensure safe operation. Existing methods
often rely on static models, as exemplified by
impedance-based fault location techniques [1]. While
dynamic state estimation is recognized as important for
power system control and protection [2], many
approaches still simplify topological analysis. For
instance, significant research is dedicated to learning
distribution grid topologies [3], and some methods
embed simplified topological information for tasks like
voltage stability control [4]. This simplification makes it
difficult to capture the coupling effects of dynamic time
series characteristics. For example, load fluctuations can
affect the identification of critical nodes based on
electrical topology and power flow distribution [5].
Similarly, accurately modeling topological switching is
essential for dynamic graph-based anomaly detection in
the electrical grid [6]. Capturing spatial correlation also
presents a challenge, the importance of which is
highlighted in resilience assessments for cyber-physical
power systems under geographically widespread events
such as typhoon disasters [7]. Moreover, effectively
integrating spatial physical laws remains an area of
ongoing research, even with the application of
physics-informed neural networks [8]. In addition, the
computational complexity can increase substantially with
the node scale; this is a factor in operational reliability
assessment of distribution networks with energy storage
systems [9]. Reviews on graph neural networks highlight
that their application in power systems faces challenges
regarding computational load as scale increases [10].
This complexity is also a significant consideration in the
development of DC fault protection algorithms for
MMC-HVDC grids [11], resulting in a prominent
contradiction between real-time performance and
accuracy. At the same time, current data-driven graph
convolutional network (GCN) models, while utilized for
searching for critical power system cascading failures
[12] and for fault detection and identification in
low-voltage DC microgrids [13], do not always
adequately integrate the physical laws of the power grid.
This can result in significant deviations between the fault
location results or other predictions, such as
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post-disturbance frequency, and the actual operating laws
[14].

In recent years, a number of studies have achieved
relatively good results in dynamic time series modeling,
but all of them have shortcomings. Hu Jiaxiang et al. [15]
proposed to capture the spatiotemporal characteristics of
the power grid by stacking temporal convolution and
graph attention layers. However, this method's focus on
stacked layers may overlook certain long-term
dependencies, an issue relevant in contexts like modeling
attack graphs in cyber-physical systems [16]. Such an
oversight can result in insufficient extraction of transient
fault features, which is critical for understanding
dynamic network equilibrium [17]. Based on GGAT
(Global Graph Attention Network), Cao Di's [18] team
tried to embed a loss function in the model to enhance
physical consistency. Nevertheless, this approach did not
fully solve the problem of real-time reasoning,
particularly under dynamic topology changes, a
challenge addressed in structure-informed graph learning
for online prediction of power system transient dynamics
[19]. The broader difficulties with dynamic adaptations
in artificial intelligence techniques for microgrids also
highlight this ongoing issue [20]. Deng Yaping et al. [21]
optimized GraphWaveNet by combining wavelet
transform and temporal attention mechanism. However,
this optimization failed to fully adapt to the sparse
topology structure often found in power grids, an issue
pertinent when using sparse sets of digital fault recorders
for fault location [22]. This lack of adaptation can result
in computational redundancy, a concern also when
learning from power grid outages using higher-order
topological neural networks [23]. Wu Huayi et al. [24]
proposed GAECN  (Graph  Attention Enabled
Convolutional Network) to solve probabilistic power
flow and capture node correlation and renewable energy
uncertainty. Although the model integrating time series
convolution and graph attention mechanism can improve
local time series modeling capability, its design relying
on a fully connected adjacency matrix makes it difficult
to further expand the node scale. This scalability
challenge is a known concern in multi-agent
graph-attention deep reinforcement learning for
post-contingency grid emergency voltage control [25].
Similar difficulties in scaling are observed in
spatiotemporal directed graph convolution networks used
for ultra-short-term wind power prediction [26], and also
in hierarchical decomposition self-attention networks for
reliable long-term energy load trend prediction [27]. The
existing methods still have obvious defects in timeliness
and dynamic adaptability, and it is difficult to meet the
actual power grid operation and maintenance needs.

Many scholars have also explored the problem of
computing efficiency for ultra-large-scale power grids.
Ahmadi Afshin et al. [28] proposed to achieve
optimization by compressing the adjacency matrix in fast
Newton-Raphson power flow analysis. However, the use
of a fixed neighbor range, sometimes associated with
such compression techniques, can result in an incomplete
capture of the fault propagation path, which is critical for
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system-scale-free transient contingency screening [29].
While methods like sparse convolutional neural network
acceleration with lossless input feature map compression
aim to improve efficiency in resource-constrained
systems [30], they might not inherently solve this
specific path capture problem. Najafi Bahareh et al. [31]
introduced an entropy-aware time-varying graph neural
network based on the generalized temporal Hawkes
process for dynamic link prediction. A limitation,
however, is that the complexity of its dynamic
representation calculation was not fully optimized, an
aspect crucial for dynamic state estimation aimed at
improving the observation and resiliency of
interconnected power systems [32]. This can result in
high inference latency, a problem compounded by the
challenges in managing stability and control in
renewable energy sources dominated power grids [33].
For fault detection and location in distribution feeders,
Mansourlakouraj Mohammad et al. [34] introduced a
waveform measurement unit fault location method based
on short-time matrix pencil (STMP) and GNN (graph
neural network). However, the high complexity of this
approach makes the model less scalable. Such scalability
issues are a broader challenge in power systems, noted in
the application of reinforcement learning for selective
key applications [35] and in machine learning methods
used to understand trends in the transient stability limit
[36]. GraphPMU (Graph Phasor Measurement Units) by
Aligholian Armin et al. [37] uses fundamental and
harmonic PMU measurement data at the distribution
level to achieve efficient event clustering through graph
representation learning, but sacrifices the accuracy of
node-level fault location. Although such methods are
effective in specific scenarios, they still cannot meet the
requirements of dynamic time series modeling and
millisecond-level real-time performance at the same
time.

Traditional methods face a significant contradiction
between dynamic modeling and computational efficiency,
making it difficult to meet the dual demands of rapid
response and high-precision diagnostics in complex
power grids. In recent years, the application of graph
neural networks in power system analysis has provided
new solutions to this problem. For example, Guo
Wangyong and others proposed a CNN-LSTM network
based on a multi-modal attention mechanism for power
grid load forecasting, demonstrating the potential of
attention mechanisms in power system modeling [38]. Yu
Xiaoxia and others introduced a multi-head self-attention
autoencoder network, achieving high efficiency and
robustness in wind turbine gearbox fault detection [39].
Meanwhile, Shu Hongchun and others improved
transmission line traveling wave fault identification
accuracy by integrating the Transformer structure [40],
and Luo Jia and others also validated the effectiveness of
the self-attention mechanism in planetary gearbox fault
diagnosis [41]. Among them, Simplified Graph
Convolution (SGC) has shown good performance in
node state classification tasks due to its simple structure
and fast inference speed, while the Dynamic
Self-Attention  Network  (DySAT)  demonstrates



superiority in anomaly detection and fault tracing by
integrating spatiotemporal feature modeling capabilities.

This paper introduces a collaborative modeling method
that integrates SGC and improved DySAT to solve the
problems of dynamic state assessment and fault location
of ultra-large-scale power grids. The innovations include:
1) This paper improves the computational efficiency and
positioning accuracy through topological sparse
optimization and spatiotemporal coupling modeling. 2)
In topology optimization, a 3-hop adjacency truncation
strategy and a dynamic pruning mechanism constrained
by Kirchhoff’s law are adopted, and the time window
splicing technology and a two-layer lightweight graph
convolution architecture are combined to construct SGC
to reduce the computational complexity; 3) The
improved DySAT model introduces an electrical
parameter-driven dynamic adjacency matrix generation
mechanism, strengthens the fault transient response
through the timing attenuation factor, and adopts a
grouped multi-head attention architecture to establish the
spatiotemporal feature coupling relationship.
Experiments show that this method achieves high
accuracy in high-voltage layer status assessment and
hundreds of meters of short-circuit fault positioning error
in multi-voltage level power grid tests, and the inference
time is significantly lower than that of traditional
methods; noise injection experiments verify the
robustness of the model to measurement noise, and the
topology dynamic pruning strategy maintains the
controllability of computational complexity when the
node scale expands.

2. Topology State Assessment and Fault Location
Method

A.  Preprocessing of Input Data for Topology State
Evaluation

In order to construct high-quality input data, the
T

four-dimensional feature vector z! :[V,.‘,H,.’, I, f,’]

collected by the PMU module simulation is processed at

three levels. Among them, V/ : voltage amplitude of
node i at ¢ (perunit, PU), 6 : voltage phase angle of
node i (radians), I : branch current amplitude (per
unit), f: system frequency (Hz). The time series repair

of the data uses the cubic spline interpolation function
S(t), which satisfies:
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is the

number of sampling points in the time window. The
sliding window discrete Fourier transform is used to
extract the non-power frequency component:

Here ¢, is the effective sampling time, and N

2
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Here N, represents the power frequency cycle, m is

the domain index, and the feature standardization follows:
— 2
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the power grid CIM (Common Information Model)

model, the dynamic adjacency matrix A’ e RV s
constructed, and the basic admittance matrix element is
defined as:

1 . .
- if nodes i and j are directly connected
Ty %
=D ifi =
0 otherwise

3)

Among them, 7,

parameters, and N, represents the neighbor set of node

i

and x; are line unit impedance

i . The transformer = -type equivalent circuit adds a

virtual node k& , and its properties satisfy:
1 A
z, =72 v Wiz, . Here w, zﬁ is the
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admittance weight, and the timing window sliding
mechanism is used to construct the dynamic graph
sequence Gr =Xr7,A_, and the time window is defined

as: T, =[t,+7At,t,+(r+W)At] . Here W =10s/At is

the window length, A¢ is the sampling interval, and
bilinear interpolation is used for clock offset correction:

5t t+At t

—\z;" =z 4
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Here ot is the clock offset between devices, and finally
generates three-dimensional tensor data aligned in time

and space: XeR™™ X, = [ﬁr,é’,fi’,ff} , dynamic

T
adjacency matrix sequence {AT}T:.:AT [i,j]:Y;

(non-connected nodes are 0).
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Figure 1. Data input format.

As shown in Figure 1, the input data consists of a single
20ms time window, with 10 time windows accumulating
to form a 200ms cycle. Subsequently, the time series data
structure is composed of a three-dimensional
spatiotemporal feature tensor (time window X node X
four-dimensional electrical quantities) on the left and a
dynamic adjacency matrix sequence (time window X
node x node) on the right. The former contains the
standardized voltage, phase angle, current, and frequency
characteristics of the nodes across multiple time
windows, while the latter describes the changes in the
power grid topology over time through a real-time
admittance matrix.

The voltage fluctuates periodically between 0.95 and
1.05 p.u., exhibiting a smooth sinusoidal pattern. The
phase angle fluctuates steadily, suggesting small phase
differences between nodes. The current varies between
0.8 and 1.2 p.u., with a significant step increase after the
5th time window, reflecting a sudden change in the grid
load or an internal anomaly within the system. The
frequency fluctuates slightly between 49.9 and 50.1 Hz,
showing a mild sinusoidal characteristic, indicating that
the system frequency remains within a stable range.

The dynamic adjacency matrix sequence reveals the
evolving law of the power grid topology: in the initial
stage (t=1 to t=3), the grid shows a chain structure,
indicating sparse connections between nodes; in the
middle stage (t=4 to t=6), the topology gradually evolves
into a ring structure, with the connections between nodes
strengthening, thereby enhancing system stability; in the
later stage (t=7 to t=10), the topology converges into a
star-like structure, suggesting the emergence of a central
hub within the network.

These two types of features (spatiotemporal feature
tensors and dynamic adjacency matrix sequences) will
serve as inputs for the subsequent SGC and improved
DySAT models. These features will be used for power
grid state assessment and fault location, ensuring
efficient and accurate operation and maintenance.
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B. Sparse Topology Optimization and State

Assessment

In order to improve the real-time performance of the
state assessment of the ultra-large-scale power grid
topology, before the SGC inputs the dynamic adjacency
matrix, a breadth-first search is used to perform k-layer
neighbor expansion and construct a truncated adjacency
matrix. The research by Hasnat Md Abul et al. [42]
shows that most of the strong coupling relationships in
the power grid are concentrated within a range of 3 hops,
and can achieve the optimal balance between
computational efficiency and positioning accuracy.
Therefore, the k value is set to 3 in this study. During the

calculation, the original adjacency matrix 4eR™" is
decomposed into A=A, ® M, , where M, is a binary

mask matrix that satisfies M, (i,j)=1 if and only if
d(v,. )V, ) <k By

correlated  connections,
dependencies are reduced.

truncating long-range weakly

unnecessary  topological

In the self-attention calculation, a structured sparse mask
is introduced. The dot product result of QK

Hadamard-producted with the binary mask matrix M.
The mask matrix M is generated by the following rules:

is

(1) The non-zero elements in the k-hop adjacency matrix
are retained;

(2) The diagonal elements are forced to be 1 to retain the
node's own information;

(3) The retained elements are weighted according to the
line susceptance value, with a weight of

w; =B; / (B,.j +8) , where B, is the line susceptance
value and & is the smoothing factor. Attention

allocation is guided by physical parameters to strengthen
the feature propagation of key topological paths.



A dynamic pruning strategy based on Kirchhoff's law is
established, and the topological sensitivity index

n; = AR]/(AV,AVJ) is defined, where £, is the
change in line active power, and AV, and AV, are the

changes in node voltage. A dynamic threshold

nh=pu+ac can be set, where x4 and o are the
mean and standard deviation of 7, , and « is the
adjustment  coefficient. =~ When 7, <n, , the

corresponding adjacency matrix element is set to zero
and its gradient update is frozen, leaving only the key
electrical connections.
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Figure 2. Sparse optimization of power grid topology.

This paper uses a 300-node power grid model, dividing
the network into three subgraphs based on voltage levels:
high voltage (HV), medium voltage (MV), and low
voltage (LV), with each subgraph containing 12, 85, and
203 nodes, respectively.

Figure 2 illustrates the three-stage evolution of power
grid topology optimization. Each subgraph's horizontal
and vertical axes correspond to node identifiers, and the
connections that are truncated during each stage are
marked in blue. The k-hop compression matrix (center
column) constrains the connection range to a maximum
of 3 hops based on geographic proximity, effectively
reducing unnecessary topological dependencies. The
topology pruning matrix (right column) applies
Kirchhoff's law to dynamically select and retain only the
most critical connections, thus increasing the sparsity of
the adjacency matrix.

Figure 2 clearly demonstrates the three-stage process of
sparse optimization for the power grid topology. During
the k-hop compression phase, only the most significant
node connections within 3 hops are preserved,
minimizing irrelevant connections and reducing the
complexity of the adjacency matrix. In the pruning phase,
the adjacency matrix is further optimized by removing
less important connections, maintaining only those that
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are vital to the power grid's electrical flow. This dynamic
pruning process, guided by Kirchhoff's law, ensures that
the remaining connections are the most relevant for
accurate grid evaluation. As a result, the number of
non-zero eclements in the adjacency matrix is
significantly reduced, while preserving the key electrical
connections necessary for accurate power grid status
monitoring.

As shown in Table 1, the study used lightweight SGC
(Simplified Graph Convolution) to perform preliminary
detection of the topological state of the power grid. The
input data includes: 1) a three-dimensional space-time
tensor containing four-dimensional time-series electrical
characteristics of voltage, phase angle, current, and
frequency; 2) a dynamic adjacency matrix sequence that
has been sparsely processed by three-hop adjacency
truncation. The model is configured with a two-layer
graph convolution structure (hidden layer dimension
128—64) and uses the ReLU (Rectified Linear Unit)
activation function. The temporal dependency can be
modeled by concatenating features of adjacent time
windows (step length 200ms), and trained based on the
AdamW optimizer (learning rate le-3, weight decay
le-4). The final output is an embedded vector that
integrates spatiotemporal features and key topological
associations for grid status assessment.



Table 1. SGC parameter settings.

Parameter Type Parameter Name

Value/Description

Input Feature Dimension

4 (Voltage, Phase Angle, Current, Frequency)

Input Configuration Number of Time Windows 10
Node Scale N
Number of Graph Convolution Layers 2
Model Architecture Hidden Layer Dimensions First layer: 128, Second layer: 64
Activation Function ReLU
Sparse Topology Processing | Adjacency Matrix Sparsification Strategy 3-hop truncation
Temporal Dependency | Time Window Sliding Step 200 ms
Modeling Cross-Time Fusion Method Concatenation of neighboring window features

Optimizer Settings Optimizer

AdamW (Learning rate le-3, Weight decay 1e-4)

The shape of the embedding vector finally output by
SGCis TxNxh,where T =10 represents the number
of time windows, N represents the total number of
large-scale power grid nodes, and # =64 is the
embedding dimension. The embedding vector is
aggregated into system-level features through global
average pooling, and the binary classification results
(normal/abnormal) are output through the fully
connected layer.

C. Improved DySAT and Fault Location

After SGC initially determines that the power grid
topology is abnormal, it is necessary to locate the
specific fault node. The study constructs a dynamic
self-attention module based on DySAT, realizes power
grid state modeling through a spatiotemporal joint
attention mechanism, and uses a cascaded dual attention
structure to process temporal and spatial features. The
temporal dimension modeling uses a Transformer-style
self-attention  module to  perform  multi-head
self-attention calculations on the node temporal state
oK’

@JV ®

The query matrix Q=XW, , key K =XW, , value
V=XW, , and W, W, W, e R

learnable parameters. The query matrix reflects the state
requirements of the current node, the key matrix provides
matching information of other nodes, and the value
matrix stores the actual feature data of the node. By
calculating the attention weights, the temporal
dependency and spatial topological relationship between
nodes are dynamically captured, and the abnormal state
of the power grid can be located and analyzed in time
and space. The spatial dimension uses dynamic graph
attention and constructs spatial attention through the

. NxTxd
matrix X e RV :

Attn, (O, K, V') =softmax [

matrix are

learnable adjacency matrix 4, , € RV :
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4, OOK"

ey

fused

Attn, (O, K, V') =softmax {

The spatiotemporal attention

element-wise weighted:

outputs  are

H =0 (Attn,,,, +Attn_, ) (7)

temp

Design a topology-aware adjacency matrix update
mechanism to generate dynamic connection weights
through learnable parameters:

Ay, =softmax (MLP (X )-MLP (X )") (8)

Here, MLP (Multilayer Perceptron) is a two-layer
perceptron, and the output dimension is consistent with
the node feature dimension. This mechanism enables the
model to dynamically adjust the attention weights
between nodes according to the real-time state of the
power grid. An exponential time decay factor is
introduced to adjust the impact of historical states, and a
time-varying weight matrix is introduced in the temporal
attention calculation:

A(t) = diag (e’“‘ ,eee e ) Q)

The key matrix calculation is adjusted to:

K =(X-A)W; , using a grouped multi-head attention

architecture, setting multiple heads to extract features
from different subspaces, and each head independently

calculates spatiotemporal attention:
head, = Attn,, +Attn, ., i=1,---, . All head outputs
are fused through linear transformation:
H,,. = Concat(head,,---, head, )W, , where
W, e R"> s the fusion weight matrix. The overall

optimization improvement of the DySAT architecture
(marked by the blue line) is shown in Figure 3.



Input Time-Series State Matrix

Temporal Decay Mechanism
A(t) = diag(e™*41, ..., e AtT)

Modeling

\Adjust Key Matrix Calculation
K=(X- -NWg

Multi-Head Self-Attention Calculation

Temporal Attention Output

Fuse Temporal
and Spatial
Attention

&

Spatial
Modeling

Dynamic Graph Attention Calculation

l

Generate Dynamic Adjacency Matrix

Attng,, (Q, K, V) = softmax(

(Adyn©QKT).
Vi

14

Agyn = softmax(MLP(X) - MLP(X)™)

Spatial Attention Output

Generate Node State Representation ——> m m m

Fuse Multi-Head Attention Outputs

Grouped Multi-Head Attention

Figure 3. DySAT architecture optimization.

Compared to the basic DySAT architecture, the
improvements focus on three key aspects: dynamic
adjacency matrix generation, the introduction of a time
decay mechanism, and the optimization of multi-head
attention. The original DySAT utilizes a fixed adjacency
matrix for modeling spatial relationships, which cannot
effectively capture the dynamic changes in power grid
topology. In the improved DySAT, a dynamic adjacency
matrix is generated using a perceptron, and the weights
between nodes are adjusted in real-time according to the
current grid status. This enhancement allows the model
to better represent the evolving structure of complex
topologies and to adapt to rapid changes in the grid.

In the temporal dimension, a dynamic attenuation factor

is introduced into the model. This time-series decay
mechanism adjusts the key matrix calculation by

applying a time-varying factor,
EA(t) = diag (e’)“" ,oee,e ) to emphasize recent
temporal states. This adjustment strengthens the

influence of the most recent data, enhancing the model’s
ability to respond more quickly to sudden faults or
anomalies in the power grid.

At the same time, a grouped multi-head attention
architecture is adopted to independently extract features
in different subspaces and fuse the outputs to reduce the
computational complexity. The parameter settings are
shown in Table 2.

Table 2. DySAT parameter settings.

Parameter Name Value Parameter Name Value
Hidden Layer Dimensions [128, 64] Temporal Decay Factor 0.3
Number of Attention Heads 8 Dynamic Adjacency Update Rate | 2
Query/Key/Value Dimension 32 MLP Hidden Layer Size 32
Time Window Length 10 Adjacency Softmax Temperature 0.1
Batch Size 32 Learning Rate le-4
Gradient Clipping Threshold 1.0 Weight Decay le-5

The DySAT model parameters in Table 2 are lightweight
optimized for the dynamic characteristics of the power
grid: the hidden layer dimensions [128, 64] balance the
computational efficiency and feature expression
capabilities by reducing the dimension layer by layer,
and 8 attention heads are used to extract multi-subspace
spatiotemporal features in parallel. The time window
length is set to 10 to align with the time series input
sequence. The dynamic adjacency matrix is updated
every 2 windows, and the time series decay factor of 0.3
is combined to strengthen the response to recent fault
signals. The query/key/value dimension is 32, and the
multi-head attention mechanism is supported to model
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node dependencies. The dynamic adjacency matrix is
generated using two layers of 32-dimensional MLP, and
the adjacency Softmax (temperature 0.1) ensures the
sharpness of the weight distribution. The optimizer uses
AdamW (learning rate le-4, weight decay le-5), the
gradient clipping threshold 1.0 ensures training stability,
and the batch size 32 adapts to the needs of
ultra-large-scale power grid data processing. Based on
the improved DySAT model, this paper takes 300 nodes
as an example to show the details of power grid fault
location under dynamic graph attention, as shown in
Figure 4.
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Figure 4. Power grid fault location under the attention mechanism.

Figure 4 illustrates the large-scale power grid fault
location process using dynamic graph attention network
(DySAT) technology. In the original topology diagram
(top left), nodes are categorized by voltage levels: high
voltage (dark blue), medium voltage (light blue), and low
voltage (black), and they are distributed in layers based
on these levels. The subsequent five subgraphs display
the evolution of attention weights over 100 to 500
iterations using orange gradient heat maps. These maps
highlight the iterative adjustment of the attention weights
as the model progresses toward fault detection and
localization.

As the iterations progress, the associated edges of the
faulty node (marked in red) demonstrate a nonlinear
strengthening trend in attention, indicating an increasing
focus on the critical connections that lead to the fault.
The width and color depth of the edges represent the
attention intensity, with darker shades and thicker lines
corresponding to higher attention values. The color bar
on the right quantitatively displays this attention
distribution, providing a clear view of how the network's
focus evolves over time.

By iteration 300, the attention weight on the fault-related
topological path becomes more prominent, confirming
the effectiveness of the sparse topology optimization and
dynamic adjacency matrix updates. This behavior is a
direct result of the model’s ability to emphasize the most
relevant paths while discarding unnecessary connections,
allowing it to converge more rapidly on the fault
localization. At iteration 500, the path leading to the fault
is clearly identified, with the attention weights indicating
that the model has successfully localized the fault line.
This demonstrates the power of the improved DySAT
model in effectively handling dynamic topologies and
accurately pinpointing faults in large-scale power grid
networks through a spatiotemporal joint attention
mechanism.
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3. Experimental Test
A. Experimental Design

The experiment is based on the NVIDIA A100 GPU and
Intel Xeon 8380 CPU (2.3GHz/32 cores) hardware
platform, integrating MATLAB R2024a/Simulink 2024a
deep learning toolbox to build a simulation environment.
The Simscape Electrical toolbox is used to build three
types of multi-voltage power grid models with
10,000-60,000 nodes (high voltage range is 35kV and
above, medium voltage range is 1kV to 35kV, and low
voltage range is 220V and below). The line parameters
and transformer ratios are configured through the
Three-Phase PI Section Line module to support dynamic
topology adjustment. The Fault Injector Block generates
six types of fault scenarios based on the IEC 60909
standard (three-phase short circuit fault, two-phase short
circuit fault, single-phase ground short circuit fault,
two-phase ground short circuit fault, busbar short circuit
fault, line disconnection with ground fault), and sets a
trigger time of 0.1-0.3s and a duration of 50-200m:s.

The PMU data acquisition system synchronously
acquires the four-dimensional features of voltage
amplitude/phase angle, current amplitude and frequency
at a frequency of 50Hz, and uses sliding window discrete
Fourier transform (10-cycle window length) combined
with cubic spline interpolation to achieve time alignment.
The dynamic adjacency matrix is constructed through
Graph Theory Toolbox, integrating the 3-hop truncation
strategy and Kirchhoff's law dynamic pruning. The noise
injection stage uses the awgn function to generate
Gaussian noise with a signal-to-noise ratio of 10-40dB.
The spectrum entropy characteristics are verified by
Signal Analyzer Toolbox to be consistent with the
measured distribution of the power system. The training
set, validation set, and test set are divided into 7:2:1
ratios, and all types of faults have sufficient sample



coverage.
B. Topology Status Assessment Test

Based on a 10,000-node power grid model, a lightweight
SGC model is used to perform topology status
assessment. The historical status data is spliced through a
sliding time window, and dynamic features are quickly
extracted with a double-layer graph convolution to
output the abnormal probability distribution at the node
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level. SGC can be compared with the current mainstream
SIGN (Scalable Inception Graph Neural Network),
GPR-GNN (Generalized PageRank Graph Neural
Network), GraphSAGE-XL (Graph Sample and
Aggregation-Extra Large) and APPNP++ (Approximate
Personalized Propagation of Neural Predictions++). The
accuracy, F1 score and single inference time of each
model in six types of fault scenarios were recorded to
verify the balance between computational efficiency and
evaluation accuracy of SGC. The results are shown in
Figure 5 (a-c).
(b) F1 Score
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Figure 5. Topological status evaluation results of each model. Figure 5 (a) Accuracy comparison; Figure 5 (b) F1 score
comparison; Figure 5 (¢) Inference time comparison.

SGC demonstrates high accuracy and F1 scores in a
variety of fault scenarios, achieving an accuracy of 0.92
and an F1 score of 0.81 in the "two-phase short circuit"
scenario, and a single inference time of only 2.85ms,
significantly better than mainstream models such as
SIGN (42.09ms) and GraphSAGE-XL (14.63ms). In
addition, in scenarios such as "three-phase short circuit"
and "two-phase ground fault", the accuracy of SGC is
0.84 and 0.87 respectively. Combined with its low
inference time of 7.55ms and 6.27ms, it further
demonstrates  its  advantages under  real-time
requirements.

The advantage of the improved SGC model comes from
the simplification of its wunderlying mechanism.
Compared with complex models such as SIGN and
GPR-GNN, SGC removes nonlinear activation functions
and redundant feature transformations, directly utilizes
the linear propagation characteristics of graph
convolution, greatly reduces computational complexity,
and retains key information of the power grid topology.
At the same time, SGC uses a fixed-order adjacency
matrix power expansion to avoid multi-layer recursive
calculations, thereby improving inference speed in
large-scale power grid scenarios. Compared with
GraphSAGE-XL and APPNP++, SGC does not require
sampling or approximate propagation, reducing the error
accumulation caused by data sparsity or noise. Its
lightweight design ensures high accuracy while meeting
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the mneeds of real-time status assessment of
ultra-large-scale power grids. Although some models
perform slightly better in specific scenarios, their
inference time is generally long, making it difficult to
meet the real-time requirements of ultra-large-scale
power grids. SGC uses double-layer graph convolution
and time window splicing technology to significantly
reduce computational overhead while ensuring high
evaluation accuracy, providing a more efficient solution
for smart grid topology status evaluation.

C. Fault Location Test

In a 10,000-node power grid model, six types of short
circuit and disconnection fault scenarios are generated
through the fault injection module. The improved DySAT
is called to locate the fault, and core indicators such as
fault location distance error and time consumption are
recorded. The improved DySAT is compared with the
current mainstream GGAT (Gated Graph Attention
Network), GAECN (Graph Attention Enhanced
Convolutional Network), DyGFormer (Dynamic Graph
Transformer), DyHAT (Dynamic Hierarchical Attention
Network) and basic DySAT (Dynamic Self-Attention
Network). The results are shown in Figure 6, where the
left Y-axis represents the positioning error (column
display) and the right Y-axis represents the time
consumption (dashed line display).
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Figure 6. Fault location test results of each model.

From the error data, the positioning error of the
improved DySAT in the three-phase short-circuit
high-voltage scenario is only 100.54 meters, which is
significantly better than GGAT's 287.68 meters and
GAECN's 233.00 meters. In the case of a low-voltage
two-phase grounding fault, the error is 59.66 meters,
which is much lower than the 296.72 meters of
DyGFormer and the 99.68 meters of basic DySAT. The
dynamic adjacency matrix generation and timing decay
mechanism improves the fault location accuracy by
capturing the timing dependencies of grid topology
changes and node states in real time.

The dynamic adjacency matrix can reflect the dynamic
reorganization characteristics of the power grid structure
when a fault occurs, avoiding the errors caused by static
topology assumptions. The time decay mechanism gives
reasonable weights to historical states, strengthens the
expression of recent key information, and more

accurately describes the fault propagation path and
impact range. According to the time consumption data,
the time consumption of the improved DySAT in the
single-phase ground fault high-voltage scenario is 23.95
milliseconds, which is better than the 52.67 milliseconds
of GAECN, showing the enhancement of computing
efficiency by multi-head attention optimization.

D. Noise Tolerance

To verify the robustness of the model in a noisy
environment, Gaussian noise with a signal-to-noise ratio
of 10-40dB is injected into the 10,000-node power grid
model to test the performance changes of the SGC and
improved DySAT collaborative framework. The accuracy
of state assessment and fault location error under
different SNR (Signal-to-Noise Ratio) are recorded, and
the results are shown in Table 3.

Table 3. Performance changes of collaborative framework under different noises.

SNR (dB) | High Voltage Layer (=35kV) Medium Voltage Layer (1kV-35kV) | Low Voltage Layer (<220V)
State Evaluation | Location Error | State Evaluation | Location Error | State Evaluation | Location Error
Accuracy (%) (m) Accuracy (%) (m) Accuracy (%) (m)

40 98.53 87.24 97.82 94.31 96.47 101.53

35 97.31 93.58 96.74 98.72 95.19 108.46

30 95.84 98.63 95.27 105.38 93.52 116.74

25 94.18 105.42 93.65 112.87 91.26 125.69

20 92.47 113.73 91.54 123.48 88.71 138.23

15 89.56 126.37 88.43 136.79 84.68 152.84

10 85.32 142.61 83.75 158.53 79.42 176.38

As the SNR decreases from 40dB to 10dB, the state layer (greater than or equal to 35kV), when the SNR is

assessment accuracy and fault location error of each
voltage level show smooth changes, indicating that the
model has strong noise resistance. In the high voltage
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40dB, the state assessment accuracy reaches 98.53%, and
the location error is only 87.24 meters. When the SNR
drops to 10dB, the accuracy remains at 85.32%, and the




positioning error increases to 142.61 meters. The model
can still maintain high performance in a high noise
environment.

The change trends of the medium voltage layer
(1kV-35kV) and the low voltage layer (less than or equal
to 220V) are similar, but the error change of the low
voltage layer is more significant. For example, when
SNR=20dB, the positioning error of the low voltage
layer reaches 138.23 meters, which is about 25 meters
higher than the 113.73 meters of the high voltage layer,
indicating that the low voltage layer is more sensitive to
noise. In addition, even at a lower SNR (such as 15dB),
the accuracy of the high-voltage layer and the
medium-voltage layer is still maintained at 89.56% and

(a) SGC Inference Time Comparison
B SGC

[
60

(c) Improved DySAT Error

88.43%, respectively, indicating that the model is highly
adaptable to the medium and high-voltage layers.

E. Large-scale Scalability Test

The experiment constructs a 6-level grid-scale gradient
model with 10,000 to 60,000 nodes. A lightweight SGC
is used to pre-screen the topology status, and the
improved DySAT is called to perform fault location after
the exception is triggered. The complete process is run
100 times continuously at each scale, and the SGC
reasoning time, DySAT memory peak, DySAT
positioning absolute error mean and standard deviation
are recorded. The results are shown in Figure 7.
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Figure 7. Model scalability test. Figure 7 (a) SGC Inference Time Comparison; Figure 7 (b) DySAT Memory Consumption; Figure 7
(c) Improved DySAT Error; Figure 7 (d) GGAT Error; Figure 7 (¢) GAECN Error; Figure 7 (f) DyGFormer Error; Figure 7 (g)
DyHAT Error; Figure 7 (h) Base DySAT Error.

As shown in Figure 7 (a), as the node scale increases
from 10,000 to 60,000, the inference time of SGC
increases from 22ms to 112ms, which is significantly
better than SIGN (28.05ms to 137.89ms), GPR-GNN
(26.66ms to 156.13ms), GraphSAGE-XL (30.06ms to
146.15ms) and APPNP++ (28.30ms to 142.61ms),
reflecting its high efficiency in large-scale scenarios.
Figure 7(b) shows that the improved DySAT maintains
the lowest memory usage at all scales (increasing from
0.8GB to 3.5GB), and exhibits better resource utilization
efficiency than GGAT (1.15GB to 4.60GB), GAECN
(1.19GB to 5.40GB), DyGFormer (1.11GB to 5.07GB),
DyHAT (1.05GB to 5.10GB) and basic DySAT (1.17GB
to 5.49GB), verifying the effectiveness of the dynamic
adjacency matrix and timing decay mechanism.

This paper further analyzes the error distribution data.
Figure 7 (c) to (h) shows that the improved DySAT
maintains the lowest mean error at all node scales
(increased from 150 meters to 250 meters). At the scale
of 60,000 nodes, the mean error of the improved DySAT
is 250 meters, which is significantly lower than GGAT
(404.07 meters), GAECN (431.78 meters), DyGFormer
(452.48 meters), DyHAT (475.93 meters) and basic
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DySAT (500 meters). Its advantage in positioning
accuracy still highlights its comprehensive performance
in the scalability test of ultra-large-scale power grids.

4. Discussion
A.  Result Analysis

Further based on the topological state evaluation in
Section 3.2 and the scalability test data in Section 3.5,
SEM (Structural Equation Modeling) is constructed to
verify the causal relationship between the sparsity of the
adjacency matrix and the computational efficiency: (1)
The non-zero element ratio and inference time of the
adjacency matrix of SGC at a scale of 10,000-60,000
nodes can be extracted; (2) The hardware configuration
(A100 GPU/Xeon CPU) and model architecture
(two-layer graph convolution) are controlled unchanged,
and a path analysis model from sparsity to computational
efficiency is established; (3) The path coefficient  is
calculated by maximum likelihood estimation, and the
significance of the coefficient is verified by Bootstrap
(1000 resamplings) to quantify the contribution of
topology optimization to efficiency improvement.



Table 4. SEM analysis of adjacency matrix sparsity and computational efficiency.

glode Adjacency Matl;ix Non-zero | Path - Coe-fﬁcient B Bootstrap P -value (iontribution Ratio
cale Element Ratio (%) (Sparsity — Time Cost) (%)
10k 2.37 -0.823 <0.001 78.4
20k 1.95 -0.801 0.002 76.8
30k 1.62 -0.785 0.003 74.2
40k 1.44 -0.772 0.005 72.9
50k 1.27 -0.754 0.008 70.5
60k 1.08 -0.738 0.012 68.3

From the SEM analysis results in Table 4, it can be seen
that the sparsity of the adjacency matrix has a significant
causal effect on the computational efficiency. The path
coefficient £ is between -0.738 and -0.823, and the

Bootstrap P value is less than 0.012, indicating that the
improvement of sparsity can significantly reduce the
time consumption of reasoning. In particular, at the scale
of 60k nodes, the proportion of non-zero elements in the
adjacency matrix is only 1.08%, and the contribution
ratio is 68.3%, indicating that the dynamic pruning
strategy effectively reduces the computational burden of
SGC. Combining the model principle, SGC achieves fast
state evaluation through double-layer graph convolution
and time window splicing, while the sparse adjacency

matrix further reduces the complexity of graph
convolution, verifying the key role of topology
optimization in improving efficiency. The positioning
error data of DySAT in power grids of different scales is
further improved by Section 3.5, and the influence of
scale on error is verified by single-factor variance
analysis: (1) The location error data at the scale of
10k-60k nodes can be grouped; (2) The Levene test can
be used to confirm the homogeneity of variance; (3)
ANOVA (Analysis of Variance) analysis can be
performed to test the significant difference in the mean
error between different scales; (4) A polynomial
regression model can be fitted to the low-voltage layer
error data to analyze its nonlinear relationship with scale
growth. The results are shown in Table 5.

Table 5. Variance analysis of the effect of grid scale on fault location error.

Effect/Interaction Wilks' A F -value Partial 772 Observed Power Post-hoc Test (Bonferroni)
Main Effects

60k > 50k > 40k > 30k >
Node Scale (10k-60k) | 0.412 37.89 0.539 0.999 20k > 10k ( p <0.001)

Low > Medium > High
Voltage Level 0.287 52.14 0.621 1 ( p<0.001)
Interaction

Max error surge at 60k-Low
ScalexVoltage Level 0.658 18.24 0.294 0.987 (A=89.3m, p=0.002)
Covariate
Noise Level (SNR Error +21.7m per 10dB
10-40dB) - 12.57 0.182 0.934 SNR decrease (p <0.001)

The variance analysis in Table 5 shows that the scale of multi-head attention mechanism to converge on

the power grid has a significant impact on the fault
location error (Wilks' A =0.412, F =37.89, p<0.001).

The error increases with the scale, especially in the
low-voltage layer, where the maximum error increase is
89.3m at a scale of 60k nodes ( p =0.002). Combined

with the dynamic adjacency matrix and time-series
attenuation mechanism of the improved DySAT, the
model shows certain limitations in processing the
spatiotemporal coupling characteristics of large-scale
power grids, which may be due to the difficulty of
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high-dimensional sparse data. In addition, for every
10dB decrease in noise level, the error increases by
21.7m, indicating that the impact of SNR on positioning
accuracy also needs to be considered. Combined with the
noise tolerance data in Section 3.4, this paper defines
"status assessment accuracy greater than or equal to
90%" as a survival event, takes SNR as the time variable,
and uses the Cox proportional risk model to quantify the
impact of node scale on noise failure risk and verify the
coupling effect of hardware resources and noise
interference. The results are shown in Table 6.



Table 6. Hierarchical Cox model of node scale and noise risk.

. Hazard o Survival  Threshold
Risk Factor Subgroup Ratio (HR) SE z-value | P-value 95% CI (SNR_threshold, dB)
High (=35kV) 1.15 0.04 3.75 0.003 [1.08,1.23] 26.4 (Accuracy >90%)
Node Scale | Medium
(+10K) (1kV-35kV) 1.28 0.05 5.6 <0.001 [1.19,1.38] 22.7
Low (220V) 1.45 0.06 7.5 <0.001 [1.34,1.57] 18.9
Noise 1.09 per
Interaction ScalexSNR 10dB 0.02 4.45 <0.001 [1.05,1.13] -
Model Architecture
Stratification | SGC 0.65 0.03 -9.33 <0.001 [0.60,0.70] -
DySAT (Baseline) 1 - - - - -

The hierarchical Cox model in Table 6 reveals a strong
correlation between node scale and noise failure risk,
where the hazard ratio HR of the low voltage layer (less
than or equal to 220V) is as high as 1.45 (95%
CI=[1.34,1.57]), and the survival threshold is reduced to
18.9dB, which is much lower than the 26.4dB of the high
voltage layer. This shows that the coupling effect of
hardware resources and noise interference is particularly
significant in large-scale power grids. Considering the
characteristics of SGC and DySAT, SGC performs better
in noise tolerance due to its simplified structure
(HR=0.65, p<0.001), while DySAT as a baseline model

is more sensitive to noise.

To further enhance the interpretability of the proposed
model, an ablation experiment was conducted to analyze
the impact of each key improvement in the DySAT
architecture. The focus was on evaluating the effects of
the dynamic adjacency matrix, time decay mechanism,
and multi-head attention optimization. The goal was to
assess the contribution of each improvement to the
model's performance in the fault localization scenario of
ultra-large-scale power grids, with the results shown in
Table 7.

Table 7. Ablation Experiment Test Results.

Configuration Fault Location Error (m) Improvement (%)
Baseline DySAT 140.52 -

DySAT with Dynamic Adjacency Matrix 115.44 18.3

DySAT with Time Decay Mechanism 122.35 12.7

DySAT with Multi-Head Attention Optimization 118.10 15.4

DySAT with All Enhancements (Final Model) 110.59 21.9

Table 7 presents the results of the ablation experiment on
the DySAT architecture with different improvements,
focusing on analyzing the impact of each key
enhancement on fault localization accuracy. Firstly, the
baseline DySAT model has a fault location error of
140.52 meters, serving as a reference for comparison.
After integrating the dynamic adjacency matrix, the fault
location error significantly decreases to 115.44 meters,
showing an improvement of 18.3%. This result indicates
that the dynamic adjacency matrix can adjust the model's
graph structure in real-time according to the changes in
the power grid topology, thereby more accurately
capturing the state and anomalies of the grid and
optimizing the fault localization accuracy. Next, the
DySAT model with the time decay mechanism further
reduces the fault location error to 122.35 meters,
achieving an improvement of 12.7%. The time decay
mechanism enhances the model's response to recent fault
events by giving more weight to recent states, which
plays a critical role in the complex dynamic environment
of the power grid.

The DySAT model with multi-head attention
optimization further improves fault localization accuracy,

with the error reducing to 118.10 meters, a 15.4%
improvement. The multi-head attention mechanism
captures more complex spatiotemporal dependencies by
focusing on multiple subspaces simultancously, thereby
enhancing the model's robustness in a dynamic
environment. Finally, the combined model with all three
improvements—dynamic adjacency matrix, time decay
mechanism, and multi-head attention
optimization—reduces the fault location error to 110.59
meters, an overall improvement of 21.9%. These results
demonstrate that considering dynamic grid topology,
temporal information decay, and multi-head attention
optimization can significantly enhance the accuracy and
efficiency of the DySAT model in fault localization for
ultra-large-scale power grids.

B. Discussion

1) Improvement of Computational Efficiency by
Topology Optimization

Based on SEM analysis (Table 4) and experimental data
(Sections 3.2 and 3.5), SGC significantly reduces the
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computational complexity of graph convolution through
adjacency truncation and Kirchhoff's law dynamic
pruning. In Table 4, as the node scale increases from 10k
to 60k, the proportion of non-zero elements in the
adjacency matrix decreases from 2.37% to 1.08%, while
the contribution ratio of this sparsification strategy to
computational efficiency remains between 68.3% and
78.4%. The dynamic pruning strategy effectively reduces
the computational burden of SGC and lays the
foundation for its efficient scalability in ultra-large-scale
power grids.

SGC's double-layer graph convolution and time window
splicing technology can quickly extract dynamic features,
while the sparse adjacency matrix further compresses the
computational complexity of graph convolution. The
topology optimization method shows significant
advantages in processing high-dimensional sparse data.
At a scale of 60k nodes, the inference time is only 112ms,
which is much lower than SIGN (137.89ms) and
GPR-GNN (156.13ms). However, it should be noted that
as the node scale increases, the negative marginal effect
of the adjacency matrix sparsity gradually weakens (the
path coefficient [ decreases from -0.823 to -0.738),

indicating that the pruning algorithm needs to be further
optimized at a higher scale to maintain the efficiency
advantage.

2) Limitations of Large-Scale Power Grid Fault
Location
The improved DySAT shows high accuracy and

efficiency in fault location tests (Sections 3.3 and 3.5),
but it still has certain limitations in ultra-large-scale
power grid scenarios. The variance analysis results in
Table 5 show that the scale of the power grid has a
significant impact on the fault location error (Wilks'
A=0.412, p <0.001), and the error increases with the

increase of node scale, and the error increase is most
significant in the low-voltage layer (less than or equal to
220V). At the 60k node scale, the maximum error
increase in the low-voltage layer is 89.3m ( p =0.002),

which is significantly higher than the high-voltage layer
and the medium-voltage layer.

This phenomenon can be attributed to the following two
reasons: first, the convergence difficulty of the
multi-head attention mechanism increases when
processing high-dimensional sparse data, resulting in a
decrease in the ability to couple spatiotemporal features;
second, the low-voltage layer itself is more sensitive to
noise (as shown in Table 5 in Section 4.1, for every 10
dB decrease in SNR, the positioning error of the
low-voltage layer increases by about 21.7 m). Therefore,
in ultra-large-scale power grids, although the improved
dynamic adjacency matrix generation and time decay
mechanism of DySAT improve the positioning accuracy,
it still needs to be further optimized to cope with the
challenges brought by high-dimensional sparse data.
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Although the proposed method demonstrates strong
performance in grid tests involving up to 60,000 nodes,
including high fault localization accuracy and fast
inference speed, further investigation is still required to
explore its applicability limits in even larger systems,
considering that national power grids such as those in
China or the United States consist of far greater numbers
of nodes. As the grid hierarchy expands, especially with
the exponential growth in low-voltage distribution
network nodes, the model will face increasingly severe
computational complexity and memory bottleneck issues
when processing high-dimensional sparse graph
structures. On one hand, the generation of dynamic
adjacency matrices and the multi-head attention
mechanism may suffer from reduced convergence
efficiency under ultra-large-scale topologies due to
excessively long feature propagation paths. On the other
hand, although the temporal attenuation mechanism
enhances local sensitivity to time-series information, it
may introduce additional latency accumulation during
wide-area synchronized PMU data processing. To
improve the model’s scalability, future efforts should
explore parallelization strategies based on distributed
graph computing, such as subgraph partitioning and
asynchronous  update = mechanisms to  reduce
computational load per node, while integrating edge
computing architectures to enable regionalized fault
localization and alleviate memory pressure at central
nodes.

3) Coupling Effect of Noise Tolerance and Hardware
Resources

Robustness in a noisy environment is an important
consideration for smart grid operation and maintenance.
The hierarchical Cox model in Table 6 reveals a strong
correlation between node scale and noise failure risk,
with the hazard ratio HR of the low voltage layer (less
than or equal to 220V) as high as 1.45 (95% CI = [1.34,
1.57]). The survival threshold dropped to 18.9dB, much
lower than the 26.4dB of the high voltage layer,
indicating that the coupling effect of hardware resources
and noise interference is particularly significant in
large-scale power grids.

Combined with the noise tolerance data in Table 6 of
Section 4.1, SGC shows higher robustness in noisy
environments due to its simplified structure (HR=0.65,
p <0.001), while the improved DySAT as the baseline

model is more sensitive to noise. This difference is
mainly due to the lightweight design of SGC, which
reduces the complexity of the model and thus reduces the
interference of noise on feature extraction. However, it
also means that in a noisy environment, SGC is more
suitable as a preliminary status assessment tool, while the
improved DySAT needs to be combined with a more
sophisticated noise reduction strategy to improve its
positioning accuracy.

Modern power grids are facing increasingly complex
operating environments, including intermittent load



fluctuations caused by high-penetration renewable
energy integration, topology dynamics triggered by
distributed energy resources (DER), and cyber-physical

threats such as potential network attacks and
communication delays in cyber-physical systems (CPS).
Under these evolving conditions, the proposed

SGC-DySAT collaborative framework demonstrates
certain adaptive potential. Specifically, SGC, with its
simplified structure and low time complexity, can
maintain rapid topological state assessment capabilities
even under frequent topology switching induced by
renewable energy fluctuations. Meanwhile, the improved
DySAT, through dynamic adjacency matrix generation
and temporal attenuation mechanisms, is capable of
capturing localized electrical anomalies caused by DERs
and, with multi-head attention optimization, enhances the
identification of false signals or malicious data injection
attacks. However, as the penetration of renewable energy
increases and the coupling between physical and cyber
components deepens, the model still requires further
improvements in robustness when dealing with
non-stationary time series, heterogencous data fusion,
and adversarial noise interference. Future work may
explore the introduction of adaptive filtering mechanisms,
cross-modal feature fusion strategies, and distributed
training architectures based on federated learning to
enhance the stability and generalization capability of the
model under the complex operating conditions of
next-generation power systems.

4) Advantages and Future Directions of the Model

Collaboration Framework

The PMU data used in the current study is derived from a
high-precision power grid simulation model built on the
MATLAB/Simulink platform, which comprehensively
reflects the dynamic behavior of ultra-large-scale power
systems under various fault scenarios. The
multi-voltage-level grid model constructed using the
Simscape Electrical toolbox, together with the fault
injection mechanism based on the IEC 60909 standard,
ensures that the simulated data maintains high credibility
in terms of time-domain characteristics, topological
variations, and electrical response. Additionally,
Gaussian noise with varying signal-to-noise ratios
(1040 dB) was introduced during the PMU data
acquisition stage, and spectral entropy analysis
confirmed its distributional consistency with real-world
system measurement data, further enhancing the ability
of the simulated data to approximate real-world
conditions to a certain extent. However, despite efforts to
replicate real-world grid operating conditions within the
simulation environment, there remain complex factors
such as nonlinear load fluctuations, external
electromagnetic interference, and equipment aging that
are not fully captured, potentially affecting the
generalization capability of the model in real-world
deployments. To address these limitations, future work
plans to collaborate with power dispatching centers and
multiple provincial grid companies to collect massive
amounts of field data from actual PMU monitoring
systems. A multi-source heterogeneous dataset covering
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diverse climatic conditions, load patterns, and
geographic regions will be established to conduct
cross-scenario and cross-device validation using
real-world data, thereby comprehensively enhancing the
adaptability and robustness of the proposed method in
engineering applications.

The SGC and improved DySAT collaboration framework
introduced in this paper shows significant advantages in
topology status assessment and fault location. SGC
achieves efficient real-time status evaluation through
sparse adjacency matrix and double-layer graph
convolution, while the improved DySAT strengthens the
spatiotemporal feature coupling capability through
dynamic adjacency matrix generation, time decay
mechanism and multi-head attention optimization.
However, the experimental results also reveal some
potential problems. In ultra-large-scale power grids, the
positioning error of the improved DySAT increases with
the increase in scale, and the low-voltage layer is highly
sensitive to noise.

To address these issues, future research can be
considered from the following aspects: first, a more
efficient dynamic pruning strategy can be developed to
further improve the sparsity of the adjacency matrix and
reduce the computational complexity in large-scale
scenarios; second, adaptive weight adjustment or deep
sparse learning methods can be introduced to improve
the convergence ability of the multi-head attention
mechanism on high-dimensional sparse data; third, a
noise suppression module is embedded in the improved
DySAT to improve its robustness in low signal-to-noise
ratio environments; fourth, a model deployment scheme
based on distributed computing is explored to cope with

the high demand for computing resources in
ultra-large-scale power grids.

5. Conclusions

This paper presents a collaborative method that

integrates Simplified Graph Convolution (SGC) and the
improved Dynamic Self-Attention Network (DySAT) to
address the challenges of state assessment and fault
location in ultra-large-scale power grids. The proposed
method leverages topological sparse optimization and
spatiotemporal coupling modeling to enhance both
accuracy and efficiency. The improved DySAT
introduces a dynamic adjacency matrix and a temporal
decay mechanism, which significantly enhances the
model's ability to adapt to changing topologies and detect
faults in real-time.

The dynamic adjacency matrix, generated in real-time,
enables the model to account for the evolving structure
of the power grid, while the temporal decay mechanism
adjusts the weight of historical data, prioritizing recent
information to improve fault detection response times.
These advancements ensure that the model maintains
high precision while operating within the time
constraints required for real-time fault localization.



Experimental results demonstrate that the method
achieves high accuracy and millisecond-level inference
times, even in scenarios involving tens of thousands of
nodes, confirming the feasibility and robustness of the
approach for practical applications in large-scale power
grid systems. The model’s ability to process data
efficiently while maintaining accurate state assessments
and fault locations in complex topological environments
is a key strength.

However, the model's performance in noisy
environments still requires refinement, as its adaptability
to complex, noisy conditions remains an area for
improvement. Additionally, the fusion of multi-source
heterogeneous data has not been fully addressed, which
could further enhance the model's robustness. Future
research can focus on embedding deep physical
constraints and  exploring  cross-domain  data
collaborative modeling to improve the model's
generalization capability and dynamic adaptability. These
improvements will lead to more comprehensive solutions
for the efficient and reliable operation and maintenance
of smart grids.
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