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Abstract. In this paper, we conduct electric power simulation 

by forecasting electricity demand in general households with PV 

power generation based on the current electricity supply and 

demand system in Japan. Specifically, forecast errors for 
electricity demand in general households are taken into account, 

and machine learning is used to forecast the output of residential 

photovoltaic power generation. The actual electricity demand, 

which is the difference between the electricity demand in general 
households and the PV output, is then calculated, and the degree 

of contribution of the assumed model to the electricity system is 

evaluated using an index called imbalance cost from the 

perspective of a retail electricity provider. 
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1. Introduction 

 
In recent years, the penetration of renewable energy has 

been promoted from the perspective of preventing global 

warming, and the massive introduction of photovoltaic 

power generation systems, mainly in residential areas, is 

expected in the future. There are many research papers that 

forecast the output of renewable energy sources, such as 

wind and solar power, a few minutes or hours later [1]-[3]. 

In these papers, prediction methods using neural network, 

which are part of AI, are proposed. In particular, for PV 

forecasting, they combine features that include not only past 

PV output but also other weather data to improve forecast 

accuracy. However, they vary in the time covered by the 

forecast and fail to take into account the bidding time of the 

electricity market. There are currently four electricity 

markets in Japan: the wholesale electricity trading market, 

called JEPX which handles kWh; the capacity market, 

which handles 𝑘𝑊; the supply-demand adjustment market, 

which handles ∆𝑘𝑊 , a short-term supply-demand 

adjustment; and the non-fossil value trading market, which 

adds environmental value to non-fossil power sources. Of 

these, Of these markets, the wholesale electricity trading 

market is particularly active in the trading of electricity for 

30 minutes. Since the value of electricity varies during 

various time periods in this market, it will become 

increasingly important for generators and retail electricity 

providers who bid and win bids to make forecasts for 

which time periods and for how many hours later. 

 

In addition, the deregulation of electric power in Japan 

started in 2016, changing the restrictions between power 

generators and retail electricity providers. As a result, 

when deviating from the balancing rule, an imbalance cost 

is paid to the transmission and distribution companies 

based on the amount of electricity that is the difference 

between the planned and actual values for 30 minutes, 

which are submitted in advance by the retail electricity 

providers. However, there are few research papers that 

quantitatively evaluate the forecast error caused by 

demand forecasting using imbalance cost [4]. It is 

necessary to examine the impact of forecasting errors on 

retail electricity providers. 

 

Therefore, in this paper, we refer to a distribution system 

in which energy storage devices are installed in a 

massively installed solar power generation system in a 

residential area as a residential micro grid (RMG). The 

authors examine the contribution of RMG to the reduction 

of imbalance cost by controlling the grid connection point 

power flow between RMG and the distribution system 

when a large amount of PV power is installed in 300 

households. In addition, we report that when a retail 

electricity provider uses machine learning to forecast PV 

output, the forecast accuracy can be improved by varying 

the input data according to the time of the forecast target 

and by selecting data that takes seasonal correlation into 

account.  
 

2. RMG Model and Assumptions for Each 

Variable 

 

A. Assumed RMG Model 

 

The assumed RMG system configuration is shown in Fig. 

1 [5]. In this paper, electricity simulations are performed 

using this model, in which a large amount of PV power is 

installed in 300 households. 
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Fig. 1. Residential Micro Grid Model 

 

B. Assumptions for Each Variable 

 

The evaluation time period covers the period from 10:00 to 

15:00, when the output of solar power generation is large 

and output fluctuates significantly. Each variable used in 

RMG is the amount of electricity at the grid connection 

point power flow 𝐺(𝑡) [kW], PV output 𝑃(𝑡) [kW], storage 

battery charge/discharge power 𝐵(𝑡)  [kW] ( 𝐵(𝑡)  > 0: 

discharge), and electricity demand 𝐷(𝑡) [kW], forming the 

following relationship equation. 

 

𝐺(𝑡) + 𝑃(𝑡) + 𝐵(𝑡) = 𝐷(𝑡)[kW]   (1) 

 

1) Demand for Electric Power: 𝐷(𝑡) 

 

The electricity demand 𝐷(𝑡) of RMG is formed based on 

the previously prepared data 𝐷′(𝑡) [pu] of electricity 

demand for 8 households [6]. The electricity demand of 

RMG is then averaged for 8 households, which is 

considered to be the electricity demand of one household, 

and the maximum capacity of each household is set to be 4 

[kW], so that the electricity demand of 300 households 

could be expressed as in the following equation. 

 

𝐷(𝑡) = 4 × 𝐷′(𝑡) × 300[kW]   (2) 

 

2) Total Photovoltaic Output: 𝑃(𝑡) 

 

The total output 𝑃(𝑡)  of RMG's photovoltaic power 

generation is assumed using one-minute interval solar 

radiation data from Nara Meteorological Observatory 

observed in Nara City, Nara Prefecture, Japan on May 1, 

2020, with a tilt angle of 30°, and expressed by the 

following equation. 

 

𝑃(𝑡) = (
𝐼(𝑡)

𝐼𝑟𝑒𝑓
× 𝑃𝑐𝑎𝑝 × 𝜂) × 300 × 𝑅𝑝𝑣[kW]  (3) 

 

Note that 𝐼(𝑡): solar radiation on sloping surface[kW/m2], 
𝐼𝑟𝑒𝑓: reference solar radiation(= 1.0[kW/m2], 𝑃𝑐𝑎𝑝: rated 

capacity of PV power generation per household ( =
3.8kWp ), 𝜂 : overall efficiency considering inverter and 

MPPT (Maximum Power Point Tracking) mismatch, etc (=
80%), 𝑅𝑝𝑣: PV installation rate among 300 households (=

50%). 

 

3) Amount of Stored Electricity in Battery Storage 𝐶(𝑡) 

 

The amount of stored electricity 𝐶(𝑡) in the battery storage 

is assumed by the following equation, where the maximum 

capacity is 5 [kWh]. 

 

𝐶(𝑡) = 𝐶(𝑡 − 1) − 𝐵(𝑡)/60[kWh]  (4) 

 

C. Demand and PV Forecasts 

 

Under the current Japanese electricity supply-demand 

system, electricity trading is conducted based on the total 

amount of electricity for 30 minutes. Therefore, in order to 

forecast actual electricity demand in the assumed RMG, it 

is necessary to forecast 30 minutes of electricity demand 

in residential areas and 30 minutes of PV output at the 

same time. However, due to security reasons, the actual 

data on electricity demand in residential areas is not 

available to the public, so the number of data is small and 

high forecasting accuracy cannot be expected. Therefore, 

in this paper, the forecasted value of electricity demand, 

𝐷𝑝𝑟𝑒𝑑(𝑡), is assumed to be predictable by adding up the 

error 𝑥(𝑡) within ±10% of electricity demand, 𝐷𝑝𝑟𝑒𝑑(𝑡), 

using the following equation. 

 

𝐷𝑝𝑟𝑒𝑑(𝑡) = 𝐷(𝑡)/60 + 𝑥(𝑡)[kWh]   (5) 

 

Note that 𝑡: elapsed time within the evaluation time period 

[minutes], and 𝑥(𝑡): forecast error for 30 minutes. 

 

On the other hand, for the PV forecast 𝑃𝑝𝑟𝑒𝑑(𝑡), machine 

learning is used to make the forecast. The following 

describes how the error function 𝑥(𝑡)  and 𝑃𝑝𝑟𝑒𝑑(𝑡) are 

created. 

 

1) How to Create the Error Function 𝑥(𝑡) 

 

First, 300 uniform random numbers are created within 

±10% of electricity demand, and their cumulative 

distribution function is shown in Fig. 2. Then, 300 random 

numbers between 0 and 1 are created, and the horizontal 

axis 𝐷(𝑡) corresponding to the probability on the vertical 

axis of the cumulative distribution function in Fig. 2 is 

created as a normal random number. 

 

Next, numerical integration is performed from the 

following stochastic differential equation (Langevin 

equation) using the normal random numbers as white noise 

[7],[8].  This sequence is then repeated 3000 times, and the 

ensemble average is used as the error function. The 

backward Euler method, trapezoidal method (Crank 

Nicolson method), and Runge-Kutta method are used as 

the integration methods. 

 

𝑚
𝑑𝑥

𝑑𝑡
= −𝑎𝑥(𝑡) + 𝑤(𝑡)  (6) 

 

Note that 𝑡: time, 𝑥: prediction error, 𝑚: inertia term (=
0.04), 𝑎: drift term (= 0.5), 𝑤(𝑡): white noise (irregular 

error). 

 

Each error function is created from data for 10 time 

periods divided into 30-minute intervals from 10:00 to 

15:00, the evaluation time period. This error function is 

shown in Fig. 3. 
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Fig. 2. Cumulative Distribution Function (10:00~10:30) 

 

 
Fig. 3. Error Function (10:00~10:30) 

 

 
Fig. 4. Each Block in LSTM 

 
Fig. 5. Spot Market and Intraday Market 

 

 
Fig. 6. RMSE for Each Number of Units 

 
Table 1. Learning Parameters for Each of the Neural Network 

Number of input layer units 7 

Number of middle layer units 22 

Number of output layer units 1 

Loss function MSE 

Optimization algorithm ADAM 

Learning rate 0.001 

Time step 180 

Batch size 1024 

Output layer activation function linear 

 

 

2) PV Forecasting Method: 𝑃𝑝𝑟𝑒𝑑(𝑡) 

 

The PV forecasting method use neural network, a form of 

machine learning. Among them, RNN (Recurrent Neural 

Network) has the advantage of treating data as a time series, 

and has been confirmed to be a very useful method for 

weather forecasting. Therefore, in this paper, solar radiation 

forecasting is performed using a conventional RNN and 

LSTM (Long-Short Term Memory) [9], which enables 

long-term memory, and the predicted PV output is 

calculated from equation (3). LSTM is a method developed 

to deal with the gradient loss and gradient explosion 

problems that occur when training with conventional RNN, 

and consists mainly of an input gate, an forget gate, and an 

output gate, as shown in Fig. 4. The three gates control the 

flow of information into and out of the cell. Each parameter 

in Fig. 4 can be expressed by the following equation. 

 

 

 
Forget gate: 𝑓𝑡 = 𝜎(𝑊𝑓 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (7) 

Input gate: 𝑖𝑡 = 𝜎(𝑊𝑖 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (8) 

𝑔𝑡 = 𝜎(𝑊𝑐 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (9) 

 Output gate: 𝑜𝑡 = 𝜎(𝑊𝑜 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (10)   

                       ℎ𝑡 = 𝑜𝑡 × tanh(𝐶𝑡)  (11) 

 Cell stage: 𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝑔𝑡  (12) 

 

Currently, the supply and demand of electricity in Japan is 

traded on JEPX (Japan Electric Power Exchange) for 48 

frames of electricity divided into 30-minute units over a 

24-hour period. This JEPX has two main markets, called 

the spot market and the intraday market, as shown in Fig. 

5.  The spot market is open from 8:00 to 17:00 and trades 

are conducted for the next day. On the other hand, the 

intraday market is open 24 hours a day from 17:00 on the 

previous day and trades are conducted until one hour 

before the electricity delivery time. 
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Fig. 7. Comparison of PV Forecast Correlations 

 
Table 2. RMSE by Correlations 

 With 
correlation 

Without 
correlation 

RMSE [kWh] 0.6936 0.9997 

Fig. 8. Comparison of PV Forecasting Methods 
 

Table 3. RMSE for Each Forecasting Method 
(With correlation) 

 RNN LSTM 

RMSE [kWh] 0.8259 0.6936 

 

when retail electricity providers bid in the intraday market, 

they must decide on the amount to bid at least one and a half 

hours before the delivery time of electricity. For this reason, 

this paper assumes the trading hours of retail electricity 

providers in the intraday market and uses PV output two 

hours later as the forecast target, taking into account 

calculation time. The seven characteristic quantities are 

time, solar radiation, temperature, atmospheric pressure, 

humidity, wind speed, and weather. When using these 

features as input data, time steps are simulated for the past 

1 hour, 2 hours, and 3 hours, respectively. As a result, the 

accuracy is best for the past 3 hours, and therefore, the 3-

hour time step is used. The input data is then used for the 

years 2018-2020 observed at Nara Meteorological 

Observatory. In this case, since it has been confirmed that 

solar radiation has seasonal correlation, input data should be 

chosen carefully to improve the accuracy of the forecast 

[10]. Therefore, in this paper, we check the results of two 

types of forecasts, one that takes seasonal correlation into 

account and the other that does not take seasonal correlation 

into account. Then, we compare the forecasting methods 

using RNN and LSTM from the data of the one with better 

forecasting accuracy. In the forecasting that takes seasonal 

correlation into account, input data for the three months 

before and after the forecast target is used, and the neural 

network is used to learn and strengthen the correlation. On 

the other hand, for forecasts that do not take seasonal 

correlation into account, data going back 8 months from the 

forecast target are used as input data. For example, a 

forecast that takes into account seasonal correlations would 

learn two months from March to April 2020 and three 

months each from April to June 2018 and April to June 2019. 

On the other hand, for forecasts that do not take seasonal 

correlations into account, eight months are learned from 

September 2019 to April 2020. In addition, the number of 

units that resulted in the smallest forecast error when the 

number of units in the middle layer is increased to some 

extent is used [11]. Fig. 6 shows this result. In addition, 

MSE (Mean Squared Error) is used as the loss function and 

the optimization algorithm is ADAM (Adaptive Moment 

Estimation). The equation for updating the weight by 

ADAM is shown below. 

 
𝑚0 = 𝑣0 = 0 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)
𝜕𝐸

𝜕𝑤
 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2) (
𝜕𝐸

𝜕𝑤
)

2

 

𝑚𝜏̂ =
𝑚𝜏

1 − 𝛽2
𝜏 

𝑣𝜏̂ =
𝑣𝜏

1 − 𝛽2
𝜏 

𝑤 = 𝑤 − 𝛼
𝑚𝜏̂

√𝑣𝜏̂+𝜀
  (13) 

 

Note that 𝛽1 = 0.9, 𝛽2 = 0.999, 𝛼 = 0.001, 𝜀 = 10−8, 

𝑚: first moment estimate, 𝑣: second raw moment estmate 

𝜏: number of parameter updates, 𝑤: weight.  

Each parameter in this ADAM uses the recommended 

parameters [12]. 

 

Using these numbers of units, a three-layer neural network 

is constructed and forecasts are made. The values of these 

learning parameters are shown in Table 1.  

Fig. 7 shows the results of PV forecasts with and without 

seasonal correlation at May 1, 2020, and the RMSE (Root 

Mean Squared Error) is shown in Table 2. From this, it can 

be confirmed that the PV output forecast accuracy 

improves when the seasonal correlation is taken into 

account. Table 3 shows the RMSE for the forecast results 

of RNN and LSTM for the forecast with seasonal 

correlation. Fig. 8 confirms that LSTM is more accurate 

than RNN, but it is not able to follow the rapid PV 

fluctuation from 10:00 to 11:30, respectively. The cause of 

this is thought to be influenced by the parameters of the 

neural network, such as activation function, number of 

training cycles, and batch size, but the main reason is that 

training data close to the actual values were not prepared.  
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Fig. 9. Each amount of Power 

 

 
Fig. 10. Imbalance Cost during the Evaluation Time Period 

(LSTM) 

 
Table 4. Comparison of Imbalance Cost 

 RNN LSTM 

Surplus imbalance cost[yen] 713.04 268.69 

Insufficient imbalance cost[yen] 0 36.75 

Total imbalance cost[yen] 713.04 231.94 

 

Therefore, it is possible that better forecasting results can be 

obtained by including past data in which sudden 

fluctuations occurred as training data. In addition, since it 

is necessary to optimize the parameters, improvement of the 

training data and the forecasting method is an issue to be 

addressed in the future. 

 

3. Simulation Result 
 

Fig. 9 shows the relationship among the grid connection 

point power flow 𝐺(𝑡), battery recharge/discharge power 

𝐵(𝑡), and imbalance power flow during the evaluation time 

period using the Crank Nicolson method and LSTM. 

Fig. 9 shows that at the retail electricity providers, the 

insufficient imbalance is not completely resolved at 11:00 

to 11:30, 12:00 to 12:30, and 13:30 to 14:00, and the surplus 

imbalance is not completely resolved at 10:00 to 11:00, 

11:30 to 12:00, 12:30 to 13:00, and 14:30 to 15:00 even 

when the battery storage is charged and discharged. Based 

on these results, the imbalance costs for each time period 

according to the unit cost of imbalance costs on May 1, 2020 

are shown in Fig. 10, and a comparison of costs in RNN and 

LSTM is shown in Table 4 [13]. At present, there is no clear 

standard to indicate the degree of contribution to 

maintaining the supply-demand balance of the grid, since 

there is no obligation to implement the same amount as the 

planned value in the microgrid. Therefore, we assume the 

imbalance cost paid by conventional retail electricity 

providers as a penalty for RMG. The result is that RMG 

receives 713.04 yen when forecasted by RNN and 231.94 

yen when forecasted by LSTM. Fig. 10 shows that the 

imbalance costs are significantly larger from 10:00 to 

10:30 and from 12:30 to 13:00 during the evaluation time 

period. We consider that these time periods are due to the 

creation of stochastic errors and particularly inaccurate PV 

power generation forecasts. To reduce imbalance costs 

during these time periods, we consider that, as mentioned 

earlier, there is a need to be devised in training data and 

forecasting methods, and to plan bids more strategically 

based on market bidding time. 

 

4. Conclusion 

 

This paper limits the bidding time of retail electricity 

providers to a few hours before the electricity market 

closes, but shows how RMG reduced imbalance costs by 

recharging and discharging storage batteries, while at the 

same time reducing imbalance power by the same amount. 

Electric power simulation using an error function and 

neural network confirm the need to consider seasonal 

correlation in PV output forecasting and that LSTM has 

higher forecasting accuracy than RNN. In that case, the 

prediction was made from the standpoint of a retail 

electricity provider by considering the bidding time and 

seasonal correlation in the electricity market, but it is 

necessary to further improve the prediction accuracy by 

successively changing each parameter of the neural 

network and the input data. Although a three-layer neural 

network is used in this paper, it may be possible to further 

improve the forecasting accuracy by increasing the 

number of middle layers and using deep learning.  

 

Therefore, in the future, the authors are going to apply the 

deep learning and to consider various input data patterns 

and make predictions. The authors also intend to consider 

bidding times from several days in advance to reduce 

imbalance costs, which are important for retail electricity 

providers. 

 

Acknowledgement 
 

This work was supported by JSPS KAKENHI Grant 

Number 16K06242. 

 

References 
 

[1] Atsushi Yona, Tomonobu Senju, Toshihisa Funabashi, 
Hideomi Sekine, “Application of Neural Network to 24-hours-

Ahead Generating Power Forecasting for PV System”, IEEJ 

Trans. PE, Vol.128, No.1, pp. 33-40 (2008) 

[2]  Atsushi Yona, Tomonobu Senju, Naomitsu Urasaki, 
Toshihisa Funabashi, “Application of Recurrent Neural Network 

to 3-Hours-Ahead Generating Power Forecasting for Wind 

Power Generators” IEEJ Trans. PE, Vol.129, No.5, pp. 591-597 

(2009) 
[3]  Yutaka Sasaki, Naoto Yorino, Farid Imam Wahyudi, Dai 

Seikoba, Mitsumasa Asaba, Liying Ma, Yoshifumi Zoka, “A 

Simple and Reliable PV Forecasting Method for Local Area 

https://doi.org/10.24084/repqj20.340 462 RE&PQJ, Volume No.20, September 2022



Energy Management”, IEEJ Trans. PE, Vol.137, No.7, pp. 538-

545 (2017) 

[4]  Chika Wada, Satoshi Takayama, Yoshihiko Susuki,  
Atsushi Ishigame, Kazuhiro Deguchi, Kouta Konishi, Daisuke 

Ishizuka, Kenichi Tanaka, “A Multi-Scale Supply Operation of 

Grid-connected Micro-Grid”, IEEJ Trans. PE, Vol.140, No.3, 

pp.166-175(2020) 
[5]  Takeyoshi Kato, Hiroshi Yamasaki, Yasuo Suzuki, “A Study 

on Dumping Power Flow Fluctuation at Grid-Connection Point of 

Residential Micro-Grid with Clustered Photovoltaic Power 

Generation Systems Considering Difference in Solar Irradiance 
Patterns in Urban Districts”, IEEJ Trans. PE, Vol.130, No.3, pp. 

305-312 (2010) 

[6]  Satoshi Nomoto, Teruhisa Kumano, “Optimal Operation 

Planning for Residential PEFC Cogeneration System Considering 
Periodical Boundary Constraints Concerning Hot Water in Storage 

Tank”, IEEJ Trans. PE, Vol.136, No.6, pp. 547-556 (2015) 

[7]  Myung-man Kim, Andrew L. Zydney, “Effect of electrostatic, 

hydrodynamic, and Brownian forces on particle trajectories and 
sieving in normal flow filtration”, Journal of Colloid and Interface 

Science, Vol.269, pp.425-431(2004) 

[8]  Ryosuke Nakagawara, Satoshi Uchida, Taiichi Shibuya, 

Hiroyuki Nishikawa, “Numerical Simulation of Gold 
Nanoparticles Dynamics in Dielectrophoretic Assembly”, IEEJ 

Trans. SM, Vol.137, No.4, pp. 107-114(2017) 

[9]  Sepp Hochreiter, Jürgen Schmidhuber, “Long Short-Term 

Memory”, Neural Computation 9, pp. 1735-1780(1997) 
[10]  Shoji Kawasaki, Hisao Taoka, Taiki Nagao, Keisuke 

Onaka, ”Development of Insolation Forecasting Method by 

Genetic Algorithm”, IEEJ Trans. PE, Vol.135, No.2, pp. 89-96 

(2015) 
[11]  B. Kermanshahi, “Recurrent neural network for forecasting 

next 10 years loads of nine Japanese utilities”, Neurocomputing, 

Vol.23, No.1-3, pp. 125-133(1998) 

[12]  Diederik P. Kingma, Jimmy Lei Ba, “ADAM: A METHOD 
FOR STOCHASTIC OPTIMIZATION”, ICLR(2015) 

[13]  Kansai Transmission and Distribution: “about the imbalance 

cost unit price”, 

https://www.kansai-
td.co.jp/consignment/agreement/imbalance.html (Accessed on 

March 15, 2022) 

 

https://doi.org/10.24084/repqj20.340 463 RE&PQJ, Volume No.20, September 2022

https://www.kansai-td.co.jp/consignment/agreement/imbalance.html
https://www.kansai-td.co.jp/consignment/agreement/imbalance.html



