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Abstract. In order to solve the problem that the existing
methods of electricity theft detection in dedicated user
photovoltaic systems are difficult to capture subtle
anomalies in non-stationary electricity consumption data,
this paper introduces a method combining wavelet
transform and support vector machine (WT-SVM). The
Daubechies wavelet basis function is used to perform
multi-scale decomposition of photovoltaic electricity
consumption data, extract time-frequency features, and
capture transient anomalies in electricity theft behavior.
The extracted features are input into the SVM
classification model, and the model is trained through the
RBF kernel function. Grid search and cross-validation
are used to optimize hyperparameters to improve the
generalization ability of the model. The results show that
under the same photovoltaic power theft detection
dataset and test environment, the WT-SVM in this paper
extracts time-frequency features through multi-scale
wavelet decomposition and combines RBF (Radial Basis
Function) and SVM classification, achieving an F1 score
0f 94.5%, a low latency of 35ms and a noise resistance of
91.2%, and outperforms the comparison model
(Time-Freq Transformer: 62.4MB; MobileNetst: 5.7MB)
with a lightweight of 2.1MB. The method in this paper
has a good recognition effect on electricity theft
behaviors such as current bypass, inverter tampering, and
data injection, verifies the effectiveness of the fusion of
wavelet time-frequency analysis and machine learning,
and provides a high-precision and high-practicality
solution for electricity theft detection in photovoltaic
systems.
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1. Introduction

Against the backdrop of energy structural transformation
and rapid development of renewable energy, the

proportion of photovoltaic power generation systems in
the power grid continues to increase, and the
corresponding problem of electricity theft is also
increasing. The electricity theft behavior of photovoltaic
systems of dedicated transformer users [1-3] is highly
concealed and uses new technical means, which poses a
challenge to the safe and stable operation of the power
grid and the economic benefits of power companies. The
current electricity theft detection system based on
traditional methods is difficult to accurately identify the
carefully disguised abnormal electricity consumption
patterns when faced with the intermittent and fluctuating
electricity consumption characteristics unique to
photovoltaic power generation [4]. In particular, under
complex working conditions with rapid changes in light
intensity and frequent load switching, the performance of
existing detection methods can be significantly reduced,
resulting in a large number of missed reports and false
alarms. The current situation of insufficient detection
capability has affected the actual effect of anti-electricity
theft work and restricted the healthy development of the
photovoltaic power generation industry [5,6]. It is
necessary to develop new detection technologies with
stronger adaptability and higher accuracy.

This paper introduces an innovative photovoltaic system
electricity theft detection method. By organically
combining the multi-scale analysis capability of WT with
the classification advantage of SVM, a new research
paradigm of physical feature extraction + machine
learning classification is constructed. The proposed
method uses Daubechies wavelet basis function for
multi-level signal decomposition to capture transient
abnormal characteristics in electricity consumption data.
A feature space mapping strategy based on kernel
techniques is designed to improve nonlinear
classification capabilities. A parameter optimization
mechanism is introduced to ensure the generalization
performance of the model. By systematically integrating
time-frequency analysis, feature engineering, and
machine learning techniques, the proposed method
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improves the ability to identify electricity theft in
complex electricity consumption scenarios while
maintaining the lightweight of the algorithm, providing
new technical ideas and solutions for the safe monitoring
of photovoltaic systems.

2. Related Works

In recent years, scholars have conducted a lot of research
in the field of electricity theft detection, mainly forming
three major technical routes. The first category is the
detection method based on deep learning [7,8]. Among
them, Transformer is good at capturing long-distance
dependencies in time series data, but its feature
extraction ability is limited when processing
non-stationary  signals. GNN has advantages in
processing topologically complex power grid data, but its
computational complexity is high, resulting in poor
real-time performance.Pamir et al. proposed the
SSA-GCAE-CSLSTM (Salp Swarm Algorithm-Gate
Convolutional Autoencoder-Cost-Sensitive Learning and
Long Short-Term Memory) hybrid model [9]. The
combination of gated recurrent units and convolutional
autoencoders is used to optimize electricity theft
detection. However, the model has too many parameters,
making it difficult to deploy on edge devices and
sensitive to noise. The second category is machine
learning methods based on feature engineering [10,11].
Kawoosa A I et al. proposed the XGBoost (eXtreme
Gradient Boosting) model based on extreme gradient
boosting [12], which uses consumers' electricity usage
patterns for analysis and is used for electricity theft
detection. This method has difficulty capturing transient
anomalies in non-stationary signals and has limited
generalization capabilities for new electricity theft
methods. The third category is the emerging graph neural
network method [13,14]. Gao A's team improved the
detection capability of group electricity theft by
constructing a semi-supervised learning architecture
consisting of a visualized Gramian angular field
encoding and a contrastive learning architecture with
small sample learning function [15]. This method
requires complete user power topology information,
which has the problem of difficulty in data acquisition in
practical applications. The existing algorithms generally
have insufficient recognition rates for concealed
electricity theft behaviors such as inverter parameter
tampering [16], and there are obvious seasonal
performance fluctuations. A number of comparative
experiments have found that the detection performance
of current advanced detection models can be
significantly reduced when dealing with the DC-side
electricity theft behavior unique to photovoltaic systems
[17]. This is mainly due to the fact that the DC-side
signal characteristics are more hidden and easily
disturbed by photovoltaic output fluctuations.

Wavelet-based fault detection methods have shown
significant application potential in photovoltaic systems.
An innovative fractional wavelet method has been
proposed for detecting defects in photovoltaic systems,
such as microcracks, wiring faults, and hot spots [18].
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This method uses the multi-resolution characteristics of
fractional Haar wavelets to improve the detection
sensitivity of low-amplitude defects, providing a new
perspective for improving the reliability of photovoltaic
devices. Another study used empirical wavelet transform
combined with hybrid convolutional recurrent neural
network to identify and locate fault types in hybrid
renewable energy systems [19]. The signal frequency
components are decomposed and features are extracted
by wavelet transform, and then classified using the
optimized hybrid convolutional recurrent neural network
to achieve high-precision identification of different fault
types. These studies show that wavelet transform and its
improved forms have broad application prospects in
photovoltaic system fault detection and are outstanding
in improving detection accuracy and sensitivity.

In order to achieve a breakthrough in technology, the
integration of signal processing and machine learning has
become a research hotspot. Janthong S used electrical
profiles combined with random forests [20] to deeply
analyze the behavior of each type of power customer,
enhance and improve efficiency. Nian Z O U proposed
an automatic encoder theft detection method for
non-high-loss lines based on hourly periodic features
combined with LSTM (Long Short-Term Memory) [21].
Liao L used the wavelet packet decomposition method to
decompose the original battery voltage signal [22], and
obtained high-quality low-frequency and high-frequency
signal components to enhance the prediction effect of the
model. By optimizing the filter bank design of WT [23],
the feature extraction efficiency can be improved and the
time-frequency resolution can be maintained. These
studies provide important references for building an
efficient and real-time electricity theft detection system.
This paper designs a multi-resolution analysis framework
based on Daubechies wavelet [24], develops a feature
compression algorithm for support vector [25], and
introduces edge computing architecture into this field for
the first time.

3. Joint Recognition Method of WT and SVM

A. Wavelet Decomposition of Photovoltaic System
Power Consumption Data

The electricity consumption data of photovoltaic systems
has non-stationary and nonlinear characteristics.
Traditional time domain or frequency domain analysis
methods are difficult to effectively capture transient
anomalies in electricity theft. This paper uses the Mallat
fast WT algorithm [26] to perform multi-scale
decomposition on electricity consumption data and

extract time and frequency domain features. The
mathematical definition of WT is formula (1):
ab) e T (e [1od (1
W ()= ] (z)w[ ; ]dt

x(1) is the wavelet
function. Table 1 is a comparison table of wavelet basis
functions.

is the original signal, and



Table 1. Comparison table of wavelet basis functions.

Wavelet basis | Support length | Regularity | Symmetry Vanishing moments | Application scenarios
. . . Non-stationary ~ signal  analysis,
Daubechies 8 High Approx symmetric | 4 feature extraction
Symlets 8 Medium Symmetric 4 Signal denoising, speech processing
Coiflets 12 High Approx symmetric | 4 Signal _ compression, feature
extraction
Biorthogonal | 10 Medium Asymmetric 3 Imag.e . compression, signal
denoising
Haar ) Low Symmetric 1 Fast _51gnal decomposition, edge
detection
. . High-precision  signal analysis,
Meyer * High Symmetric “ theoretical research
Morlet " High Symmetric w» Tlme-frequengy analysis, seismic
signal processing

Table 1 compares the characteristics of commonly used
wavelet basis functions, including support length,
regularity, symmetry, and vanishing moment number.
This paper selects the Daubechies wavelet basis function
as the wavelet basis, which has compact support and
high regularity and can achieve a good localization
balance between the time domain and the frequency
domain. The Daubechies wavelet basis function has
excellent feature extraction capabilities in signal
processing and is suitable for processing complex
fluctuations in photovoltaic system power consumption
data [27]. Discrete WT decomposition formula (2):

2t [n]+ 2 L.Z e @)

y[n]

c are the

y[n] and d,,
approximate coefficient and detail coefficient at scale j,

is a discrete signal, ¢,

respectively. ¢, , [n] is the scale function, and J is

the number of decomposition levels. In the data
preprocessing stage, the original electricity consumption
data is normalized to eliminate dimensional differences

Normalization
Segment processing

and ensure that the data is analyzed at the same scale.
After normalization, the electricity consumption data is
processed in segments, and the length of each segment is
an integer power of 2 to meet the input requirements of
WT. Segment processing can improve computational
efficiency and better capture local features.

Multi-level wavelet decomposition is performed on each
segment of data to obtain wavelet coefficients of
different scales. Wavelet decomposition includes two
parts: approximate coefficients and detail coefficients
[28]. The approximate coefficient reflects the
low-frequency components of the signal, mainly
including the basic trend and stable characteristics of the
power consumption data. The detail coefficient captures
the high-frequency components of the signal and can
effectively identify transient anomalies and mutation
characteristics. Through multi-level decomposition, the
characteristics of the power consumption data are
analyzed layer by layer from coarse to fine, providing
multi-level time-frequency information for the detection
of power theft. Figure 1 is a diagram of the wavelet
decomposition filter bank structure.
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Figure 1. Wavelet decomposition filter bank structure.
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Figure 1 shows the wavelet decomposition structure of
the photovoltaic system power consumption data of the
dedicated transformer user [29]. The original
photovoltaic system power consumption data is
normalized and segmented to eliminate dimensional
differences and meet the input requirements of the WT.
The data is decomposed at multiple levels through
low-pass filters and high-pass filters to obtain
approximate coefficients and detail coefficients at
different scales. These coefficients are combined into
wavelet coefficient vectors, and the length information of
each coefficient and the original data is recorded at the
same time. Through the wavelet decomposition filter, the
time-frequency characteristics of the photovoltaic system
electricity consumption data can be effectively extracted,
providing a key foundation for the subsequent feature
extraction and classification model training of electricity
theft behavior.

In the process of wavelet decomposition, the Mallat fast
algorithm is used to achieve efficient calculation. The
filter bank implementation formula of the Mallat
algorithm is formula (3):

¢ulk]= Znh[”_zk]aj []

4, (1= 3, eln-2%]a, (1]

¢, [k] is the approximate coefficient of the j+1 th

layer, h[n] is a low-pass filter, and g[n] is a

high-pass filter. The algorithm implements WT through a
filter bank, avoiding direct integral calculations and
reducing computational complexity. The input signal is
low-pass and high-pass filtered to obtain approximate
coefficients and detail coefficients, respectively. The
approximate coefficients are downsampled and the above
process is repeated to achieve multi-level decomposition.
Through multi-level decomposition, the time-frequency
characteristics of the signal are extracted layer by layer
to capture subtle anomalies in electricity theft.

By analyzing the energy distribution and frequency
components of the wavelet coefficients, potential
abnormal signals are preliminarily identified. The energy
distribution reflects the energy concentration of the
signal in different frequency bands. Electricity theft can
cause the energy in certain frequency bands to increase
or decrease. Energy distribution calculation formula (4):

E=Y"ld,[ @
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Ei
component is obtained by analyzing the spectral
characteristics of the detail coefficients, which can
identify abnormal frequency components. Through
multi-scale decomposition and feature analysis, the
abnormal features in the power consumption data are
fully captured, providing a high-quality data foundation
for subsequent feature extraction and classification. Fast
Fourier transform formula (5):

is the energy value at the i -th scale. The frequency

X[k]=3 " x[n]e ™ (5)

X[k] is the frequency domain signal, x[n] is the time

domain signal, and g is the frequency domain index.

The results of wavelet decomposition provide key input
for subsequent feature extraction and classification
model training. Through multi-scale analysis, normal
electricity use and electricity theft can be effectively
distinguished, especially when the electricity theft
behavior manifests as transient anomalies or local
mutations. The multi-resolution characteristics of WT
enable it to adapt to the complexity and diversity of
photovoltaic system electricity consumption data,
providing reliable technical support for electricity theft
detection. Wavelet entropy calculation formula (6):

H, :_Z;\;lpi,f lOg(pr) ©)

p.,; s the probability distribution of the j th detail

coefficient at the i -th scale. In practical applications,
the computational efficiency and accuracy of wavelet
decomposition directly affect the real-time and accuracy
of electricity theft detection. This paper ensures the
efficiency and stability of wavelet decomposition by
selecting appropriate wavelet basis functions and
optimization algorithms. Segmentation processing and
normalization operations improve the efficiency and
reliability of data processing, laying a solid foundation
for subsequent steps.

B.  Feature Extraction of Electricity Theft Behavior

Extracting key features from wavelet decomposition
results is the core of electricity theft detection. This paper
selects energy distribution, frequency component and
wavelet entropy as feature indicators to characterize the
characteristics of electricity consumption data from three
dimensions: energy, frequency and complexity, in order
to capture abnormal patterns in electricity theft. Figure 2
is a conceptual diagram of electricity theft feature
extraction.
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Figure 2. Concept diagram of electricity theft feature extraction.

Figure 2 shows the concept diagram of electricity theft
feature extraction, which presents the whole process
from raw electricity consumption data to the final
determination of electricity theft in a clear process.
Through rigorous calculation and analysis steps,
multi-scale feature information is integrated to achieve
accurate determination of electricity theft, providing
support for the safe and stable operation of the power
system. The energy distribution is obtained by
calculating the sum of squares of wavelet coefficients at
each scale, reflecting the energy concentration of the
signal in different frequency bands. The energy
concentration is as shown in formula (7):

Q) represents the range of a specific frequency band.
Each section of electricity consumption data can be
decomposed by wavelet to obtain the approximate
coefficients and detail coefficients of each scale. The
energy value of the detail coefficient of each scale is
calculated. By calculating the energy value of each scale,
the energy distribution characteristics of the signal in
different frequency bands can be identified. Electricity
theft usually causes the energy of certain frequency
bands to increase or decrease. By analyzing the changes
in energy distribution, abnormal signals can be
preliminarily identified.

In actual operation, the calculation of energy distribution
is not limited to a single scale, but through multi-scale
analysis [30,31], the energy changes in each frequency
band are integrated. The energy changes in the
low-frequency band reflect the overall trend of the power
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load, and the energy changes in the high-frequency band

may  capture transient anomalies. Through
comprehensive  analysis of multi-scale  energy
distribution,  the  characteristics of electricity

consumption data are comprehensively characterized,
providing richer feature information for the detection of
electricity theft. The weighted average formula (8) of
multi-scale energy distribution is:

L
Eweighted = Zi:] a)l : Ei (8)

w[
frequency components relies on analyzing the spectral
characteristics of detail coefficients. Fast Fourier
transform is performed on the detail coefficients of each
scale to obtain the corresponding spectrum. The main
frequency components are extracted and their amplitude
characteristics are statistically analyzed. Electricity theft
generates abnormal frequency components in a specific
frequency band, and the analysis of spectral
characteristics can capture these abnormal signals [32].

is the weight of the i -th scale. The identification of

The frequency characteristics of a single frequency band
are not sufficient to fully characterize the data features.
Multi-scale analysis is used to synthesize the frequency
changes in each frequency band. The frequency
components in the low-frequency band reflect the
periodic changes in the power load, and the frequency
components in the high-frequency band can capture
transient anomalies. The comprehensive analysis of
multi-scale frequency components enhances the ability to
characterize power consumption data and provides richer
feature information for the detection of power theft.

Wavelet entropy is used to measure signal complexity



and reflect the distribution of information at different
scales. The probability distribution of detail coefficients
at each scale is obtained during the calculation process.
The wavelet entropy value of the corresponding scale is
calculated. A higher wavelet entropy value indicates a
higher signal complexity. Electricity theft can cause
changes in signal complexity, and the change analysis of
wavelet entropy helps to identify abnormal signals.

When calculating wavelet entropy, it cannot be limited to
a single scale. Multi-scale analysis provides information
on complexity changes in different frequency bands. The
complexity changes in the low frequency band reveal the
overall trend of the power load, and the complexity
changes in the high frequency band capture transient
anomalies. The comprehensive analysis of multi-scale
wavelet entropy improves the ability to characterize the
complexity of power consumption data and provides
more feature information for the detection of power theft.

Features such as energy distribution, frequency
components, and wavelet entropy together constitute
feature vectors, which serve as the input of the SVM.
The extraction process includes multiple steps. Each
feature can be calculated from each segment of
electricity consumption data, and statistics such as mean
and variance can be calculated. All feature values can be
normalized to eliminate dimensional differences and
keep the feature dimensions consistent. The normalized
features can be combined into a feature vector for
classification model training and testing. The
contribution evaluation formula (9) for feature screening
is:

Importance (), )
Sm = M (9)
Z,m Importance ( F, )

m

Importance(F,, ) is the importance of the m th feature.

The construction of feature vectors relies on
multi-feature  fusion. The combination of energy
distribution and frequency components depicts the
energy and frequency characteristics of electricity data.
The introduction of wavelet entropy enhances the ability
to capture changes in signal complexity. Multi-feature
comprehensive analysis improves the ability to
characterize the characteristics of electricity data and
provides rich feature information for electricity theft
detection.

Through comprehensive analysis of energy distribution,
frequency components and wavelet entropy, the
characteristics of electricity consumption data are fully
characterized, and transient anomalies and complex
patterns in electricity theft are captured. Energy
distribution reflects the energy concentration of the
signal, frequency components identify abnormal
frequencies, and wavelet entropy measures the
complexity of the signal. The combination of the three
can effectively distinguish between normal electricity
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consumption and electricity theft. The feature extraction
process is based on the wavelet decomposition results,
making full use of the multi-resolution analysis
capabilities of WT to adapt to the non-stationarity and
complexity of photovoltaic system power consumption
data.

In practical applications, in order to improve the
efficiency of feature extraction, this paper uses a fast
algorithm to calculate energy distribution and wavelet
entropy, and accelerates frequency component analysis
through parallel computing. Through experiments, the
effectiveness of each feature is verified, the features that
contribute most to the detection of electricity theft are
selected, the dimension of the feature vector is reduced,
and the training efficiency of the classification model is
improved.

C. SVM Model Training

This paper uses SVM as the classification model and
uses the RBF [33,34] kernel for nonlinear mapping.
SVM is a classification algorithm based on statistical
learning theory. It constructs the optimal classification
hyperplane in high-dimensional space to achieve data
classification. Its core idea is to improve the
generalization ability of the model by maximizing the
classification interval. Figure 3 is a schematic diagram of
the SVM classification hyperplane.

> Category 1

+ Categary2
O Supportvectors
Decision boundary ||
=D Classification interval

-4 -3 2 -1 0 1 2. 3 4

Figure 3. Schematic diagram of SVM classification hyperplane.

Figure 3 is a schematic diagram of the SVM
classification hyperplane, describing the classification of
the SVM in two-dimensional space. By maximizing the
classification interval, the SVM can improve the
generalization ability of the model and classify new data
more effectively. Before model training, the extracted
feature vectors are normalized. The purpose of
normalization is to eliminate the dimensional differences
between features and ensure that each feature dimension
has the same scale. Normalization formula (10):



Xy =2 (10)

o
4 is the mean of the eigenvalue, and o is the
standard deviation of the eigenvalue. Through

standardization, it is possible to avoid some features
having too much impact on the classification results due
to their large dimensions. The SVM maps
low-dimensional features to high-dimensional space
through the kernel function to solve the nonlinear
classification problem. This paper selects the RBF as the
kernel function, as shown in formula (11):

K(xi,xj)zexp(—ynxi—xj”z) (11)

y is a parameter of the kernel function, which controls

the complexity of the high-dimensional space after
mapping. The RBF kernel function can effectively
process nonlinear data. By adjusting the parameter y ,

the classification performance of the model can be
flexibly controlled. The SVM is essentially a binary
classification model. This paper adopts a one-to-one
strategy to deal with multi-classification problems. The
electricity theft behavior is divided into multiple
categories such as normal electricity use, mild electricity
theft, and severe electricity theft. A binary classification
model is trained for every two categories. For £

k(k-1)
2

models need to be trained. In the prediction stage, the
final classification result is determined by a voting
mechanism. The training process of the SVM is achieved
by solving the optimization problem, formula (12):

categories, a total of

binary classification

I=min VA& (12)

Y.b,$
Constraint formula (13):
yl.(Y-xi+q)21—§l., &>0 (13)

Y is the normal vector of the classification hyperplane,
g 1is the bias term, & represents the slack variable, and

A represents the penalty coefficient, which is used to
balance the classification interval and classification error.
By solving this optimization problem, the optimal
classification hyperplane can be found to ensure that the
model can accurately distinguish different types of
electricity consumption behaviors. During the model
training process, grid search and cross-validation are
used to optimize the hyperparameter penalty coefficient
A and kernel function parameter y of the SVM [35].

Grid search finds the optimal parameters by traversing
all possible combinations within the preset parameter
range. The objective function formula of grid search is
(14):
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(21,;7) = argrrcl’igl CVError (4,y) (14)

A represents the optimal penalty parameter.
Cross-validation divides the data set into a training set
and a validation set to evaluate the classification
performance of each set of parameters. The
generalization ability of the model is improved through
optimization to avoid overfitting problems. The error
estimation formula of cross-validation (15) is:

1  Q— R
CVError :;z;c:l;z/:ln(yii iyfj) (15)

k is the number of cross-validation folds, H() is the

indicator function, and takes the value of 1 when the
condition is met, otherwise it is 0. After the model
training is completed, this paper uses accuracy, recall and
F1 score as evaluation indicators to comprehensively
evaluate the classification performance of the model.
Accuracy reflects the correctness of the overall
classification of the model, recall measures the model's
ability to detect electricity theft, and F1 score combines
precision and recall to evaluate the balanced performance
of the model. In practical applications, in order to
improve the efficiency of model training, the Sequential
Minimal Optimization (SMO) algorithm is used to solve
the optimization problem of the SVM. The SMO
algorithm decomposes large-scale optimization problems
into multiple small-scale sub-problems to improve
computational efficiency. This paper also uses GPU
(Graphics Processing Unit) parallel computing to
accelerate the calculation process of the kernel function,
further improving the speed of model training.

The training and optimization of the SVM model can be
achieved through model parameter regulation. The
high-dimensional processing capability and nonlinear
classification characteristics of the SVM ensure that it
can effectively handle the complexity and diversity of
photovoltaic system power consumption data and
improve the accuracy and generalization ability of power
theft detection [36].

D. Model Parameter Optimization

In order to improve the generalization ability of the SVM
model, this paper uses grid search and cross-validation to
optimize the hyperparameters of the model. The
performance of the SVM is highly dependent on the
selection of hyperparameters, especially the penalty
coefficient A and the RBF kernel function parameter y .

Through systematic parameter optimization, the
classification performance of the model is improved and
the overfitting problem is avoided.

Grid search is an exhaustive search method that finds the
optimal hyperparameters by traversing all possible
combinations within a preset parameter range. This paper



selects the penalty coefficient A and the RBF kernel
function parameter y as the optimization target. The

penalty coefficient A controls the model's tolerance to
classification errors. A larger A value can reduce the
classification error, but may lead to overfitting. A smaller
A value can increase the classification interval, but may
lead to underfitting. The RBF kernel function parameter

¥y controls the complexity of the kernel function. A
larger y  value makes the kernel function more
localized, and a smaller y value makes the kernel

function smoother.

The grid search range of the SVM penalty coefficient A
and kernel function parameters was determined based on
preliminary experiments and literature research [37,38].
In the implementation, the parameter ranges of A and y

can be defined first. Usually, the value range of A is [1073,
10%], and the value range of y is [1073, 10°]. The

parameter space is divided into logarithmic scales to
generate a parameter grid. For each set of parameter
combinations, the SVM model is trained and its
performance is evaluated. Table 2 is a sample table of
parameter combinations of some penalty coefficients A
and RBF kernel function parameters y .

Table 2. Sample table of some parameter combinations.

) RBF kernel function parameter . RBF kernel function parameter
Penalty coefficient A 7 value Penalty coefficient A 7 value
0.001 0.001 0.1 0.1
0.001 0.002 0.1 0.2
0.001 0.003 0.1 0.3
0.001 0.004 1 1
0.001 0.005 1 2
0.001 0.006 1 3
0.001 0.007 10 10
0.001 0.008 10 20
0.001 0.009 10 30
0.001 0.01 100 100
0.01 0.001 100 200
0.01 0.002 100 300
0.01 0.003 1000 1000
0.01 0.004 1000 900
0.01 0.005 1000 800

Table 2 lists some parameter combinations within the set
parameter range. These combinations cover values of
different magnitudes from smaller to larger, and are used
in subsequent cross-validation and other means. The
performance of the model under each set of parameters
can be evaluated, and the parameter configuration that
enables the model to achieve the best performance in the
photovoltaic system power theft detection task can be
screened out.

Cross-validation is used to evaluate the performance of
each parameter combination to ensure the stability and
reliability of the model. This paper uses K-fold
cross-validation (K=5) to divide the data set into a
training set and a validation set. The data set is randomly
divided into 5 subsets, and 4 of them are used as training
sets each time, and the remaining 1 subset is used as a
validation set. This can be repeated 5 times to ensure that
each subset is used as a validation set once. Through
cross-validation, the data set can be fully utilized and the
performance fluctuation caused by different data
divisions can be reduced.

In cross-validation, this paper selects the F1 score as the
performance evaluation indicator. The F1 score is the
harmonic mean of the precision and recall rate, which
can comprehensively reflect the classification
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performance of the model. The F1 score calculation
formula (16):

Fleo. Precision -Recall

(16)

Precision + Recall

The calculation formulas for precision and recall are

(17):

.. TP
Precision = ——
—["ljll: +FP (17)
Recall =——
TP+FN

TP is a true positive, FP is a false positive, and FN is
a false negative. By maximizing the F1 score, it can find
the optimal parameter combination that balances
precision and recall. The paper uses a logarithmic scale
to divide the parameter range of A and y , generate all

possible combinations of A and y , and form a

parameter grid. For each set of parameter combinations,
the F1 score of the model is evaluated using k-fold cross
validation, and the parameter combination that gives the
highest F1 score on the validation set is selected as the



hyperparameter of the final model.

Through grid search and cross validation, the parameter
space is systematically explored to find the optimal
hyperparameter combination. The exhaustive nature of
grid search ensures that no potential excellent parameter
combinations are missed, and the stability of cross
validation ensures the reliability of the evaluation results.
As an evaluation indicator, the FI1 score can
comprehensively reflect the classification performance of
the model and avoid the limitations of a single indicator.

In practical applications, in order to improve the
efficiency of parameter optimization, parallel computing
is used to accelerate the grid search and cross-validation
process. By allocating parameter combinations to
multiple computing nodes, the computing time is
reduced. In addition, an early stopping strategy is
adopted. During the cross-validation process, if the
performance of a parameter group is significantly lower
than the current optimal value, the evaluation of the
group of parameters is terminated in advance to improve
computing efficiency.

This paper implements parameter optimization of the
SVM model. The combination of grid search and
cross-validation systematically finds the optimal
hyperparameter combination and improves the
generalization ability and classification performance of
the model. The optimization process provides a reliable
model foundation for electricity theft detection.

E. Computational Efficiency Optimization

In the signal processing stage, the improved Mallat fast
WT algorithm is used to reconstruct the calculation
process. The filter bank structure is reconstructed by
introducing multi-phase decomposition technology, and
the traditional convolution operation is decomposed into
multiple parallel sub-filter operations. The calculation
sequence based on cache optimization is designed, and
register prefetching and loop unrolling technology are
used to improve data locality. Implement a multi-scale
parallel decomposition strategy, allowing computational
tasks at different decomposition levels to be executed
synchronously. The filter bank reconstruction formula
(18) for polyphase decomposition is:
M-1
Zk:O

H(z)= ZFE(2M) (18)

E, (Z M ) is the multiphase component and M s the

decomposition factor. In the feature calculation phase,
the calculation process of energy distribution, frequency
component and wavelet entropy is reconstructed. The
energy distribution calculation is optimized using SIMD
(Single Instruction Multiple Data) instruction set to
achieve vectorized parallel computing. Frequency
component analysis is optimized by FFT (Fast Fourier
Transform) algorithm, and mixed radix algorithm is used
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to improve computational efficiency. Wavelet entropy
calculation introduces approximate calculation and table
lookup method to reduce the overhead of complex
logarithmic operations.

A three-level parallel acceleration architecture is
designed. In data-level parallelism, the input signal is
divided into fixed-size data blocks, and each CUDA
thread block (Compute Unified Device Architecture
Threads) processes a specific data block. Shared memory
is used to optimize data access mode and reduce global
memory access latency. In task-level parallelism, a
multi-stream processing pipeline is built to achieve
asynchronous overlap of kernel function calculation and
data transmission, and the correctness of calculation is
ensured through event synchronization mechanism. In
model-level parallelism, the core matrix calculation of
the SVM is decomposed into multiple parallel sub-matrix
operations, and a warp-level reduction algorithm is used
to accelerate the result aggregation. The warp-level
optimization formula (19) of the parallel reduction
algorithm is:

Ytid e [0,31],s[tid]@ = [tid+16]

s[tid]@=s[tid+8] (19)

s[tid]@:s[tid+l]

@ represents the reduction operator. A three-level
processing pipeline architecture is constructed. The
first-level pipeline is responsible for data preprocessing,
including data standardization and segmentation
processing. Double buffering technology is used to
achieve parallel computing and data transmission. The
second-level pipeline performs feature extraction in
parallel and dynamically allocates computing resources
through the task scheduler. The third-level pipeline
implements classification decisions and optimizes the
prediction process of the SVM. Data exchange is
achieved between pipelines at all levels through a ring
buffer, and lock-free programming is used to ensure
thread safety.

A zero-copy memory access mechanism is implemented
to eliminate unnecessary data transfer between the host
and the device. A unified memory architecture is used to
simplify the programming model, and data access is
optimized through prefetching strategies. Intelligent
cache strategies can be designed to dynamically adjust
cache size and replacement algorithms based on
computing characteristics. Memory  alignment
optimization is performed on frequently accessed data
structures to improve cache hit rate.

Dynamic resource allocation algorithms based on load
prediction can monitor the real-time computing load of
the system and use work stealing algorithms to balance
the task allocation of each computing unit. An elastic
computing resource pool can be designed to dynamically



adjust the GPU stream processor configuration according
to task requirements. A fine-grained power management
strategy can be implemented to optimize energy
efficiency through dynamic voltage and frequency
adjustment. The power consumption model formula (20)
for dynamic voltage and frequency adjustment is:

pP=C,-V*

eff .f+]leak.V (20)

C

18 the effective capacitance, V

is the operating

is the

leakage current. This paper designs a hybrid task
scheduling strategy, which uses static scheduling for
computationally intensive tasks and dynamic scheduling
for data-related tasks. It implements a task priority queue
to ensure that critical path tasks are executed first. A task
dependency analyzer can be developed to automatically
identify parallelization opportunities. Task slicing
technology is used to decompose large tasks into
subtasks that can be executed in parallel. Table 3 is the
parameters involved in this paper.

voltage, f is the clock frequency, and 7,

Table 3. Parameter list.

Parameters meet Parameter function Parameters meet Parameter function

14 Wavelet Function a Scale parameter

b Translation parameter c Approximation coefficient

d Detail coefficient g Frequency domain index

Q Specific frequency range w Weights of multi-scale energy distribution
H The mean of the eigenvalues o Standard deviation of eigenvalues

Y Kernel function parameters q Bias term for classification hyperplane

& Slack variables A Penalty coefficient

In the process of studying the joint identification of
electricity theft characteristics of photovoltaic systems of
dedicated transformer users by WT and SVM [39], a
variety of key parameters are involved. Table 3 clearly
shows the various parameters and their functions, and
quickly and intuitively grasps the parameter system
involved in the study. This lays the foundation for the
subsequent understanding of the analysis and processing
of electricity consumption data by WT and the
construction and training of SVM models.

The computational efficiency optimization scheme
proposed in this paper builds a complete parallel
computing system through the collaborative design of
algorithm reconstruction and hardware acceleration. At
the algorithm level, multi-phase decomposition and
SIMD optimization are used to parallelize the computing
process. At the hardware level, a three-level parallel
acceleration scheme is designed based on the CUDA
architecture. The real-time performance of the system is
ensured through pipeline design and dynamic resource
scheduling, and the hardware utilization is maximized by
combining memory access optimization and intelligent
task scheduling. The systematic optimization method
provides an effective technical solution for real-time
processing of power big data.

4. Experimental Results
A.  Wavelet Decomposition Process

The experimental data in this paper are derived from the
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operation monitoring records of the actual photovoltaic
system, covering normal power consumption behavior
and various power theft behaviors such as current bypass,
inverter tampering, and data injection. The test scenario
parameters are designed according to the IEEE 2030.5
standard and refer to the actual power grid monitoring
data. Various noise conditions and data loss conditions
are simulated in the experiment to ensure the robustness
of the results. All comparison models are run under the
same test environment, and the verification results are
evaluated by cross-validation and independent test sets.

The decomposition level of wavelet decomposition
directly affects the computational cost and the refinement
of feature extraction. A higher decomposition level can
capture more detailed features, but it will increase the
computational complexity. This paper experimentally
found that when the decomposition level is 5, the model
achieves a good balance between computational
efficiency and feature extraction capabilities. Further
increasing the decomposition level will lead to a
significant increase in computational cost, while the
improvement in model performance is limited.In the
operation of photovoltaic systems, accurate analysis of
electricity consumption data is crucial. Electricity
consumption data reflects the operating status of the
system and hides clues to abnormal situations such as
electricity theft. As a powerful signal processing tool,
wavelet decomposition can effectively analyze
non-stationary electricity consumption data at multiple
scales. Figure 4 clearly shows the application effect of
wavelet decomposition in the analysis of photovoltaic
system electricity consumption data.



(a)Original photovoltaic system power consumption data waveform
T T T T T

]

Amplitude
o

]
o

(5] 02 03 04

Time (s}
first-order wavelet decomposition

(b)Approximate coefficients after
T

05

06 o7 0.8 08 1

Amplitude
o

200

Sample points
(c)Detail coefficients after first-level wavelet decomposition

300

400

Amplitude

MelLatllal

Sample points
(d)Distribution of detail coefficients of each layer after multi-level wavelet decompaosition
T T T T T T T

Lawvel 1

Level 2
Leval 3

1 T

Amplitude
o

"Lﬁl}%ﬂml.‘lt"h!ﬂ(@jmnH,IHWIﬁrumi] m‘{!{l‘“”MW\W‘!”f-'il‘W{Vi’!ﬂ"ﬂl«'lWMI'“-"ﬂ}i?lw,'ﬂm'WWA’!"‘"lmmuﬂf"

o 100 200 300 400

500

600 T0O 800 200 1000

Sample points

Figure 4. Schematic diagram of wavelet decomposition process. Figure 4 (a) Waveform of original photovoltaic system power
consumption data; Figure 4 (b) Approximate coefficient diagram after first-level wavelet decomposition; Figure 4 (c) Detailed
coefficient diagram after first-level wavelet decomposition; Figure 4 (d) Multi-level wavelet decomposition diagram.

When studying photovoltaic system power consumption
data, wavelet decomposition is an important analytical
tool that can analyze data at different scales and
frequencies. Figure 4 intuitively shows the effect of
wavelet decomposition in processing photovoltaic
system power consumption data, including the original
photovoltaic system power consumption data waveform
and the coefficients after wavelet decomposition at
different levels. The original waveform in Figure 4 (a)
shows complex fluctuations, because the actual
photovoltaic system power consumption is affected by
multiple factors such as light intensity and equipment
operating status, and has obvious non-stationary
characteristics. In Figure 4 (b), after the first-level
wavelet decomposition, the approximate coefficient
reflects the overall trend and main components of the
signal, showing a relatively smooth waveform, because
the low-frequency part contains the basic change
characteristics of the signal; the detail coefficient in
Figure 4 (c) captures the rapid changes and transient
characteristics in the signal, and its waveform is more
high-frequency and complex.

Multi-level wavelet decomposition further refines the
analysis of the signal. The distribution of detail
coefficients at each layer shows the high-frequency
components at different scales. As the number of
decomposition layers increases, subtle changes and
high-frequency fluctuations in the signal can be captured
more finely, which is of great significance for
discovering abnormal fluctuations in electricity
consumption data and capturing transient changes caused
by possible electricity theft.

Figure 4 intuitively demonstrates the multi-scale
characteristics of wavelet decomposition, which helps
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people understand how wavelet decomposition
decomposes complex photovoltaic system electricity
consumption data into components of different
frequencies and scales, laying the foundation for
subsequent research on electricity consumption data
feature extraction and anomaly detection based on
wavelet analysis. By analyzing the decomposition results,
an intuitive basis is provided for the in-depth analysis
and processing of photovoltaic system power
consumption data using wavelet decomposition
technology, which helps to improve the ability to mine
potential information in photovoltaic system power
consumption data and improve the accuracy and
effectiveness of power theft detection applications.

B. Joint Analysis of Multi-Scale Energy Distribution
and Frequency Components

In the operation monitoring and management of
photovoltaic  systems, accurately grasping the
characteristics of power consumption data is the key to
achieving efficient energy utilization and effective
anomaly detection. Electricity consumption data is a
complex non-stationary feature, containing rich
frequency components and energy distribution
information. Wavelet decomposition, as a powerful
multi-scale analysis tool, decomposes the original signal
at different scales to reveal the detailed characteristics of
the signal at each scale. This paper deeply explores the
energy distribution law and frequency component
characteristics  of  photovoltaic  system  power
consumption data at multiple scales to mine potential
information in the data and identify abnormal power
consumption behavior. Figure 5 shows the results of the
joint analysis of multi-scale energy distribution and
frequency components.
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Figure 5. Multi-scale energy distribution and frequency component analysis diagram.Figure 5 (a) Multi-scale energy distribution
diagram; Figure 5 (b) Multi-scale frequency component diagram.

Figure 5 shows the energy distribution of each scale and
the frequency component of each scale. In the energy
distribution diagram of each scale in Figure 5 (a), lines of
different colors represent the energy distribution of scale
1, scale 2, and scale 3, respectively.The energy of each
scale shows a relatively discrete and irregular
distribution at the sample point. Because the power
consumption data of the photovoltaic system itself is
affected by many complex factors such as the change in
the light intensity of the photovoltaic panels and the
random start and stop of the power equipment, these
factors lead to the non-uniform distribution of the energy
of the signal at different scales.

It can be seen from the frequency component diagram in
Figure 5 (b) that the frequency amplitudes at different
scales also vary greatly. At scale 1, the frequency
component has a higher amplitude at a specific
frequency and a lower amplitude at other frequency
ranges. The situation is similar for scales 2 and 3, but the
specific frequency distribution and amplitude are
different. Due to the multi-scale characteristics of
wavelet decomposition, different scales can capture
information in different frequency ranges in the signal.
Therefore, the frequency component distribution at
different scales can reflect the energy concentration and
change characteristics of the signal in different frequency
bands.

In terms of anomaly detection, by observing the changes
in energy and frequency distribution at different scales,
abnormal fluctuations in electricity consumption data can
be more keenly detected. When the energy or specific
frequency components at a certain scale change
abnormally, it means that there are abnormal situations
such as electricity theft in the system, which provides
important clues for abnormal diagnosis and processing.
For optimizing the operation and management of
photovoltaic  systems, this information helps to
reasonably arrange the operation of electrical equipment,

improve energy efficiency, and reduce operating costs.
The joint analysis of multi-scale energy distribution and
frequency components provides strong support for the
research of this paper, making the analysis of
photovoltaic system power consumption data more
in-depth and comprehensive.

C. RBF Kernel Mapping Effect

In the study of machine learning and data analysis, the
processing and conversion of data features is a key link
to improve model performance. As an effective means of
mapping data from low-dimensional space to
high-dimensional space, RBF kernel mapping has unique
advantages in processing nonlinear separable data. In
order to intuitively present the actual effect of RBF
kernel mapping and the change in data distribution,
Figure 6 shows a schematic diagram of RBF kernel

mapping.

5 (a)Original low-dimensional data (bLHigh—dimensional feature space mapping

® Category 1 L ] Category 1
@ Category 2 L] Category 2
2 ] 0.3
.'. " ° . .
s 0¢ goe o” e
Sep F 0.2r °
L o e o e
*, * L
L] . o .,
o .i ‘30 ° c 01l o% e 'S
a a " L4 =] e ® L]
7} Y L
% e -~ E o, @ e T
w ® 400 ® g 0 d % .&
% % e F Ry, *
1 H ."' ™ ; .: [ .’
01t .
i '.eo ° ... . ®
o 3
2 °
@ . 02 o8 ® =
L ] ® [ )
s *°
3 . 0.3 »
-4 -2 0 2 4 0.5 1] 0.5
Feature 1 Dimension 1

Figure 6. Schematic diagram of RBF kernel mapping. Figure 6
(a) Original low-dimensional data; Figure 6 (b) Mapping result
of high-dimensional feature space.



Figure 6 is divided into two parts. Figure 6 (a) shows the
original low-dimensional data, where the red and blue
data points represent different categories respectively.
These data points are mixed with each other in
low-dimensional space, with disorderly distribution and
no obvious linear separable boundaries. This reflects that
in low-dimensional space, it is difficult to directly
classify data, and traditional linear classification methods
are difficult to achieve ideal results.

Figure 6 (b) shows the visualization result of
dimensionality reduction to two-dimensional space after
RBF kernel mapping through multidimensional scaling
technology. Compared with the figure 6 (a), the
distribution of the two types of data points has changed
significantly. Their distribution in space is more regular,
and the distinction between them is significantly
enhanced. This result is produced because the RBF
kernel function can map the original low-dimensional
data to a high-dimensional space through nonlinear
transformation according to the distance relationship
between data points. In the high-dimensional space, the
originally tightly entangled data of different categories
are redistributed, thereby revealing the potential linear
structure between them. The RBF mapping process is
equivalent to constructing a representation that is more
suitable for data distribution in the high-dimensional
feature space, so that different types of data can be more
clearly distinguished in the space, thereby improving the
classification effect.

From an algorithmic perspective, Figure 6 clearly shows
how RBF kernel mapping enhances the separability of

data, providing an intuitive effect verification for the
classification algorithm based on RBF technology, which
helps to study and understand the advantages and
potential of the algorithm in processing nonlinear data. In
practical applications, it provides a reference for solving
similar nonlinear data classification problems. In the
detection of electricity theft in photovoltaic systems,
electricity consumption data presents complex nonlinear
characteristics. By wusing RBF kernel mapping
technology, data features can be better extracted and the
accuracy of identifying electricity theft behavior can be
improved. According to the RBF mapping diagram, it
can also assist in the optimization of system parameters.
By observing the distribution of data after mapping in
high-dimensional space under different parameter
settings, the parameters of the RBF kernel function can
be adjusted to achieve the best data processing effect.

D. Wavelet Time-Frequency Analysis of Different
Types of Electricity Theft

In the study of electricity theft detection in photovoltaic
systems, it is crucial to accurately identify different types
of electricity theft. As a powerful time-frequency
analysis tool, WT can clearly show the characteristics of
signals at different times and frequencies, which helps to
distinguish between signals generated by normal
electricity use and various electricity theft behaviors. In
order to intuitively present the time-frequency
characteristics of different electricity theft behavior
signals after WT, Figure 7 shows the WT time-frequency
analysis.
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Figure 7. WT time-frequency analysis. Figure 7 (a) Normal power consumption time-frequency analysis; Figure 7 (b) Current bypass
time-frequency analysis; Figure 7 (¢) Inverter tampering time-frequency analysis; Figure 7 (d) Data injection time-frequency analysis.
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In the field of power system monitoring and management,
accurate identification of power theft is of great
significance to ensure the stability and fairness of power
supply. Traditional power consumption signal analysis
methods are difficult to meet the needs when faced with
complex and diverse power theft methods. As an
advanced time-frequency analysis tool, WT can deeply
analyze signals from different time and frequency scales,
opening up new paths for power theft detection. Figure 7
shows the wavelet time-frequency analysis results of
different types of electricity theft. The energy of normal
power consumption signals is concentrated and stable,
while electricity theft behaviors such as current bypass,
inverter tampering, and data injection show obvious
changes in frequency components. Current bypass theft
introduces high-frequency transient signals, inverter
tampering causes periodic interference, and data
injection theft is manifested as multi-band energy
concentration. These features provide important feature
basis for building classification models.

As shown in Figure 7 (a), during normal power
consumption, the energy is stably concentrated in a fixed
frequency band, showing a stable highlight band. Under
normal circumstances, the power grid equipment
operates stably, the signal is mainly composed of a single
fundamental wave, and there is less external interference.
In the WT time-frequency diagram, the energy is
concentrated and stable in the time dimension. The
current bypass stealing behavior corresponds to Figure 7
(b). In addition to the main energy band, discrete
highlights appear in the high-frequency area. Because
current bypass stealing introduces high-frequency
transient signals, it is simulated by superimposing
high-frequency signals in specific time periods. These
high-frequency signals cause the energy in the
high-frequency area to be concentrated, breaking the
stable state of the normal signal. Figure 7 (c) shows that
the energy distribution of inverter tampering has obvious
periodic characteristics in the main frequency area.
Because the inverter tampering changes the power output
characteristics, it introduces periodic interference by
modulating the normal signal, and the corresponding
characteristics are shown in the time-frequency diagram.
Figure 7 (d) shows that the data injected into the power
theft shows multi-frequency harmonic characteristics,
and highlighted areas appear in multiple frequency bands.
Since data injection theft is to inject harmonic signals

into the system to interfere with metering, the signal
frequency = components  become  complex by
superimposing harmonics of different frequencies, which
is manifested as multi-band energy concentration in the
time-frequency diagram.

WT time-frequency analysis has an important impact on
the research of this paper. In the study of electricity theft
detection algorithms, an intuitive signal feature reference
is provided for the design and optimization of the
algorithms. Researchers can extract feature quantities
based on the unique features of different electricity theft
behaviors on the time-frequency graph, build more
effective classification models, and improve the accuracy
and efficiency of electricity theft detection. In practical
applications, these time-frequency analysis graphs can
help power management personnel quickly and
accurately determine whether there is electricity theft in
the photovoltaic system and the type of electricity theft,
and take appropriate measures to deal with it in a timely
manner to ensure the normal operation of the
photovoltaic system and the rational use of power
resources.

E. Model Performance Analysis

In identifying the characteristics of electricity theft in
photovoltaic systems of dedicated transformer users, it is
very important to accurately and efficiently detect
electricity theft and process complex power data. This
involves the rational allocation of power resources and is
related to the stable operation and economic benefits of
the system. In the research in this field, a variety of
models have been applied to related tasks.
Comprehensively evaluating the performance of these
models and the model in this paper has become a key
link in optimizing the system and improving detection
efficiency. In order to further explore the performance
differences of different models in electricity theft
detection and power data analysis, this paper
systematically tests multiple models including WT-SVM,
Time-Freq Transformer, MobileNets, GWNN (Graph
Wavelet Neural Network), and HybridSNN (Hybrid
Spiking  Neural Network) by comprehensively
considering multiple dimensions such as model accuracy,
operating efficiency, storage requirements, and
anti-interference ability. The data are shown in Table 4.

Table 4. Model performance data table.

Model F1-score (%) Calculating delay (ms) | Parameter quantity(MB) | Noise immunity (%)
WT-SVM 94.5 35 2.1 91.2
Time-Freq Transformer 93.8 80 62.4 89.1
MobileNets 92.3 45 5.7 90.5
GWNN 90.6 150 38.9 84.2
HybridSNN 88.9 18 1.5 80.7

From the results in Table 4, the F1 score of WI-SVM
reaches 94.5%, showing a high classification accuracy.
This is due to its ability to effectively use kernel methods
such as RBFs to mine nonlinear relationships in data
when processing small-scale data with relatively clear
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features.When the hardware platform is Intel Core
i7-10700K CPU (3.8GHz, 8 cores and 16 threads) and
the GPU is NVIDIA GeForce RTX 3080 (10GB video
memory), the calculation delay is only 35ms and the
parameter volume is only 2.1MB. This is because the



model structure of the SVM is relatively simple and does
not require a lot of parameter training, which makes it
perform well in terms of computing speed and storage
requirements. The 91.2% noise resistance shows that it
has good resistance to noise interference in the data.

The F1 score of Time-Freq Transformer is 93.8%, which
is also a good performance. The Transformer model is
good at capturing long-distance dependencies in time
series data and can effectively extract features when
processing complex power signals. Its computational
delay is 80ms and its parameter size is as high as
62.4MB. The reason is that the Transformer model
contains a large number of self-attention mechanisms
and multi-layer neural network structures, which greatly
increases the amount of computation and model size. The
noise resistance is 89.1%, which means that its
performance can be affected to a certain extent in the
presence of noise.

MobileNetst's F1 score is 92.3%, with a computational
delay of 45ms and a parameter size of 5.7MB. It
combines the advantages of edge computing, processes
data locally, reduces the delay caused by data
transmission, and the model structure is designed to be
lightweight, so the parameter scale is relatively small.
The 90.5% noise resistance shows that it has a certain
resistance to noise.

GWNN has an F1 score of 90.6%, a calculation delay of
150ms, and a parameter size of 38.9MB. This model is
based on graph neural network and has certain
advantages in processing power network data with
complex topology. However, the computational
complexity of graph neural network is high, resulting in
long computational delay and more model parameters.
The noise resistance is 84.2%, indicating that its
performance degrades significantly in a noisy
environment.

The F1 score of HybridSNN is 88.9%, the computational
delay is only 18ms, and the parameter size is 1.5MB,
which is the model with the shortest computational delay
and the smallest parameter size among all models. This
is due to the unique event-driven mechanism of the
spiking neural network, which greatly improves the
computing efficiency. However, its noise resistance is
80.7%, which is relatively low. This means that in scenes
with more noise, its classification performance can be
greatly affected.Although HybridSNN has advantages in
latency, its low noise immunity limits its reliability in
real-time applications. In contrast, WT-SVM achieves a
better balance between latency and noise immunity and
is more suitable for electricity theft detection under
complex working conditions.

These results have many impacts on research. In terms of
model selection, if high requirements are placed on
computational  efficiency and lightweight, and
deployment is required on resource-constrained edge
devices, WT-SVM and HybridSNN are better choices. In
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algorithm optimization, researchers can refer to the
advantages and disadvantages of these models, improve
the model structure or training methods in a targeted
manner, and improve the comprehensive performance of
the model on different indicators. For actual application
scenarios such as photovoltaic system power theft
detection, these data can help determine the most suitable
model to achieve efficient and accurate detection and
better cope with complex field environments and noise
interference.

5. Experimental Discussion

This paper constructs a new hybrid architecture that
integrates WT and SVM, which achieves breakthrough
progress in photovoltaic system power theft detection
through multi-level technology. At the theoretical level,
the study combines wavelet multi-resolution analysis
with statistical learning theory, and proposes a machine
learning paradigm based on time-frequency domain
feature enhancement, which solves the feature extraction
bottleneck of traditional methods in processing
non-stationary power signals and builds a bridge between
physical models and data-driven methods. In terms of
algorithm design, the model's ability to characterize
complex power consumption patterns is improved by
introducing an adaptive wavelet packet decomposition
strategy and a dynamic kernel parameter optimization
mechanism. A Daubechies wavelet basis function
optimization  scheme for  photovoltaic  power
consumption characteristics is developed, a feature
selection algorithm based on the energy-entropy joint
criterion is designed, and incremental learning
optimization of SVMs is realized. These innovations
enable the model to demonstrate significant advantages
in multiple performance dimensions, and show excellent
noise resistance when dealing with complex working
conditions such as sudden changes in illumination.

The WT-SVM method introduced in this paper shows
significant advantages in photovoltaic system electricity
theft detection by combining the time-frequency analysis
capability of wavelet transform and the efficient
classification characteristics of support vector machine.
Compared with existing deep learning methods, this
method avoids the deployment difficulties caused by
large-scale parameters and shows stronger applicability
in practical scenarios with limited resources. Compared
with feature engineering methods, it effectively captures
transient anomalies in non-stationary signals through
multi-scale decomposition, improving its adaptability to
complex power consumption scenarios. These
characteristics enable WT-SVM to achieve a better
balance between accuracy, efficiency and generalization
ability, providing a more practical solution for
photovoltaic system safety monitoring.

In actual industrial deployment, the WT-SVM framework
proposed in this paper faces the following potential
challenges and coping strategies: The photovoltaic
system power consumption data contains sensitive



information such as user power consumption patterns
and equipment status, which may cause privacy leakage
risks. For this reason, federated learning technology can
be used to implement distributed model training, or
differential privacy technology can be used to protect
data. As the scale of photovoltaic systems expands, the
model needs to process larger data sets and complex
power consumption patterns. Data processing can be
accelerated through distributed computing architecture,
and localized reasoning can be implemented in
combination with edge computing to improve scalability.

From the perspective of academic value, this study
provides a new method framework for power big data
analysis, promotes the cross-integration of signal
processing and artificial intelligence, and the proposed
lightweight architecture opens up new ways for the
application of edge computing in power systems.
However, the study also exposes some problems that
need to be solved. In terms of model generalization, the
adaptability of the current model to the new distributed
photovoltaic grid-connected scenario still needs to be
further verified. To meet this challenge, future research
should focus on exploring the application of transfer
learning and domain adaptation technology. The
generalization ability of the model in new scenarios can
be improved by fine-tuning the pre-trained model on the
power grid data in different regions. Or introduce
technologies such as adversarial generative networks to
build a cross-domain feature alignment mechanism to
enhance the robustness of the model to complex working
conditions. At the algorithm level, the real-time dynamic
update mechanism is not yet perfect. In the future, it can
be combined with online learning technology to achieve
dynamic optimization of model parameters. In
engineering applications, deep integration with the
existing SCADA system is still a problem to be solved,
which requires the development of standardized
interfaces to support seamless integration of models. By
improving these limitations, the practical applicability
and promotion value of the model can be further
improved.

Looking ahead, photovoltaic electricity theft detection
technology is an important development direction, and
future research will further explore its applicability in
independent photovoltaic systems and other distributed
energy scenarios. The establishment of a multimodal
fusion detection system can combine multi-source
information such as power data, video surveillance, and
IoT perception to build a comprehensive monitoring
network; the application of deep learning technology can
build a lifelong learning system with online update
capabilities; the introduction of trusted artificial
intelligence technology can ensure the interpretability of
detection  results and the transparency  of
decision-making; the integration of digital twin
technology and edge intelligence can bring revolutionary
changes to this field. The WT-SVM framework proposed
in this paper provides key technical support for this
evolution. With the advancement of the construction of
new power systems, security monitoring technology
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based on artificial intelligence can play a more important
role. The results of this study have laid a solid foundation
for subsequent technological innovation and provided
valuable reference for research in related fields.

6. Conclusions

This study introduces an innovative method combining
wavelet transform and support vector machine, which is
successfully applied to the detection of electricity theft in
photovoltaic systems. The time-frequency characteristics
of electricity consumption data are extracted by wavelet
transform, and efficient nonlinear classification is
achieved by support vector machine. The model
performs well in detection accuracy, computational
efficiency and noise resistance, providing a solution with
both high accuracy and engineering practicality for the
detection of electricity theft in photovoltaic systems.
However, the generalization ability, real-time dynamic
update mechanism and deep integration with SCADA
system for new distributed photovoltaic grid-connected
scenarios still need to be further explored and improved.
Future research directions can focus on multimodal data
fusion, adaptive learning algorithm optimization and the
introduction of trusted artificial intelligence technology
to improve the robustness and interpretability of the
model. These improvements will help to cope with
complex and changeable practical application scenarios
and promote the intelligent upgrade of new power
systems.
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