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Abstract— Induction motors are used in all industries and are the 

major element of energy consumption. Faults in motor degrade the 

motor efficiency and result in more energy consumption. Bearing faults 

are reported to be the major reason for the motor breakdown and a lot 

of papers have been reported to focus on bearing fault diagnostics. 

However, low classification accuracy is the main hurdle in adopting the 

available fault classification algorithms. This paper has presented a 

novel classification algorithm using the Catboost classifier and time-

domain features. The developed algorithm was tested on the laboratory 

test setup. The fault classification accuracy of 100 % was achieved 

through the proposed method. 

Keywords: Condition Monitoring, Time Domain Features, 

Fault Classification, CatBoost Classifier. 

 

1. Introduction 
 

Induction motors are used in the industry for the conversion of 
electrical energy to rotational mechanical energy. They are the 
key elements of the industry and consume 45 % of the global 
energy [1-3]. The efficiency of the motors is reduced if faults 
appear in the motor. The faulty motors consume more energy as 
compared to healthy motors. Bearings are installed in the motor 
to assist the rotation and 41 % of the motor faults are due to 
bearing problems. Thus, a suitable condition monitoring system 
can assist to protect the motor from sudden breakdowns and 
ensuring safe operations [5-9]. 

Vibration analysis is a very famous method for the fault 
diagnostics of the bearings. It requires an accelerometer for 
vibration measurement and measured data is fed to the software 
for further analysis. The time-domain data require experts for the 
analysis and interpretation to differentiate between healthy and 
faulty conditions. Thus, an automatic classification system is 
required for quick and reliable decision-making. A lot of research 
has been conducted in the past to use machine learning and deep 
learning tools for fault diagnostics and fault classification. 
However, low classification accuracies are the real challenge that 
requires attention [10-20]. 

This issue has been addressed in this study where the ensemble 
learning tool known as Catboost classifier has been developed to 
analyze the statistical features of the time domain data. The four 
statistical features known as variance, standard deviation, 
skewness and kurtosis were used for the classification of bearing 

health as healthy bearing (HB), inner race (IR) faults and ball 
defects (BD). The statistical parameters are used to evaluate the 
time domain data. The parameters such as Variance, Standard 
Deviation, Skewness and Kurtosis are calculated for the healthy 
bearing and faulty bearing. The variation in the values of 
Variance, Standard Deviation, Skewness and Kurtosis indicate 
the presence of the fault in the bearing. The details of the features 
have been given in the following section:  

 Variance (VAR): Variance indirectly measures the data 

distribution from the mean of the segment. This is the second 

central moment of distribution and calculated using equations 

(1) and (2) [18-20]. 

VAR = 
1

𝑋
∑    |𝑍𝑗 − 𝜎|2 𝑋

𝑗=1     (1) 

Where 

𝜎 =
1

𝑋
∑  𝑍𝑗   𝑋

𝑗=1                                                             (2)       

 Standard Deviation (STD): Standard deviation is the positive 

square root of the variance to measure the variation of data 

from equation (3) [19]. 

STD = √
1

𝑋
∑   |𝑍𝑗 − 𝜎|2  𝑋

𝑗=1    (3) 

Skewness (SKW): Skewness is the third moment of distribution 

to measure the asymmetry of the probability distribution about 

its mean from equation (4) [19]. 

SKW = 

1
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(√
1

𝑋
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Kurtosis (KURT): Kurtosis is the scaled form of the fourth 

moment to find tailness in the probability distribution curve and 

is represented using equation (5) [19]. 

KURT = 

1

𝑋
∑    |𝑍𝑗−𝜎|4 𝑋

𝑗=1

(
1

𝑋
∑    |𝑍𝑗−𝜎|2 𝑋

𝑗=1 )
2    (5) 

The rest of the paper has been organized as follows: the 
experiments arrangement has been illustrated in section 2. The 
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results and discussions have been described in section 3 and 
section 4 presents the conclusion. 
 

2.  Experiment Design 
 

The experiments were performed on the dedicated test setup for 

condition monitoring of motors and pumps. The test setup 

consists of a centrifugal pump, induction motor, water storage 

tank, vibration sensor, stator current sensors, LabVIEW, Matlab 

and data acquisition interface. The faulty bearings and data 

acquisition card have been shown in Figure 1. The test setup has 

been shown in Figure 2. Three case scenarios of the motor 

bearing are considered in this paper which are Healthy Bearing 

(HB), Inner Race Defect (IRD) (size 3 mm hole) and Ball Defect 

(BD). The motor operating speed was 1440 rpm. The bearings 

under consideration were installed on the drive-end side. The 

sampling rate was 10 K samples per second. The data was saved 

as M-files and was plotted using MatLab and analyzed using 

Python, Spyder (5.1.5). The statistical features (standard 

deviation, variance, skewness, kurtosis) were extracted from the 

time domain data and were used in the fault classification 

algorithm. The flow chart of the developed classification system 

has been shown in Figure 3. 

 

 

 
 

a) 

b) 

 

c) 
Fig. 1. The components of the test rig (a) bearings assembly (b) faulty bearings (c) data acquisition card configuration 

 

 
Fig. 2. The laboratory test setup  

 
 

 Fig. 3. The flow chart of the proposed system  

3. Results and Discussions 

 
The vibration data was collected and a sample plot has been 

shown in Figure 4. The statistical features (standard deviation, 

variance, skewness, kurtosis) were extracted from the time 

domain data and were used in the Catboost algorithm. The 

parameters of the algorithm are learning_rate=0.001, depth=10, 

loss_function='MultiClass'. The values of the extracted features 

are given in Table I. In machine learning, the confusion matrix 

is used to indicate the performance of the algorithm. It indicates 

the error performance by indicating that how many samples were 

misclassified by the algorithm. The confusion matrix has been 

shown in Figure 5. The confusion matrix indicates that all 

classes have been correctly classified with 100 % classification 

accuracy which indicates the strength of the catboost classifier 

for condition monitoring applications. 
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Fig. 4. The sample data  

Table I. Extracted values of the features 

Sr. No 
Feature 

Name 

Feature 
Value for 

HB 

Feature 
Value for 

BD 

Feature 
Value for 

IR 

1.  
Standard 

Deviation 
0.732009 0.789520 0.764368 

2.  Variance 1.24979 1.308426 1.297852 

3.  Skewness 0.0255599 0.0296752 0.02719852 

4.  Kurtosis -0.224665 -0.156523 -0.187625 

 

Fig. 5. The confusion matrix  

4. Conclusions 

 
This paper has focused on developing a bearing fault 

classification system using a Catboost classifier. The vibration 

data has been collected and statistical features have been 

segregated. The three situations of the bearing labeled as healthy 

bearing, inner race faults and ball defects have been studied. The 

Catboost classifier was programmed in Python, Spyder library. 

The experimental results indicate that the classifier was able to 

classify the three classes with 100 % accuracy. The scope of this 

work could be further extended in the future to include more 

fault types such as gear faults, impeller faults and shaft 

misalignments to develop a complete condition monitoring 

package for the industry.  
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