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Abstract. In this paper, an optimization strategy for
voltage level planning using intelligent algorithms is
constructed to improve the power supply capacity (PSC)
and overall performance of the power grid. The Laida
criterion is used to clear abnormal data, and the weighted
average method is used to supplement the missing data;
the adaptive Particle Swarm optimization algorithm
(APSO) is used to construct a voltage-level collaborative
planning model, through flexible adjustment of inertial
weights and acceleration factors, to achieve a balance
between global search and local fine-tuning; by
combining particle swarm optimization (PSO) and
Genetic algorithm (Genetic Algorithm, GA), a hybrid
algorithm (PSO-GA) is formed, effectively avoiding the
dilemma of local optimization by introducing random
self-feedback variation and high-frequency
cross-operation. The results show that the energy
utilization rate and transmission efficiency of the APSO
algorithm have increased to 94.3% and 92.8%,
respectively; the PSC of the PSO-GA algorithm has
increased by 20.61% and 22.44% under low-load and
medium-load conditions, respectively. Both algorithms
effectively solve the voltage planning challenges,
significantly reduce energy consumption, enhance the
synergy of the voltage level, and improve the maximum
PSC.

Key words. Voltage level, Collaborative planning,
Power supply capacity optimization, Adaptive particle
swarm optimization, Genetic algorithm

1. Introduction

In the development of power systems, voltage level
collaborative planning and PSC optimization have
always been difficult to research. Faced with the
continued growth of power demand and the increasingly
complexity of the grid structure, ensuring the stable
operation of the power grid, improving PSC, and
reducing losses have become an important challenge in
the power industry. Traditional planning methods mostly
rely on empirical judgment and local optimization, and it
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is difficult to comprehensively consider the mutual
influence between voltage levels and the overall
performance of the power grid, so their planning effects
are often not ideal. This study constructs a voltage level
collaborative planning and PSC optimization method
based on intelligent algorithms. The key to voltage level
collaborative planning is to quantify the mutual influence
between each voltage level to achieve optimal
coordination between levels. Traditional planning
methods have been difficult to cope with the complexity
of modern power grids. The introduction of intelligent
algorithms provides a new solution to this problem.
Among them, PSO, GA, etc., have been widely used.
These algorithms are drawn from evolution or group
behavior in nature and can effectively deal with complex
optimization problems and show strong search and
adaptability [1-3]. In voltage-level collaborative planning,
they can optimize power supply configuration,
equipment location selection, etc., to improve the
coordination and PSC of the power grid. PSC
optimization is an important part of this goal, and it aims
to tap the potential of the power grid by reducing losses,
stabilizing voltages, and improving energy efficiency. As
an invalid consumption, power loss affects the overall
efficiency of the power grid. Intelligent algorithms can
optimize the grid structure and strategies, reduce losses,
enhance voltage stability, and thus improve PSC.

This paper solves the problem of mutual influence
between multiple voltage levels and overall performance
optimization that is difficult to deal with by traditional
planning methods by constructing a voltage level
collaborative planning model. By dynamically adjusting
the inertial weight and acceleration factor, the global
search capability and local fine-tuning accuracy are
significantly improved, and refined regulation of the
configuration of each voltage level is achieved. This
greatly reduces power loss and voltage fluctuations, and
also effectively enhances the stability of power grid
operation. To conduct in-depth research on the
optimization of PSC, this paper constructs a PSO-GA
algorithm model, which combines PSO's powerful global
search capabilities and GA's efficient local optimization
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characteristics, thus effectively avoiding the dilemma of
traditional optimization methods that are prone to falling
into the local optimal solution, and has significant
advantages over other similar algorithms.

Voltage level collaborative planning refers to the overall
consideration and optimization design of power grids of
different voltage levels in power grid planning to
improve the reliability and economical power supply of
power grids, while ensuring the power balance and
voltage stability of power grids at all levels [4,5]. The
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details are shown in Table 1.
Table 1. Reference structure table of voltage-level collaborative planning.
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To satisfy the increasing demand for electricity, maintain
the stability and safety of the power supply, and support

the sustainable growth of the economy and society, PSC

Table 2. Reference structure table of voltage-level collaborative planning.

optimization aims to increase the grid's PSC and
efficiency [11,12]. The details are shown in Table 2.
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A method f01.' evaluat{ng th.e short-t.erm. power ) ) The applicability to
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This paper first outlines the background and significance
of voltage-level collaborative planning and power supply
capacity optimization, and emphasizes the value of
research. In the second chapter, the data preprocessing
technology is studied, and the Layda criterion is used to
remove abnormal data. The weighted average method is
used to fill in the missing data, and the processing flow
of data normalization is studied. In addition, in section
2.3, a voltage-level collaborative planning model based
on APSO is constructed, and the operating mechanism of
the algorithm and its application effectiveness in voltage
planning are analyzed in depth; in Section 2.4, a hybrid
algorithm combining PSO and GA (namely PSO-GA) is
innovatively proposed for the optimization of power
supply capacity, and its algorithm principle and
optimization results are systematically introduced.
Finally, the article comprehensively summarizes the
overall research and discusses the future research
direction.

3. Voltage Level Collaborative Planning and PSC
Optimization Algorithm Construction

In this paper, a typical regional power grid with complex
topology, diversified power generation equipment, and
load requirements in City A is selected as the data source.
The time period covered by the data is from January
2023 to December 2024, and it involves the operating
conditions of the power grid under different seasons and
weather conditions. This helps to comprehensively
analyze the dynamic characteristics of the power grid
under various operating conditions, especially its ability
to cope with extreme weather. To ensure the accuracy of
the data, an advanced real-time monitoring system is
used, including SCADA (Supervisory Control and Data
Acquisition) system and PMU (Phasor Measurement
Unit) equipment. The SCADA system provides the basic
parameters of the operation of the power grid, which is
of great significance for daily monitoring and fault
diagnosis. The PMU equipment can provide
high-precision phasor measurement data, can capture
instantaneous voltage and current changes, and provide
researchers with more in-depth information on the
operating status of the power grid.

A. Data Preprocessing

The data collected initially is wusually complex,
multi-dimensional, and rough; the data volume is huge,
and the quality is uneven. To ensure data quality,
preprocessing is necessary. After collecting the required
data, the collected voltage and current operation data can
be ensured to be effective. Equipment errors, failures, or
human factors may lead to abnormal or missing new
energy historical output data and meteorological data
collected. This paper uses the Laida criterion to eliminate
abnormal data. This rule is based on statistical principles.
By setting the threshold range, accurately identifying
outliers in the data set, and calculating the mean and
standard deviation of the data set, the standard range of
abnormal data is determined. The expression is:
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f; is the degree of data offset. When

is determined to be abnormal data and

After removing the exception data, the missing values in
the data need to be processed [19-21]. These missing
values are caused by various reasons such as device
failure, sensor problems, or communication interruptions.
If these missing values are ignored, it can have an
adverse impact on subsequent data analysis and model
construction. This paper selects a weighted weighted
averaging method to fill these missing data, a method
based on the correlation between data sequences and
their adjacent data. It takes into account known values
before and after missing data points in the time series
data, and then evaluates the impact of these known
values on the missing values, an evaluation achieved
through weighted calculations. By weighted averaging of
these known data, the missing data values are estimated.

Supposing the sample data set is: 4 =[a,,a,,.a,] ,
the missing data is H, =[a am,'--,aq} , Where

n?

1< n<q<m,and the filling formula is as follows:
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Among them, n<i<g and a, represent the data to
be filled.

The distributed power generation data and various load
data in the distribution network have different
dimensions. If these data are directly used for model
training or analysis, it may cause bias in the sample set
and have adverse effects on the final result. To eliminate
this effect caused by dimension differences, this paper
adopts normalization, which can convert data to a unified
dimension range, usually adjusting the data to an interval
of [0, 1].

A-A.
A r_ Amm (3)
Amax - Amin

A is data without normalization processing. After
normalization, the data can fall within the range of [0,1].
When these data are predicted by the prediction model,
the output results can also be within the [0,1] interval. To
obtain intuitive data values with actual dimensions, the
output results of the prediction model need to be reverse
normalized. Intuitive dimension data values can be
obtained, and the expression is:



Xreal = 14rnin + Xpet (ATnax - Amin ) (4)

B. Voltage Level Collaborative Planning Indicators

The power loss of the line is an inevitable phenomenon
when the power grid transmits electricity [22-24]. This
loss consumes active power, and the heat generated can
also damage the insulating material of the line,
accelerating its aging process. To quantify this loss,
specific formulas are often used to calculate the power

loss of the line.

Y 2
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Among them, [ is the line current; cos¢ is the power

factor; R is the line resistance. The functional loss of
the line is closely related to the load rate of the line. The
functional loss rate of different circuits under different
load rates is calculated, as shown in Table 3.

Table 3. Loss rates of different line functions under different load rates (kW).

Line load rate (%) 10kV 20kV 35kV 110kV 220kV

10 7.15 1.79 0.58 0.06 0.02

20 28.29 7.15 2.33 0.24 0.06

30 64.33 16.08 5.28 0.54 0.13

40 114.35 28.55 9.34 0.95 0.24

50 178.26 44.63 14.56 1.49 0.37

60 257.39 64.29 21.04 2.15 0.53

70 350.26 87.45 28.59 291 0.72

80 452.93 115.06 37.64 3.77 0.93

90 578.06 145.31 48.08 4.81 1.18

100 713.57 176.69 58.34 5.95 1.47
As shown in Table 3, when the load rate increases, the & gl 3
power loss of each voltage level increases significantly, % [ 4 =] 0kY
and the loss of the low voltage level is significantly g 700t T 2011:\/
higher than that of the high voltage level. When the load 2 | - 1? OZV
rate is 10%, the power loss of the 10kV line is 7.15kW, § Ly ; 200KV
while the 220kV line is only 0.02kW. When the load rate Z 500l %
increases to 100%, the loss of the 10kV line is 713.57kW, :; i
while the loss of the 220kV line is 1.47kW. Under the £ 400 kY
same load rate conditions, the difference in power loss ; 300 | Ny,
between different voltage levels can further expand with é e
the increase in load rate, highlighting the economic g 200 e
advantages of high voltage levels in long-distance § el
transmission and large-capacity power supply scenarios. §

0

The transmission distance of the line is mainly limited by
voltage [25,26], and the calculation formula for voltage
drop percentage is as follows:

PY+OX  100% = 2220 1 x100% (6)
U

M M

AU% =

In the formula, P and @ are the active and reactive

power flowing through the distribution line. The
maximum power supply distance of different lines such
as 10kV, 20kV, 35kV under different load rates can be
calculated, as shown in Figure 1.
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Figure 1. Maximum power supply distance of different lines
under different load rates.

As shown in Figure 1, as the load rate gradually
increases, the maximum power supply distance that can
be achieved by each voltage level shows a downward
trend. Under the condition of a load rate of 10%, the
maximum power supply distance of the 10kV line can
reach 38.9km. When the load rate increases to 100%, this
distance is greatly shortened to 3.9km, illustrating the
profound impact of high load rate on the power supply



distance. High voltage levels exhibit stronger power
supply due to their lower current density. Under the same
load rate conditions, the maximum power supply
distance of the 220kV line is always much higher than
other voltage levels, demonstrating the obvious
advantage of high voltage transmission. In the design
process of the distribution network, the logical selection
of voltage levels and load rates is a vital link in assuring
voltage quality and power supply reliability.

C. Construction of Voltage Level Collaborative
Planning Model

With the continuous access of new energy and the
intensification of load fluctuations, the inadequacy of
traditional voltage control methods has emerged, and
voltage instability and power loss have gradually become
problems. In this context, it becomes important to
scientifically plan the voltage levels and conduct
coordinated voltage control to effectively control the
voltage fluctuations at each level. Voltage changes
between different voltage levels in the power grid often
affect each other. Therefore, it is necessary to optimize
the voltage configuration at each level through
collaborative planning to maintain the overall stable and
efficient operation of the power grid. This study
constructs a voltage level collaborative planning model
based on APSO, and Figure 2 displays the particular

framework diagram.

the model
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Figure 2. Framework diagram of distribution network voltage
level based on APSO.

As an important advanced version of PSO, APSO has
excellent global exploration and local fine-tuning
capabilities. Compared with the basic PSO algorithm, the
advantage of APSO is that it can dynamically adjust the
inertial weight and acceleration factor of particles
[27-29]. This adjustment allows the search process to
more flexibly balance the global and local exploration
depth, thereby reducing the risk of falling into local
optimality and improving overall optimization efficiency.
In the coordinated planning of the voltage level, APSO
can carefully regulate the settings of each voltage level in

~ reach the maximum number of
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the power grid, thereby significantly reducing voltage
fluctuations and power loss. These improvements not
only enhance the power supply strength of the power
grid, but also greatly improve the stability of its
operation. On the basis of ensuring that voltages at all
levels meet the limits, APSO is committed to minimizing
power loss in the power grid and stabilizing voltage
fluctuations. In the process of implementing the
coordinated planning of the voltage level, this paper
designs a multi-objective optimization function based on
various influencing factors. The objective function
covers the following core components:

Load balancing means that in the power grid, the
distribution of load should be as uniform as possible to
prevent some lines or substations from causing risks due
to excessive load.

2
m Q[ - Qre/’,i
Lluad imbalance zizl {— (7)
Qrgf',i

Among them, 0O, is the reference power load of the
i -th line.

During the initialization phase, the number of individuals
in the population and the dimensions of each individual
must be determined first. For each particle, APSO can
randomly assign it an initial velocity in the range O to 1,
which determines the movement step rate and direction
of the particle in the search space [30-32]. To ensure the
broadness of the search, the starting position of each
particle is also set by a random number between 0 and 1.
This practice ensures population diversity and effectively
avoids the algorithm's premature fall into the dilemma of
local optimism. After initialization is completed, the
fitness of each particle needs to be calculated, and the
fitness function takes into account multiple objectives in
the voltage level collaborative planning to evaluate the
performance of each particle. Particle position and
fitness of the optimal fitness of all particles are recorded
in the global optimal position (gbest) by recording each
particle's present position and fitness to its individual
optimal position (pbest):

v, (k+1)=r(k)*v, (k) +c, *w *(pbest, —a, (k))+c, *w, *(gbest -, (k))

®)

a,(k+1)=a, (k)+v, (k+1) (9)

Among them, v, (k) and a, (k) are the velocity and

position of particle i in the iteration of the k& round,

respectively, and r(k) is the inertial weight.

Inertial weights are very important in PSO algorithms,
which can balance the algorithm's global and local search
capabilities. When the inertial weight is set too small, the



particles can be updated very quickly, which can cause
the search to focus on a local area too early, thus falling
into local optimality, ignoring the possible global optimal
solution [33,34]. Therefore, it is crucial to dynamically
adjust the inertial weight in the process of coordinated
planning of the voltage level. This can maintain a wide
range of exploration in the early stage of the search, and
more precise voltage setting adjustments can be made in
the later stage, thereby improving the overall effect of
grid optimization. In APSO, the inertial weight r can
gradually decrease according to the increase of the
number of iterations k. In the initial stage of search, the
larger inertia weight enables particles to be widely
explored throughout the solution space, -effectively
preventing premature convergence to local optimality. As
the iteration progresses, the gradual decrease in inertia
weights prompts the particles to make more refined
position adjustments. This speeds up the convergence
speed and avoids excessive position jumps, thus helping
particles position more accurately to the global optimal
solution.

rmax

(rmax - r;nin )
———=xk (10
. *k o (10)

max

r(k)=

Among them, £ is the maximum number of

max

iterations.

Acceleration factors w;, and w, play a key role in

APSO, which control how particles approach individual
and global optimal solutions during search. In traditional
PSO algorithms, the acceleration factor is usually fixed,
which can lead to problems during the search process. In
APSO, the acceleration factor is no longer fixed, but can
be dynamically adjusted according to the current search
state. This adjustment is mainly based on the fitness
value of the particle swarm [35,36]. When the particle
swarm shows a strong convergence trend at a certain
stage, this indicates that the global optimal solution is
relatively clear. At this time, APSO can increase the
acceleration factor to accelerate the gathering of particles
towards the optimal solution. On the contrary, when the
search process of the particle swarm fluctuates greatly, it
indicates that more exploration is needed, and APSO
reduces the acceleration factor to avoid particles
gathering prematurely in a local area. This dynamic
adjustment strategy allows APSO to respond more
flexibly to different search scenarios.

Wl (k) = Wl,max - (Wl’ma);c_WLmin )*k (1 1)
(WZ,max - W2,min )
W, (k):WZ,max - k *k (12)
Among them, w,_.. and w, . are the maximum

values of the acceleration factor, and w, ., and w, .

96

are their minimum values.
D. Construction of PSC Optimization Model

An essential metric for assessing the distribution
network's power supply performance is its maximum
PSC. It is the highest load that the distribution network is
capable of supporting while adhering to node voltage and
branch power constraints [37,38]. It can determine the
distribution network's maximum supply capacity to load
under the existing network configuration by computing
this indicator. The network structure refers to the actual
layout and configuration of the distribution network, that
is, the various types of power equipment that make up
the distribution network and their interconnection
methods. This network structure is complex and
changeable, and it is affected by many factors such as
geography, economy, and technology. It can be
transformed into an optimization problem using the
following objective function in order to solve the
maximum power supply:

My, My,
max S, =Zi:? S +Zi:'] uS,y (13)

S,, represents the current load supply of node i ; u,

load growth; S,

represents the baseline value of node i load growth.

represents the multiple of node i

Despite the continuous advancement of modern grid
technology, many grid systems still face the problems of
insufficient PSC and low operating efficiency due to
outdated equipment and continuous changes in load
demand. The PSC of the power grid is often limited by
insufficient voltage control, and the uneven distribution
of the voltage levels can cause voltage fluctuations in
each node of the grid at different times, which can in turn
cause overvoltage or undervoltage. This affects the
stability and safety of the power system and can also
reduce the user's power quality. This paper introduces
PSO and GA, combining the two (PSO-GA) [39]. This
combination algorithm has strong global search
capabilities and good adaptability, which can effectively
avoid the local optimal solution problems that may arise
in traditional optimization methods, and quickly find the
optimal or near-optimal solution. Inspired by GA, this
paper incorporates random self-feedback variants and
high-frequency crossover operators into the particle
swarm optimization process. This takes advantage of
GA's advantage in maintaining individual diversity
during evolution and also gives full play to the
characteristics of PSO group information sharing and
rapid convergence, so that it is more likely to find a
better solution. The PSO-GA algorithm inherits the
global optimization ability of G, and can find the global
optimal solution more effectively, while also
significantly improving the convergence speed compared
to GA. The structure diagram of the PSC optimization
algorithm based on PSO-GA is shown in Figure 3.
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Figure 3. Structure diagram of the PSC optimization algorithm
based on PSO-GA.

In actual use of traditional GA, problems often occur in
the local optimality or algorithm stagnation. To
effectively pick out local optimums, a feasible approach
is to appropriately broaden the search space. PSO-GA
can broaden the search space and control the complexity
of the algorithm, which can enable the adaptive selection
of inertial weights to better deal with high-dimensional
and complex nonlinear problems. To achieve this
combination, it is necessary to discrete the inertial weight
value of PSO, divide it into multiple sub-intervals, and
assign an equal number of parameters to each
sub-interval, which represents a path in GA. In the
design of this paper, the minimum value of the inertia
weight of the particle swarm is set to 0.4. The calculation
formula for discrete inertial weight is as follows:

d . —d.
Ad — max min 14
v G

Among them, M is the set number of discrete

intervals.

In the PSO algorithm, particles can update their own
speed and position according to the fitness function in
each generation, which is the core step of the algorithm.
The position of particles symbolizes the overall operating
state of the power grid and covers multiple aspects.
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During the optimization process of PSO algorithm,
particles sometimes fall into stagnation, that is, the
search process may be limited to local optimal solutions.
This paper can introduce GA variant operations. By
randomly perturbing individuals of particles, that is,
making slight random adjustments to them, the search
trajectory of particles can be changed, thereby helping
the algorithm escape the local optimal solution. In the
context of grid optimization, this variation may involve
fine-tuning of generator set scheduling schemes or
changing the load distribution strategy of transmission
lines, effectively preventing particle swarms from falling
into the dilemma of local optimum. Cross-operation
generates entirely new descendants by exchanging some
characteristics of two individuals. This method allows
the algorithm to combine the excellent characteristics of
the parent individual to explore possible better solutions.

s;(t+1)=s5,(t)+As (15)

Among them, As is a small random perturbation term,
representing the change in particle position. This
variation strategy allows the algorithm to explore
in-depth within a limited search area, mine high-quality
solutions that may be overlooked, and effectively prevent
solutions from converging prematurely to local optimum.

The core of the mutation operation is to make random
changes to the genes in the solution, which enriches the
diversity of understanding and helps the algorithm
escape the trap of local optimality. In the context of PSC
optimization, variation means random adjustments to
certain key parameters, thereby introducing new possible
solutions. PSO emphasizes collaboration among groups
for global optimization, while GA's cross-section
mechanism quickly generates high-quality solutions
through the fusion of individual information. In PSO-GA,
choosing two excellent solutions to fusion can lead to
better solutions. Through cross-combination, a brand
new scheduling or configuration strategy is formed. This
approach greatly accelerates the exploration of
understanding space and helps improve the overall
performance of the power grid. For discrete variables in
grid optimization, by randomly selecting a certain
variable and adjusting it, the flexibility of the grid in
different operating states can be simulated, broadening
the search range and preventing the algorithm from
falling into local optimization. The variation formula can
be expressed as:

s (t + 1) = Crossover (sq S, ) (16)

Among them, s, and s, are the two selected particles
respectively. The cross operation combines their
solutions to generate a new solution s, (7+1) . This
crossover strategy not only accelerates the search process

of particle swarms, but also significantly improves the
quality of understanding.



4. Voltage Level Collaborative Planning and PSC
Optimization Model Effect Evaluation

Power loss optimization is crucial to improving the
overall efficiency of the power grid. It can reduce
ineffective  energy consumption, reduce voltage

fluctuations, and enhance coordination between voltage
levels. To study the advantages of the method in power
loss optimization, it is compared with PSO,
Multiple-objective genetic algorithm (MOGA), improved
simulated annealing (ISA) algorithm, PSO and
differential evolution (DE) algorithm mixing (PSO-DE).
The specific comparison results are shown in Table 4.

Table 4. Comparison of power loss optimization performance for different models.

Evaluation index APSO PSO MOGA ISA PSO-DE
Power loss before optimization (kW) 200 200 200 200 200
Optimized power loss (kW) 148 186 173 177 162
Less power loss and damage (%) 26 7 13.5 11.5 19
Energy utilization rate (%) 94.3 82.8 88.7 86.4 84.3
Transmission efficiency (%) 92.8 84.6 90.2 89.7 88.4
Voltage deviation (V) 1.2 1.5 1.4 1.6 1.3
Stability level High Low Medium Medium Medium

As shown in Table 4, the APSO algorithm studied in this
paper performs well in power loss optimization.
Compared with other algorithms, the optimized power
loss of APSO is the lowest, only 148 kW, with a decrease
of 26%, which is 19%, 12.5%, 14.5%, and 7% higher
than the declines of PSO, MOGA, ISA, and PSO-DE,
respectively. This shows that APSO has a significant
effect in reducing the invalid energy consumption of the
power grid and improving energy utilization. The energy
utilization rate of APSO is 94.3%, which is significantly
better than other methods. APSO's grid transmission
efficiency is 92.8%, which is 8.2%, 2.6%, 3.1%, and
4.4% higher than the transmission efficiency of PSO,
MOGA, ISA, and PSO-DE, respectively, further
verifying its leading position in grid performance
optimization. Regarding voltage deviation optimization,
APSO has also demonstrated its strong optimization
capabilities. The optimized voltage deviation is only
1.2V, which is much lower than the results obtained by
other algorithms. This means that the APSO algorithm
has significant advantages in enhancing the stability of
the power grid and improving the quality of power
supply, and can provide a strong guarantee for the safe
and stable operation of the power grid. Because of its
high stability, the APSO algorithm has demonstrated
excellent adaptability and reliability in complex power
grid environments. Compared with the low stability of

the PSO algorithm and the medium performance of
algorithms such as MOGA, ISA, and PSO-DE, APSO
can quickly react and adjust to changes in the state of the
power grid to ensure the continuous optimized operation
of the power grid. This is similar to the design of a heat
engine cycle and is designed to respond quickly to
external changes while maintaining efficient work.
Through the integration of adaptive mechanisms, APSO
realizes real-time monitoring and dynamic adjustment of
the power grid, providing a solid guarantee for the safety
and stability of the power grid. APSO's outstanding
performance in power loss optimization, energy
utilization improvement, and voltage deviation control
not only demonstrates its technical strength, but also
reveals its profound physical connotation.

To more comprehensively verify the effectiveness and
advantages of PSO-GA studied in this paper in terms of
voltage-level collaborative planning and power supply
capacity optimization, it is planned to conduct
experimental verification on different types of power
grid systems and compare with other advanced
intelligent optimization algorithms, namely Grey Wolf
Optimizer-Whale Optimization Algorithm (GWO-WOA)
and Firefly Algorithm-Artificial Bee Colony (FA-ABC).
The specific results are shown in Table 5.

Table 5. Performance comparison of different methods of different types of power grid systems.

Grid type Algorithm name Foz)srgy utilization rate Z;grclis;llls;lgz) X(/);tage deviation SCp(;r:(fie(rsgeecr;cIde)
PSO-GA 93.61 91.04 1.2 9.7
;rizan POWEr | Gwo-woA 87.26 84.68 1.6 16.4
FA-ABC 86.33 85.94 1.5 20.8
PSO-GA 95.61 93.04 1.2 6.4
gerilaal POWEr | GWO-WOA 88.69 87.23 1.5 10.8
FA-ABC 90.31 88.69 1.4 12.5
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As shown in Table 5, for urban power grids, the PSO-GA
algorithm shows significant efficiency: the energy
utilization rate is 93.61%; the transmission efficiency is
91.04%; the voltage deviation is as low as 1.2V, and the
convergence speed is only 9.7 seconds. The GWO-WOA
and FA-ABC algorithms are not as good as each other in
various indicators. In the rural power grid environment,
PSO-GA also has obvious advantages, showing its
excellent ability to handle dispersed loads and
long-distance transmission. The experimental results
show that the PSO-GA algorithm can provide efficient
and stable power supply in both high-load-density urban
power grids and widely covered rural power grids, and
its fast convergence characteristics are more competitive
in practical applications, which helps to improve the
overall operating efficiency and stability of the power
grid.

The power grid includes three voltage levels: high
voltage, medium voltage, and low voltage. The degree of
coordination is measured by calculating the degree of
mutual influence between each voltage level. The main
ones are high-pressure-medium-voltage coordination,
high-pressure-low-voltage coordination, and
medium-pressure-low-voltage coordination. These three
levels are numbered according to A-C, and the
experimental results are compared with other methods.
The comparison results are shown in Figure 4.
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Figure 4. Comparison of the voltage level of different models.

As shown in Figure 4, A-C are the main three levels of
high-voltage-medium-voltage synergy,
high-voltage-low-voltage synergy, and
medium-voltage-low-voltage synergy. Among them, the
red dotted line is the mean line. The APSO algorithm
shows significant advantages in all three synergy
indicators.The high-pressure-medium-pressure synergy
of APSO is 92.8%, which far exceeds the 80.7% of PSO,
86.4% of MOGA, and 79.4% of ISA. This shows that
APSO has achieved remarkable results in optimizing the
coordination and interaction between the high-pressure
and medium-pressure levels. Considering the degree of
coordination between the high-voltage and low-voltage
levels, APSO also performs well, reaching 90.6%, which
is 12%, 4.7%, 9.8%, and 5% higher than the coordination
of PSO, MOGA, ISA, and PSO-DE, respectively. From
the perspective of thermodynamics, improving the
synergy between voltage levels can effectively reduce
the energy loss in the system. According to the first law
of thermodynamics, although energy does not disappear
during conversion, there is always a part of the loss, and
in the power system, the power loss is caused by
resistance heating, etc. The APSO algorithm significantly
reduces such losses by optimizing the collaborative work
of the voltage levels, thereby improving the efficiency of
power transmission. APSO has an average of 91.6%
coordination at the three levels, which is 10.87%, 5.97%,
10.5%, and 4.23% higher than PSO, MOGA, ISA, and
PSO-DE, respectively. This shows that APSO is not only
outstanding in the coordination of a single voltage level,
but also has a significant effect on the optimization of the
overall power grid structure. For the power system, the
transfer of energy between the various voltage levels is
smoother, reducing the additional losses caused by
uncoordinated operation.

This paper uses the PSO-GA algorithm to optimize the
PSC of the distribution network. The overall
performance of the PSO-GA algorithm is good,
compared with the PSO, GA, GA-DE, and PSO-ant
colony optimization algorithm (Ant Colony Optimization
(ACO) algorithm mixing (PSO-ACO). The specific
comparison results are shown in Table 6.

Table 6. Performance analysis of different algorithms.

Performance indicators PSO-GA PSO GA GA-DE PSO-ACO
Global optimal number of times 46 25 31 36 40
Optimization probability (%) 96.7 84.6 80.8 90.7 91.5
Average calculation time (seconds) 18.5 15.2 22.4 20.3 21.7
Average number of generations selected 20.6 55.2 70.6 50.4 45
Stability of solution High Low Low Medium Medium
Fitness improvement rate (%) 253 16.6 14.8 18.2 18.9
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As shown in Table 6, through the analysis of the
performance of the PSO-GA algorithm and other
algorithms in the distribution network's power supply
capacity optimization, the excellent performance of the
PSO-GA algorithm is found. In terms of optimization
probability, the success rate of PSO-GA is 96.7%, which
is 12.1%, 15.9%, 6%, and 5.2% higher than that of PSO,
GA, GA-DE, and PSO-ACO, respectively. Although the
average computing time of PSO-GA is 18.5 seconds,
which is higher than PSO's 15.2 seconds, its excellent
optimization ability and stability are enough to make up
for this small time gap. The average calculation time of
the PSO-GA algorithm is 18.5 seconds, which is slightly
higher than the 15.2 seconds of PSO, but its excellent
optimization ability and stability are enough to make up
for this small time gap. From the perspective of
thermodynamics, it is difficult to achieve perfect energy
conversion efficiency in the actual process, and it isl
always accompanied by a certain degree of energy loss.
In the field of algorithm optimization, the calculation
time can be compared to “energy consumption”, while
the optimization effect represents “output”. Although the
PSO-GA algorithm has slightly increased its calculation
time, its fitness improvement rate is as high as 25.3%,
which significantly surpasses other algorithms. This
shows that although more “energy consumption” has
been invested, it has been exchanged for a significant
performance jump. Compared with other algorithms,
such as PSO, GA, GA-DE, and PSO-ACO, the fitness
improvement rate of PSO-GA is 8.7%, 10.5%, 7.1%, and
6.4% higher, respectively. This data not only
demonstrates that it can significantly improve the quality
of the solution in the optimization process, but also
highlights its efficiency and practicality in dealing with
complex optimization problems. PSO-GA also shows its
excellent performance in the recording of the global
optimal number of times. This means that in multiple
independent operations, PSO-GA can converge to the
global optimal solution more frequently, further
enhancing its reliability and stability in solving the
problem of optimizing the power supply capacity of the
distribution network. In summary, the significant
advantages of the PSO-GA algorithm in multiple
dimensions such as optimization probability, fitness
improvement rate, and global optimization frequency
make it a powerful tool to solve the problem of power
supply capacity optimization of distribution networks.
The robustness and reliability of this algorithm provide
strong support for actual engineering applications, and it
is expected to play a more important role in future
distribution network optimization.

To further verify the convergence effect of PSO-GA, the
training efficiency of this model is compared with other
methods. By simulating the changes in the loss values of
each algorithm when processing the same data set, its
convergence speed is analyzed.. The specific results are
shown in Figure 5.
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Figure 5. Convergence speed comparison of different algorithm
models.

As shown in Figure 5, the PSO-GA algorithm exhibits
extremely fast convergence speed and quickly
approaches the optimal solution. The excellent
performance of PSO-GA is due to its integration of the
global search power of PSO and the local search power
of GA. PSO quickly explores the solution space through
group cooperation, while GA's crossover and variation
operations enhance the algorithm's ability to escape local
optimization, so that PSO-GA can quickly approach the
optimal solution at the beginning of the iteration and
deepen the search in subsequent iterations. Compared
with PSO-GA, the traditional GA algorithm relies on
random selection, and the search process is relatively
slow. PSO-ACO combines the characteristics of PSO and
ACO. Although it enhances the adaptability to path
optimization problems, it is constrained by the discrete
characteristics of ACO when dealing with continuous
optimization problems; GA-DE combines the advantages
of GA and DE, but its convergence speed is still affected
by the computational complexity of DE. In general, the
PSO-GA algorithm breaks the shackles of a single
algorithm, so the convergence speed is relatively fast.
From the perspective of thermodynamics, all actual
systems inevitably face the problem of energy dissipation,
and the free energy of the system cannot be completely
converted into actual work output. When dealing with
optimization problems, the PSO-GA algorithm can
practice the principle of “maximizing energy efficiency”
by streamlining calculation steps and reducing resource
waste. In application scenarios such as power grid
dispatching or logistics path planning, it is regarded as a
method of optimizing the flow of energy or matter. Its
goal is to achieve the maximum output efficiency of the
system under established conditions through the most
effective resource allocation. The PSO-GA algorithm
continuously adjusts and optimizes the search strategy to
approximate the theoretical best solution. When dealing
with continuous optimization problems, the algorithm
combines global and local search, which can effectively
avoid the local minimum value dilemma that a single
algorithm can easily fall into, so as to achieve higher
“energy conversion efficiency”.



When discussing the calculation of the steady-state state
of the power grid, the Newton-Rafson method is used for
medium, and high-level power grids. This method can
not only effectively handle the complex operation of the
power grid under steady-state conditions, but also
flexibly cope with different representations of the input
data. Whether it is rectangular coordinates or polar
coordinates, it can be accurately calculated.

An n-node power system is consideed, whose power
flow equation can be expressed as:

AP(O,W)=P

sepc

P(O,W) (17)

AQ(0.W) = Oepe -0(0.m) (18)

Among them, P and Q represent active power and

reactive power, respectively; 6 and W represent the
Angle and amplitude of node voltage, respectively;
sepc represents the given value.

For each node i, there are:

AP =P,

i~ Tisepe ’;[:IVV"W/ (F;/ Cos(él’_ 9/ ))+ 4; sin (6'?_ 6} ) (19)

AQ =0, — 7:1 VKW/(E/ cos(9[ —0_/.)) +4; sin(@i —9‘/.) (20)

F; and 4,
imaginary part of the
respectively.

Among them, are the real part and

node admittance matrix,

The core of the Newton-Rafson method is to construct
the Jacobian matrix and update it iteratively. The
Jacobian matrix consists of the partial derivative of the
current equation to the state variables (i.e. voltage
amplitude and angle). For nodes i and j, the Jacobian
matrix elements can be written as:

For off-diagonal elements (i # j ), there are:

J; :% = W,.Wj(E].sin(Qi —9‘/)) ~ 4;cos(0,-0) (21)
J
J;V:%:Wi(@cos(@—ﬁj))+Aijsin(0i—6’j) (22)

J

For diagonal elements (i = j ), there are:

TSR sin(g- g 4, cos (0= Jpo, (2)
J

gy = ’;ﬁVPf =3 W, (Fycos(0,-0,)+ 4,sin (0 -0, )+ Ew (24
J
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The Newton-Rafson method, with its strong convergence
and accuracy, plays an important role in the steady-state
analysis of power grids. The details are shown in Figure
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. Maximum value

Displacement
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»

u u

Figure 6. Schematic diagram of the application of
Newton-Rafson method in power grid steady state calculation.

Under different load conditions, the PSO-GA algorithm
has different optimization efficiencies for the PSC of the
power grid. This paper studies the optimization
efficiency under low load conditions, medium load
conditions, high load conditions, and complex load
conditions, and compares the experimental results with
other methods. The maximum PSC of all methods before
optimization is set to the same, and the effects after
optimization are compared. The specific comparison
results are shown in Figure 7.

25
—=
. s PSOY
— . .
220 F \ =
g - -
] ~
: L [EkRE
~
g L
§ N
E; %
2 ~
2o} .
B | e e |
g m - t-— P
SE w"‘\x.\ ------
] | | .\I
Low load Medium load High load Complex load

Load conditions

Figure 7. Comparison of PSC optimization effects under
different load conditions.

As shown in Figure 6, A-D are the optimized efficiency
under low load conditions, medium load conditions, high
load conditions, and complex load conditions. The
optimization effect of the PSO-GA algorithm on the
power supply capacity of the power grid under different
load conditions is significantly different, and compared
with other optimization algorithms, its advantages exist
in various load scenarios. In the low-load state, the
PSO-GA algorithm significantly improves the power



supply efficiency of the distribution network, an increase
of 20.61%, far surpassing similar algorithms. This is
mainly due to the precise adjustment of the matching
relationship between the power supply and the load by
the PSO-GA algorithm, which realizes the efficient use
of electrical energy and significantly reduces energy loss.
Based on the law of conservation of energy, the power
system needs to ensure the balance of input and output
energy and loss. Therefore, by reducing the energy loss
in the system, the PSO-GA algorithm effectively
improves the energy conversion efficiency of the overall
system, ensuring that more electrical energy is accurately
and efficiently distributed to the client. Under medium
load conditions, the PSO-GA algorithm increases the
efficiency of the power supply capacity to 22.44%,
demonstrating its excellent dynamic adaptability. This is
similar to the rate control step in a chemical reaction.
The key nodes in the power grid are optimized by the
PSO-GA algorithm. With the help of a catalyst, it
accelerates the transmission and distribution of electricity.
The PSO-GA algorithm also intelligently adjusts the
collaborative working mode between the voltages of
various levels, minimizing the energy loss caused by the
entropy increase, and ensuring that the power grid can
still maintain an efficient power supply state under high
load conditions.

Under complex load conditions, the PSO-GA algorithm
increases efficiency by 11.68%. In the face of various

uncertainties in the operation of the power grid, the
algorithm exhibits a high degree of stability and
adaptability under complex load conditions. In the
intricate chemical reactions, in order to maintain a stable
reaction efficiency, it is necessary to have a strong ability
to resist external interference. The PSO-GA algorithm
combines the wide-area search of particle swarm
optimization and the fine adjustment of genetic
algorithms, so that it can react quickly when the state of
the power grid changes dynamically, and accurately find
the optimal solution. From the perspective of energy
management, this means that even in non-ideal
environments, the algorithm can efficiently control the
energy flow in the system and minimize energy loss,
thereby ensuring that the power supply efficiency is
maintained at a high level. In summary, through in-depth
analysis of the optimization effectiveness of the PSO-GA
algorithm under different load conditions, combined with
the relevant principles of chemistry and thermodynamics,
it is not only possible to more thoroughly understand the
practical significance represented by these data, but also
to deeply understand the key role of this algorithm in
improving the overall performance of the power grid.

In discussing the effectiveness of the research methods in
this paper, comparative experiments are designed, and
the methods with the literature [16], [17], and [18] are
compared from different research indicators. The specific
research results are shown in Table 7.

Table 7. Comparison results of different optimization algorithms on key performance indicators.

. o Literature  [16] | Literature [17] | Literature [18]
Experimental indicators APSO PSO-GA Method Method Method
SOC estimation accuracy (%) 98.5 97.8 96.2 95.5 97.0
Power status evaluation error (%) 2.3 2.8 3.5 4.0 3.1
Standar_d deviation of power status 05 07 1.0 12 08
evaluation
Grid optimization time (hours) 1.2 1.5 2.0 2.5 1.8
Algorlthm convergence speed (number 50 60 75 85 70
of iterations)

According to the data in Table 7, APSO has reached
98.5% SOC estimation accuracy, which is higher than
97.8% of PSO-GA, and significantly higher than the
methods in the literature [16], [17], and [18]. This shows
that APSO has significant advantages in improving the
accuracy of lithium-ion battery state of charge (SOC)
estimation, which can more truly reflect the battery
charge and discharge status, and provide a solid
foundation for the stable operation of the power system.
In terms of power state evaluation error, the error rate of
APSO is 2.3%, which is better than the 2.8% of PSO-GA,
and much lower than the other three methods. This
proves that APSO is not only excellent in SOC
estimation, but also very competitive in power state
evaluation, which helps to improve the overall efficiency
of the power system. The standard deviation of APSO is
only 0.5, which is much lower than other methods,
showing high stability and reliability. In terms of power
grid optimization time, APSO only takes 1.2 hours,
which is faster than PSO-GA's 1.5 hours, and much
faster than the method of more than 2 hours in the
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literature, indicating that APSO and PSO-GA are
significantly faster than traditional methods in processing
speed and can quickly respond to changes in the power
grid. Finally, in terms of the convergence speed of the
algorithm, APSO quickly reaches the optimal solution in
50 iterations, demonstrating excellent search and
convergence capabilities. Although PSO-GA is slightly
slower, it is still much faster than the literature method,
reflecting the balance between global and local search of
the hybrid algorithm. The successful application of
APSO and PSO-GA provides new ideas and solutions to
solve related problems and promotes progress in related
fields.

In the process of collaborative voltage level planning, it
is necessary to comprehensively collect power
grid-related data, covering line details, load conditions,
and new energy access information for each voltage level.
Using these data, the APSO algorithm is used to
construct a voltage-level collaborative planning model.



When setting the model, the parameters of the APSO
algorithm, such as inertial weights, acceleration factors,
etc., must be carefully adjusted in combination with the
actual power grid and the characteristics of the algorithm
to find the best balance. During the operation of the
model, the optimization process of the APSO algorithm
should be closely monitored to ensure that the voltage
level configuration is continuously optimized. In view of
possible algorithm convergence problems, strategies
need to be adjusted in time to improve efficiency. For the
optimization of power supply capacity, the PSO-GA
algorithm is used to construct the corresponding model.
In this process, the algorithm parameters need to be
reasonably set based on key data such as load prediction
and power distribution of the power grid.

During the model operation phase, the PSO-GA
algorithm gives full play to its advantages of global
search and local optimization to explore the best power
capacity configuration. To ensure the efficient operation
of the algorithm, its status needs to be evaluated
regularly and adjusted in time. The actual optimization
results of the power grid are combined to verify the
optimization results to ensure the feasibility and effect of
its actual application. In actual operation, it is necessary
to pay attention to the complexity and variability of the
power grid and respond flexibly; the new developments
in power grid technology are continuously focused on,
and models are constantly updated and optimized to meet
future challenges. Through these measures, the research
results can be transformed into a boost for the actual
power grid planning and operation, and the overall
performance and power supply capacity of the power
grid can be effectively improved.

5. Conclusions

The purpose of this paper is to realize the collaborative
planning of the voltage level and the optimization of the
power supply capacity through intelligent algorithms.
With the large-scale access of new energy sources, it is
difficult for traditional voltage regulation methods to
adapt to the complex needs of modern power grids. In
this paper, APSO is used to construct a voltage-level
collaborative planning model. By dynamically adjusting
the inertial weight and acceleration factor of the particles,
the model finds an effective balance between global
search and local fine-tuning, thereby significantly
reducing voltage fluctuations and power loss. This paper
also innovatively combines PSO and GA to form a new
hybrid algorithm (PSO-GA) for optimizing power supply
capabilities. The APSO algorithm has advantages in
power loss optimization. The optimized power loss is
only 148kW, which is 26% lower than other algorithms;
the algorithm achieves 94.3% energy utilization and
92.8% transmission efficiency, which is significantly
better than other algorithms. According to the second law
of thermodynamics, there is always part of the energy in
the actual process that cannot be effectively utilized due
to entropy increase, but APSO greatly reduces this
energy loss by intelligently regulating the state of each
voltage level, thereby ensuring higher energy utilization
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and transmission efficiency. The PSO-GA algorithm
significantly improves the power supply capacity under
different loads. At low loads, it improves the power
supply efficiency of the distribution network by 20.61%,
far surpassing similar algorithms. At complex loads, it
also has an 11.68% increase, demonstrating a strong
processing power for complex problems. With the
increasing complexity of power systems and
technological progress, the role of intelligent algorithms
in power grid optimization has become more and more
important. In the future, it is necessary to develop
smarter and adaptive algorithms that combine big data to
monitor and predict the status of the power grid in
real-time. In short, through continuous innovation,
intelligent algorithms are expected to provide strong
support for the construction of an efficient and
sustainable smart grid, and promote the continuous
progress of the power industry.
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