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Abstract. In response to the increasing demand for
sustainable energy solutions in industrial design, this
study proposes an Enhanced Adaptive Neuro-Fuzzy
Inference System (ANFIS) optimized by the Red Deer
Algorithm (RDA) to enhance the efficiency and
adaptability of water-based energy systems for green
manufacturing. The ANFIS model is employed to
accurately predict and optimize complex nonlinear
relationships in water energy utilization, while the RDA
enhances parameter tuning to achieve superior system
performance. Real-time adaptive control is realized
through the proposed approach, minimizing operational
costs and improving the reliability of energy systems.
Key factors such as energy conversion efficiency, water
flow dynamics, and environmental impacts are integrated
into machine learning-driven predictive models for
comprehensive system analysis. Comparative results
demonstrate  that the ANFIS-RDA  framework
significantly = outperforms traditional optimization
methods in energy savings and resource utilization,
offering a transformative pathway towards carbon-
negative, energy-efficient, and eco-friendly industrial
production processes.
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1. Introduction

The sustainable development of industries depends
heavily on effective renewable energy solutions at this
critical moment. Water energy-all its subtypes including
hydropower and tidal energy with wave energy-
establishes itself as an impressive untapped resource for
sustainable manufacturing operations [1]. Green
production methods gained prominence because
industrial interests face growing pressure related to
climate change and environmental deterioration as well
as declining fossil fuel stores [2]. Industrial design leads
the industry transformation which integrates novel water
energy solutions into production systems to boost
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operational performance alongside diminishing pollution
impacts [3].

Since the last decades the industrial sector maintains its
position as a foremost producer of greenhouse gas
emissions and environmental contamination [4]. The
current manufacturing industry bases its operations
mainly on fossil fuels which produces significant carbon
emissions while maintaining hazardous energy
consumption habits. Water energy solutions prove to be
suitable and efficient ecological approaches to generate
clean electricity that powers industrial operations [5].
The use of water energy strengthens both the sustainable
power distribution and reduces the dependency on fossil
fuels along with industrial waste reduction. The
advancement of industrial design elements enables a
smooth implementation of hydropower together with
water-based energy solutions across production facilities
while maintaining economic viability and operational
efficiency [6].

The industrial sector benefits from various advantages
that come from water energy solutions. Hydropower
stands as one of the oldest renewable energy systems
which generates dependable power for managing large
manufacturing operations [7]. Hydropower keeps
operating continuously because it differs from solar and
wind energy which depend on weather conditions [8].
Fielded innovations in water energy technology along
with hydroelectric systems, tidal converters and wave
devices create opportunities for efficient usage of water
power across industrial environments. The solutions
work best when industries around water bodies utilize
these opportunities to manage clean energy generation
using natural hydrodynamic forces effectively [9].

A successful implementation of water-based energy
solutions demands cooperation between engineers and
architects in addition to environmental scientists [10]. To
address environmental concerns industrial designers
should work on creating equipment with higher energy
efficiency alongside productive layouts while building
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systems that join renewables with the main power supply
[11]. The green nature of industrial facilities receives
additional enhancement through sustainable water
management methods which include both closed-loop
cooling systems and water recycling technologies.
Industries reduce environmental damage substantially by
focusing on energy conservation and with resource
efficiency which maintains productive competition levels
[12].

In addition, government policies and international
sustainability goals also contribute to speeding up the use
of water energy solutions in industrial design [13]. As
industries place greater emphasis on carbon neutrality
and improvement of corporate social responsibility, the
desire for clean energy or renewable energy is growing
and industries are being encouraged to shift toward
greener energy options. The world is driven by
regulatory frameworks that mature renewable energy
investment, green manufacturing tax incentives and
research funding for new water energy technologies [14].
Additionally, governments, private sector firms and
research institutions have engaged in and continue to
cooperate to support advances in water energy solutions
technologies aimed at providing affordability and lower
cost of manufacturing for manufacturers [15].

Despite all the potential that water energy offers for
industrial design, there are still some challenges. For
instanc, water energy infrastructure is typically more
expensive to install initially than some other forms of
energy infrastructure, and fit or return to investment must
be carefully considered by industries [16]. Also,
hydropower calls for ecological consideration, i.e.,
habitat disruption and water resource planning and its
environmental impact assessment. Fortunately, these
challenges can be mitigated as these advancements in
technology, policy support, industry driven innovation
will result in water energy as a major factor of green
manufacturing in the future.

Section 2, the Literature Review, provides a
comprehensive examination of relevant studies and
methodologies, highlighting gaps in current research and
establishing the theoretical foundation for the study. In
Section 3, the Proposed Architecture introduces the
innovative framework or model designed to address the

Table 1. Conventional technique research gap validation

identified research gaps, detailing its components,
mechanisms, and how it enhances existing approaches.
Section 4, the Performance Evaluation, presents a
rigorous assessment of the proposed model's
effectiveness, comparing its performance with existing
methods using various metrics such as accuracy,
efficiency, and scalability. Finally, Section 5, the
Conclusion, summarizes the key findings of the research,
reflects on its contributions to the field, and outlines
potential directions for future work, emphasizing how
the study advances knowledge and offers practical
implications for industry applications.

2. Related Works

Water energy solutions have been widely integrated into
industrial design and studied in terms of efficiency,
feasibility and environmental issues of hydropower, tidal
energy, and wave energy in manufacturing. The
technological advancements of energy conversion, small-
scale hydroelectric system, tidal stream generator, wave
energy converters, have been studies. Moreover, the
economic and regulatory factors that drove the industrial
adoption were researched through the process of
financial incentives, policy frameworks, and long-term
sustainability benefits. To stay in line with the greener
direction these industrial processes are heading towards,
this literature survey undertakes a review of existing
research that includes key innovations, its advantages
and gaps in the implementation of water energy solution
to support sustainable manufacturing process.

Paulino José Garcia-Niet et al. [17] have developed
hydrogen gas production forecasting models from
biomass pyrolysis using multilayer perceptron (MLP)
and support vector regression (SVR) with artificial bee
colony (ABC) algorithm. The study produced results
indicating that the introduced prediction models achieved
enhanced accuracy estimation of hydrogen yield for
bioenergy system optimization. The method delivered
useful results since the optimization process allowed for
biomass conversion without needing time-consuming
experimental testing. Using this method faced two main
issues because it needed excellent input information
while the model failed to adjust to multiple types of
biomass raw materials.

Authors Techniques Involved Advantages Disadvantages
Paulino José Garcia-Niet et al., | MLP, SVR, ABC Acct.lra.te hydrggen . yield Data  dependency, limited
. prediction, optimized biomass R

[17] Algorithm . generalizability

conversion
. High forecasting accuracy, . .

Amel Ali Alhussan et al., [18] BER, PSO, RNNs adaptable to solar/wind changes High computational cost

Abhijit Kumar et al., [19] ANNs Fast ~ assessment, reduced leltf?d interpretability, data-
experimental costs intensive

Osama Khan et al., [20] ANFIS, GMM Enhanced photocatalysis, lower lelted scfalablhty, complexity
costs in synthesis

K. Adeli et al., [21] CNNs, LSTM Impr.ov.ed hydrogen production | High dz.ita requirement, risk of
prediction overfitting
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Amel Ali Alhussan et al., [18] have combined Al-Biruni
Earth Radius algorithm with Particle Swarm
Optimization for improving recurrent neural network
(RNN) to forecast hydrogen production. The model
generated improved forecasting accuracy so it
demonstrates usefulness for planning and managing
energy system operations. Changed solar and wind
energy conditions did not affect the methodology's
prediction accuracy because it demonstrated flexible
performance in its output of hydrogen predictions. The
study showed high computational complexity acted as an
implementation challenge that required significant
processing power and time to accomplish scale-up.

Abhijit Kumar et al., [19] have developed artificial
neural networks (ANNs) which predict as well as
optimize metal hydride hydrogen storage systems. The
approach generated fast and exact results about hydrogen
absorption and desorption rates thus minimizing the
requirement for slow and expensive physical tests. This
scientific work illustrated how material selection
optimization  together  with  system efficiency
enhancement became possible through its research
approach. Here, develop an ANN-based models for
prediction but their insufficient interpretability decreases
the ability to explain decisions and needs considerable
training data for peak functionality.

Osama Khan et al., [20] optimized solar driven
photocatalysis in hydrogen production using a hybrid
model which uses Adaptive Neuro Fuzzy Inference
System (ANFIS) and Gaussian Mixture Model (GMM).
Machine learning algorithms were used to predict
optimized photocatalytic reaction settings and then
research was done to improve the hydrogen yield. It also
reduced the usage of material and reduced experimental
expense while improving performance. Optimization of
the synthesis of the nanocomposites remained
challenging, so large scale application development with
nanocomposites was complex for research.

K. Adeli et al., [21] have integrated renewable energy
data of solar and wind sources in their attempt to create a
framework to optimize hydrogen production in
Morocco's coastal regions in a deep learning-based
framework. To forecast and control hydrogen generation,
the authors employed CNNs and LSTM networks. The
resulting idea reduced predictive accuracy and efficiency
of planning for renewable hydrogen production.
Nevertheless, limitations included the need for extensive
real time energy data and overfitting problems in deep
learning models, that required updated models and model
retraining frequently.

Recent advancements in hydrogen production forecasting
have demonstrated the potential of intelligent models
such as MLP, SVR, RNNs, ANNs, ANFIS, and deep
learning frameworks (CNNs, LSTM) when integrated
with optimization algorithms like ABC, PSO, and BER.
These models have shown improved accuracy in yield
prediction, operational cost reduction, and adaptation to
variable renewable energy inputs. However, they face
critical ~limitations including high computational
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complexity, dependency on large datasets, limited
generalizability across biomass types, and challenges in
model interpretability and scalability. In response to
these gaps, this study contributes a robust hybrid
predictive framework that leverages enhanced learning
algorithms to improve scalability, interpretability, and
adaptability for diverse industrial hydrogen production
scenarios. The proposed model addresses data
dependency and generalization issues, aiming to provide
accurate forecasting while minimizing computational
overhead, thereby supporting sustainable and efficient
hydrogen energy systems.

3. Proposed Design Architecture

These techniques main intention will be to describe the
steps of designing machine learning models to maximize
the electrolysis operation for green hydrogen production
using renewable energy input. The electrolysis is a
procedure in which the water is broken down with the
help of electricity into hydrogen as well as oxygen [22].
By flowing an electric current equal with the chemical
electrical gradient, it can pass and cause water to
dissociate into the fundamentals. The generated
hydrogen gas can then be used as clean and renewable
energy sources. The electrolysis of gauze for generation
of hydrogen can be affected by a wide range of factors.
The process is controlled by variables like the nature of
the electrolyzed material, the purity of the water, the
temperature, the development strain, and the energy
source used to power it. It is important to optimize these
variables to empower cost effectiveness and efficiency in
the production of hydrogen [23].

The conventional optimization of process of electrolysis
was based on empirical basis and manual adjustments.
These techniques are optimal to some content but there
are limitations in terms of measure of their capability to
optimally optimize the procedure. However, it is also
labour intensive and time consuming making them less
practical for large scale hydrogen generation. It is found
that machine learning is a promising technique for the
selection of electrolysis in hydrogen generation. There is
different sort of machine learning models which can be
utilized for the identification of relationship between
input parameters and efficiency of the -electrolysis
procedure can be done using the Regression architectures.

In particular, neural networks are appropriately designed
for complex, nonlinear relationships in the information.
It can learn from past information for making
identifications about future efficiency enhancements [24].
Similarly, reinforcement learning was applied to
optimize the electrolysis process over time by training
from feedback acquired from the architecture. Such
capability can help the architecture adapt to changes in
conditions, or improve on efficiency. The use of machine
learning architectures can generate higher stages of cost
effectiveness and efficiency in green hydrogen
production for practitioners and researchers. These
architectures can learn from past information, detect
patterns and carry on identifications in order to optimize



the electrolysis procedure for greatest effectiveness and
base effectiveness.

A. Data Collection and Pre-Processing

The information gathered from industrial scale
electrolysis presents interesting information about the
real-life conditions and challenge that need to be
addressed in hydrogen generation. All this data considers
electricity consumption, production rate, operating
parameters and water quality. Laboratory experiments
can be used to provide controlled environment for
validating certain parameters of the electrolysis process.

Information obtained from these experiments can help
understand the theory of electrolysis itself and can be
used to justify and refine machine learning architectures.
One critical factor in the electrolysis procedure is the
count of electricity input, which directly results in
efficiency and hydrogen production cost. They are
required for improving the optimal models of choosing
the procedure, and provided with information on the
electricity consumption.

Durability and efficiency of the electrolyzed depend on
the water quality used in the electrolysis procedure.
Validation of the electrolysis procedure depends

variables like mineral content, pH level and water purity,
which they must be clearly written in the procedure for
data collection. Variables may require pressure and
temperature affecting the accuracy of the procedure of
electrolysis procedures. These variables are critical in
condition of electrolysis efficiency since data on them
and their changes during function, including the surface
location of the electrolyte and the electrolyte
conductivity, must be considered. However, a possession
of such data can help you understand the hidden
techniques and optimize the procedure.

B. ANFIS Architecture

The ANFIS is a single efficient hybrid model developed
based on the merging of the strength of ANN and Fuzzy
Logic methodologies. A hybrid learning algorithm is
designed to achieve this combination through selecting
the variables with membership function using the back
propagation approach and the variables with the
consequent using the least squares technique. ANFIS
uses this hybrid technique, it is first, a training adaptable
behaviour of ANN and second mechanical reason and
flexibility of learning. The below rules define a fist order
sugeno type fuzzy inferring architecture that can be taken
into account by ANFIS. The ANFIS will be presented in
Figure 1.
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Figure 1. ANFIS architecture

RULE 1:=if X1= Al and X2 = Bl then F1=PLX1+Q1X2+RI (1)
RULE 2:=if X1= 42 and X2 = B2 then F2 = P2X1+02X2+R2 (2)

In equation (1) and (2) ,the linear variables of the fuzzy
rule are defined as Al, A2, B1, B2, and P1, P2, Q1, Q2
and R2, which are the fuzzy pairs [25].

Due to the fact that ANFIS is an architecture for the
nonlinear relationships between outputs and inputs, this
design manages ANFIS to create this architecture for
tasks such as regression validation and time series
identification [26].
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Layer 1: Fuzzy Fuzzification, which is the layer
containing the adaptive nodes which have fuzzy
membership functions. This layer is responsible for
transforming the numerical input variable into a fuzzy
pairs by each input parameter mapped to a corresponding
membership function and computes the degree to which
an input variable is correlated with a specific fuzzy pair
and hence quantifies the uncertainty or vagueness
associated with the input [27]. The results by (3) and (4)
are presented.

O, =, (X,),1=12 (3)

O; =y, (X,).1=3,4 (4)



Here, the output of the node is O] and the membership

functions are p,, and p,, .

Layer 2: Multiplication contains of fixed nodes which
validate a specific function described as follows in
equation (5),

012 =0 = Hyp (XI)X:uBI (Xz),I: L2 (5)

Layer 3: Normalization is expressed in equation (6)

[0)
1
w; =

o

= (6)

), + o,

Layer 4: defuzzification presents the procedure of de-
fuzzifying the signal related on the below formulation in
equation (7),

O = f; = (e, X, + B X, +7, ).l =12 (7)
Here, a,, B, and y, is defined as the linear parameters.

Layer 5 (summation), the output node is computed as
the summation of complete input signals is expressed in
equation (8).

le1f1
ZIwI

The above defined ANFIS architecture is an example of
hybrid technique of ANN and fuzzy logic [28] to
enhance identification performance by including both
nonlinear and linear variables. Here the correlation of
fuzzy rules and linear variables is defined with linear
functions in layer 4, i.e., along with fuzzy rules, the input
variables are linear [29]. Second, these consequent
variables are normally upgraded during the forward pass
of the learning procedure by means of the least square
technique. ANFIS allows the architecture to control
which these variables can be managed so that linear
dependencies in the information can be collected.
Similarity, the nonlinear variables are put forward in
layer 1 and correlated to the fuzzy membership function
that represents the extent of the input parameters to the
fuzzy pairs [30]. The premises variables are nonlinear,
and because they are critical for the architecture to
collect non-linear relationships between output and input
variables, these premises variables must be adjusted [31].
They are then upgraded using the backpropagation - a
standard technique in the ANN learning of reducing the
errors between actual and the predicted outputs [32].

=12 (8)

o} =

Yaefi =

C. Red Deer Algorithm

The ANFIS’s weighting parameter is selected by using
the RDA. Its distinction is in that it is new optimization
algorithm sets included inspiration from the natural
world because of the red deer characteristics. The
technique is motivated by red deer, which are watchful,
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search for food, and cluster to explore and exploit the
solution space efficiently. By relying on those innate
behaviors, it achieves itself from those traditional
algorithms, and introduces a new way of solving
problems in optimization. In fact, the continuing interest
in the subject that has arisen in the optimization
community [33] is due to the originality of the subject
and its possibly utilizes. Moreover, ROA is a relatively
new contribution into the discipline that has already
attracted attention of researchers interested in using and
finding out what ROA has to offer. This algorithm has
been applied to various functions, including image
processing, robotics, and engineering design; it was
proven that can use this algorithm to solve a very
complex optimization problem and perform very well
unlike many other existing optimization algorithms [34].
During the roaring stage of male red deer, they mimic the
roaring characteristics of deer to initiate the optimization
procedures. In this stage, this is allowed to exploit the
possible solutions with local search behaviours [35]. In
order to diversify, male deer add randomization
parameters to diversify their communities during their
investigation expressed in equation (9) and (10).

Y Y, Y, Yy
Y=Y, = Y1,1 Y],D Y[,M 9
Y, NxM _YN,I YN,D YN,M e

Y,, =LB, +R.(UB, - LB, ) (10)

A section of the hinds in commandeers harems mate with
them, users can manage exploration and diversity by
managing the count of hind’s mate with commanders
utilizing the variable. This phase promotes population
diversity and exploration. In order to mimic the natural
characteristics of deer during the breeding season, every
stag mates with the closest hind. This procedure balances
exploitation and exploration aspects. The next generation
is computed by two techniques, retaining elite solutions
and selecting offspring related on fitness parameters. The
selection procedure shapes the complete shapes the final
population and concludes the iterative optimization cycle.
The RDA offers a unique optimization technique,
allowing users to fine tune its characteristics related to
the behaviours of the problem at hand. Machine learning
models can continuously validate information from
different actuators and sensors in the electrolysis
architecture to make real time adjustments to operational
variables. The step-by-step process is presented as
follows,

+ Initialize Population: Randomly initialize the
positions of red deer (candidate solutions) in the search
space, which represent different sets of ANFIS
parameters.

Evaluate Fitness: For each red deer, train
ANFIS with the corresponding parameters and calculate
the fitness (e.g., error rate or accuracy).



* Update Position: Move each red deer based on
RDA’s rules, adjusting their positions according to their
fitness. Red deer move closer to better solutions (lower
error or higher accuracy).

+ Leader Update: The best-performing red deer
(leader) influences other red deer, guiding them towards
the optimal solution.

+* Repeat: Continue this process over multiple
iterations until the stopping criterion (e.g., max iterations
or satisfactory fitness) is reached.

+ Return Best Solution: After the iterations, the
best-performing red deer provides the optimized ANFIS
parameters.

The term is UB,, , LB, , the random number in the

interval [0,1] by R, M the number of decision parameters,

Y, p) the dimension in search space, Y, the red deer.

There is a portion of the hinds that can mate with them,
and the users can do that with a variable that commands
the count of hinds’ mate with commanders. This is useful
to promote population diversity and population
exploration. But the question is: If required to simulate
red deer’s breeding behaviour, every stag mated with its
nearest hind. It balances the aspects of exploitation and
exploration of the procedure. Other two techniques of
computing the next generation used by it are retain the
elite solutions and pick the offspring based on some
fitness related values. Therefore, the entire shapes of the
final population are decided by the selection procedure,
and closes the iterative optimization cycle. Its specific
optimization technique permits optimizing the parameter
due to its ability to tune its behaviours in accordance
with behaviours of the problem. Machine learning
models retain at all times to validate several actuators
and sensors in the electrolysis architecture obtaining real
time adjustments of several operational variables.

Machine learning technique can validate online
information from renewable energy sources including
wind power and solar associated with capacity
scheduling on their availability of renewable energy
sources to justify maximizing the use of renewable
energies and cut down on the use of fossil fuels. Machine
learning architectures enable the use of electricity for
electrolysis to be optimized with renewable energy
sources such that hydrogen production is as energy
efficient as is possible. Machine learning architectures
have now been already executed by different companies
and research institutions for optimizing production of the
green hydrogen on an industrial scale. Additionally, these
implementations have demonstrated great efficiency and
cost beneficial gains.

4. Outcome Evaluation

The performance of the proposed ANFIS RDA model
was assessed against ANFIS GA (Genetic Algorithm),
ANFIS PSO (Particle Swarm Optimization), ANFIS
GWO (Grey Wolf Optimization), by using multiple
performance metrics such as False Positive Rate (FPR),
False Negative Rate (FNR), execution time, error
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parameters, Dice Similarity Coefficient (DSC), Jaccard
Index, error value, accuracy, and precision. Accuracy and
precision of classification and optimization are better
than other models are indicated by the results; ANFIS-
RDA outperforms the other models. The ANFIS-RDA
parameters and error values are lower and also form
better error parameters than those of the ANFIS
predictive controller, which indicates that it is better at
minimizing prediction errors and attaining more reliable
energy management. Moreover, the model resulted in
lower FPR and FNR, meaning that have reduced
misclassification rates that would improve the efficiency
of the water energy optimization process. Moreover, in
terms of comparison to ANFIS-GA, ANFIS-PSO,
ANFIS-GWO, ANFIS-RDA gave better DSC and
Jaccard Index values, demonstrating the superiority of
ANFIS-RDA in energy distribution optimisation. It is
shown that even though the ANFIS RDA has a higher
accuracy, its computational efficiency is competitive and
the proposed solution is thus practical for real time
application. ANFIS-RDA is found to be robust for green
manufacturing process water energy solutions by
providing lower accuracy, more execution speed with
less inevitable error. Figure 2 gives the confusion matrix
of the proposed model.

Actual

-10

Predicted
Figure 2. Confusion Matrix
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Figure 3. Validation of FPR and FNR



The False Positive Rate (FPR), False Negative Rate
(FNR) for proposed ANFIS-RDA model in comparison
with other benchmark models such as ANFIS-GWO,
ANFIS-PSO and ANFIS-GA are presented in Figure 3.
Keys to evaluation of classification accuracy and
minimization of error include FPR(blue bars) and FNR
(red bars) in optimization of water energy systems for
green manufacturing. Using the proposed ANFIS-RDA
model, FPR and FNR values of less than 0.12 and ~ 0.08
respectively indicate a better ability at correctly
classifying the operational conditions and reducing the
misclassification errors. On the other hand, ANFIS-
GWO has an FPR of ~0.18 and FNR of ~0.13, ANFIS-
PSO has an FPR of ~ 0.15 and FNR of ~ 0.10, ANFIS-
GA achieves the worst FPR of about 0.20 and FNR of
about 0.14. The promising result of the ANFIS-RDA
model in reducing the number of false positives as well
as false negatives is reflected in these results, and
hopefully provides an efficient and reliable system. The
study’s abstract also states that the findings align with the
study’s aim to apply Al to optimize energy efficiency and
minimize operational costs. In this case, the lower FPR
and FNR values of the ANFIS-RDA model confirm its
capability to have a better performance in optimizing
electrolysis parameters than traditional models. This
promotes  better  energy  utilization,  reduced
misclassification of system states, and better ability to
integrate this technology among sustainable industrial
designs.

Computational Time Analysis of Models

" g
ANFIS-GWO ANFIS-PSO ANFIS-GA
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Figure 4. Execution time

Also, the analysis of computational time of ANFIS based
models is given in the form of Figure 4: computational
time of ANFIS-RDA (Proposed), ANFIS-GWO, ANFIS-
PSO, and ANFIS-GA. However, an important metric to
evaluate the efficiency of optimization techniques is the
execution time. Finally, the proposed ANFIS-RDA
model exhibits the best execution time (~0.5s), one of the
computation efficiency. The execution time of ANFIS-
GWO, ANFIS-PSO, and ANFIS-GA are approximately
0.8s, 1.2s, and even 1.5s respectively. It is shown that
ANFIS-RDA has better performance in solving complex
optimization problems with reduced execution time.
Realizing real time adaptability is ensured by faster
execution, which is perfect for the purpose of water
energy management in green manufacturing. The results
also confirm that RDA improves the speed and efficiency
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of the ANFIS. The proposed model is a practical
alternative to existing methods as it offers lower
computational cost compared to others. It reinforces the
knowledge that the use of Al driven optimization will
affect the reduction of energy consumption and will help

to enhance industrial sustainability.

Error Comparison of Models
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Figure 5. Error parameters

The error comparison in terms of bar chart is given for
the different ANFIS models utilizing the Proposed model
along with ANFIS-GWO, ANFIS-PSO, and ANFIS-GA
is shown in Figure 5. The two plausible error metrics are
shown with red (Mean Squared Error, MSE), and blue
(Root Mean Squared Error, RMSE). Overall error for the
Proposed ANFIS RDA model is the least, which
indicates its best performance in optimization. The
Proposed model also performs better in terms of error
value than ANFIS-GWO and has even higher error value
than ANFIS-PSO, ANFIS-GA. The error values
produced by the ANFIS-GA among them are the highest,
which indicates the lowest estimation accuracy. The
obtained values of reduced MSE and RMSE in the
Proposed model indicate that it so robust that it
minimizes the prediction errors. The improvement
implies that the optimization of ANFIS using RDA
indeed improves its performance and makes it a better
option for such applications as water energy management
in green manufacturing. Lower error rates can lead to
making better decisions and reduced industry system
efficiencv.
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Figure 6. DSC and Jaccard Index



The performance comparison of different ANFIS based
models such as Proposed Method, an ANFIS based
model, ANFIS-GWO, ANFIS-PSO, and ANFIS-GA, in
terms of two key evaluation metrics, Dice Similarity
Coefficient (DSC) and Jaccard Index, in Figure 6. The
Jaccard Index can be represented in orange, and DSC in
green. The DSC and Jaccard Index value achieved by the
Proposed Method shows that the segmentation that is
achieved by the Proposed Method is superior and robust.
In this order, ANFIS-GWO is followed by slightly lower
values, ANFIS-PSO and ANFIS-GA make even further
reductions in both metrics. The segmentation accuracy is
lowest when using ANFIS-GA as opposed to other
among them. Results show the significantly larger values
of DSC and Jaccard Index generated by the Proposed
Method as compared to the actual performance of
algorithms will prove to be a factor of that effectiveness
in improving segmentation quality. Results indeed show
that RDA based optimization improves the performance
of the ANFIS above those of either ANFIS or RDA alone,
thus becoming a more reliable and efficient solution for
real word applications. The use of the Proposed Method
gives better accuracy that enhances decision making and
supports the use of advanced Al driven optimization
strategy.

Convergence Plot of Models
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In Figure 7, the convergence plot compares the error
reduction using different ANFIS based models which are
Proposed Method, ANFIS-GWO, ANFIS-PSO and
ANFIS-GA. Error value is on y axis and iteration on x
axis. The Proposed Method has the fastest and most
stable convergence and wipes out the lowest value of
final error. The error values are slightly higher, but
convergence of ANFIS-GWO is relatively efficient. The
convergence speed of ANFIS-PSO and ANFIS-GA is
slower than that of the previous method, and the error
value is large in the iterations. The superiority of the
Proposed Method in minimizing error makes the
comparison with the RDA enhanced ANFIS training
effective because the RDA improves the ANFIS training.
The proposed method reduces computation time and
enhances real time applicability which is an advantage
for optimizing problems via the proposed method.
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Figure 8. Accuracy and precision

In Figure 8, various models based on the ANFIS
(Fundamental neuro-fuzzy identification system) have
been presented for the optimization of water utilization
for the energy across industries in terms of Accuracy and
Precision and compared with each other. Among the
proposed ANFIS-RDA method attains the highest
performance with an Accuracy of about 0.98 and a
Precision of about 0.97; which indicates that it has the
best ability to optimize water energy efficiency and
resource utilization. The result obtained in ANFIS-GWO
gives an Accuracy around 0.91 and a Precision within the
range of 0.90, which is strong yet moderately less
efficient. On the other hand, ANFIS-PSO and ANFIS-GA
show suboptimal performance as they have Accuracy of
approximately 0.88 and 0.87 and Precision about 0.87
and 0.86 respectively, in adaptive energy optimisation.
The results show that real time adaptive control of water
energy systems and reducing operational costs are
successfully enhanced through using ANFIS-RDA. The
adoption of Al based optimization in the water-based
energy solutions opens up a new frontier in sustainable
industrial design which, along with that, is on the verge
of the transition from carbon consuming to the carbon
neutral and energy efficient manufacturing processes.

Comparison of Solar, Temperature, Wind & Hydrogen Output

W Solar Intensity
BN Temperature
B Wind Speed
WSS Hydrogen Output

ANFIS-GA

ANFIS-GWO ANFIS-PSO

Proposed

Figure 9. Values of measures

A comparison of solar intensity, temperature, wind speed,
and hydrogen output among different ANFIS based
models derived for enhancing the hydrogen production in
the renewable energy systems (Proposed method,
ANFIS-GWO, ANFIS-PSO, and ANFIS-GA) has been



given in the Figure 9. As shown in the Proposed Method,
it produces hydrogen at values of about 90 of solar
intensity, approximately 80 of hydrogen output
temperature around 35 and wind speed near 20 which is
higher than the other methods and shows highest
efficiency of hydrogen production. Solar intensity of
ANFIS-GWO is very close to ANFIS Proposed Method,
but hydrogen output is about 85, with similar competitive
performance. Both ANFIS-PSO and ANFIS-GA have
lower efficiency in which solar intensity and hydrogen
output are around 80 but temperature and wind speed are
lower than other models which implies that they are not
effective enough in optimizing the hydrogen production.
These results are consistent with the results from the use
of renewable resources to produce hydrogen with the
Proposed Method having better performance than
traditional ANFIS models. It implies better performance
in a higher solar intensity and hydrogen output,
indicative of better energy conversion efficiency
improvement which in turn allows for the development
of sustainable and efficient hydrogen-based energy
systems for use in future industrial applications. Future
work may focus on extending this framework to real-
time IoT-based monitoring systems and exploring its
applicability across various industries such as chemical
processing, smart manufacturing, and renewable energy
management for broader impact and operational
scalability.

5. Conclusion

It shows the effectiveness of the Proposed Method that
employs ANFIS with state of art optimization techniques
in optimizing hydrogen production in renewable energy
system. For solar intensity and hydrogen output, results
show clearly that the Proposed Method performs better
than the rest of the models, that being ANFIS-GWO,
ANFIS-PSO, and ANFIS-GA. The Proposed Method hits
solar intensity values close to 90 and well exceeds 80 in
hydrogen production, making it the most energy
conversion efficient and renewable resource optimal
method for hydrogen production. However, although it
offers good performance, the ANFIS-GWO algorithm
does not exactly match the performance of the Proposed
Method in hydrogen output and solar intensity. On the
other hand, ANFIS-PSO and ANFIS-GA show lower
efficiency, with reduced solar intensity and hydrogen
output values, along with less effective management of
temperature and wind speed. This confirms the superior
approach of the Proposed Method in using renewable
resources to develop more sustainable and efficient
hydrogen-based energy systems. The impact of using the
Proposed Method in future of green energy solutions
illustrated in this research outlines the future of green
energy solutions. These models offer a route toward
more eco-friendly, carbon neutral industrial processes
that is a major step forward in the development of an
industrial hydrogen energy system.
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