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Abstract. Aiming at the nonlinearity, noise interference,
and periodicity problems of load fluctuation in
photovoltaic-energy storage systems, this study proposes
a hidden feature extraction method based on VAE. VAE
is used to extract key low-dimensional representations to
improve the robustness and accuracy of the load
forecasting model. This article encodes the collected load
data, maps the original high-dimensional data to a
low-dimensional latent space using a VAE encoder, and
outputs the mean and logarithmic variance vectors at the
same time. Eight key latent features are obtained by
sampling through reparameterization techniques,
including daily cycle amplitude features, peak period
features, load fluctuation frequency, etc. The extracted
latent features are fused with the original data and used
as input to the Informer model to predict future loads.
The experiment uses a photovoltaic-energy storage
system data set with a data sampling interval of 20
minutes. The results show that VAE-Informer achieves
1.80%, 2.10% and 0.97 in terms of Root Mean Squared
Error (RMSE), Mean Absolute Percentage Error (MAPE)
and R², respectively, which is significantly better than
Informer (RMSE is 3.50, MAPE is 4.80% and R² is 0.91),
Sparse Autoencoder (SAE)-Informer (RMSE of 2.50,
MAPE of 3.20%, R² of 0.95) and Principal Component
Analysis (PCA)-Informer (RMSE of 3.00, MAPE of
3.80% and R² of 0.93) models. The efficiency of this
method in latent feature extraction and load forecasting
is fully verified. This method based on VAE to extract
latent features and combined with Informer for load
forecasting can accurately capture the complex nonlinear
and periodic characteristics in load data and improve the
prediction accuracy.

Key words. Photovoltaic power generation, Energy
storage system, Load fluctuation, Latent features,
Variational autoencoder

1. Introduction and Literature Review

With the large-scale access of renewable energy [1,2]
and the continuous advancement of smart grid [3,4]
technology, photovoltaic power generation and energy

storage systems are playing an increasingly important
role in modern power systems [5,6]. However,
photovoltaic power generation [7,8] is affected by a
variety of uncertain factors such as sunshine and weather
[9,10]. Its output power and load have obvious volatility,
nonlinearity and noise interference, which brings great
challenges to system scheduling and safe and stable
operation [11,12]. Traditional methods often fail to fully
capture the inherent laws of data when processing
high-dimensional complex data, and are easily affected
by noise, resulting in insufficient prediction accuracy
[13,14].

In response to the high-dimensionality, nonlinearity and
noise interference of load data, scholars have proposed a
variety of feature extraction methods to improve the
performance of prediction models. Traditional
dimensionality reduction techniques such as principal
component analysis [15,16] and linear discriminant
analysis [17] can simplify the data to a certain extent, but
are clearly insufficient in capturing complex nonlinear
dynamic characteristics. With the rise of deep learning
technology, autoencoders [18,19] have been widely used
in data denoising and feature extraction because they can
learn low-dimensional data representation by minimizing
reconstruction error. The latent variable space of the
autoencoder lacks probability distribution constraints,
resulting in insufficient continuity and generalization
ability of the latent variables [20]. To solve this problem,
researchers proposed a variational autoencoder. It applies
KL divergence regularization on the basis of the
traditional autoencoder structure to make the latent
variable close to the prior distribution and ensure the
smoothness and interpretability of the latent space
[21,22]. When applying variational autoencoders to
feature learning of time series data in fields such as
meteorology and power load, good results have been
achieved, but their application in load forecasting of
photovoltaic-energy storage systems is still in the
exploratory stage [23,24].

In the field of long-series time forecasting, the
Transformer [27,28] model has attracted widespread
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attention for its ability to capture global information, but
when processing ultra-long time series data, its
computational complexity and memory requirements
become the main bottleneck. The Informer model [29,30]
effectively solves the performance problem in long-series
forecasting by introducing sparse attention mechanism
and efficient encoding strategy, and shows significant
advantages in application scenarios such as power load
and traffic flow. Existing research focuses on directly
using Informer [31,32] to predict raw data, but pays less
attention to the extraction and fusion of latent features in
the data. In recent years, some scholars have begun to
explore the idea of feature extraction, combining deep
generative models with Transformer architecture. By first
using generative models such as VAE [33,34] to extract
low-dimensional latent features of data, and then using
the extracted features as input, data noise and redundant
information can be reduced to a certain extent, and the
model's sensitivity to abnormal fluctuations and
prediction accuracy can be improved.

As an advanced deep learning tool, variational
autoencoders (VAEs) have shown unique advantages in
feature extraction and data modeling. Unlike traditional
autoencoders, VAEs can learn the probability distribution
of data by introducing a probabilistic generation model,
thereby achieving the ability to generate new samples
from the latent space. This feature makes VAEs more
flexible and adaptable when dealing with data with
uncertainty and complex structures. In addition, the
latent space of VAEs is carefully designed to ensure its
smoothness and continuity through regularization,
effectively avoiding the discontinuity and irregularity
problems that may occur in latent variables in traditional
autoencoders, which makes VAEs perform well in
feature interpolation and extrapolation.

This study constructs a hybrid model that combines VAE
latent feature extraction with Informer long sequence
prediction, which systematically solves the high
dimensionality, nonlinearity and noise interference
problems of load data in photovoltaic storage systems.
The VAE deep learning framework is used to encode and
reconstruct the original load data to achieve data
denoising and feature extraction, effectively capturing

daily cycles, seasonal changes and nonlinear dynamic
characteristics. The extracted low-dimensional latent
variables are used as the input of the Informer model,
and its efficient sparse attention mechanism and long
sequence modeling capabilities are used to accurately
predict load trends. This method breaks through the
shortcomings of traditional statistics and simple
dimensionality reduction methods in feature expression.
Experimental verification shows that the model has
significant advantages in load forecasting accuracy,
provides a solid theoretical basis and practical guidance
for smart grid scheduling and energy storage system
optimization, and opens up new ideas for the application
of deep generative models in the field of power systems.

2. Hidden Feature Extraction and Load Forecasting
Methods

A. Data Acquisition and Preprocessing

In this study, data collection is based on a
photovoltaic-energy storage system from January 1, 2021
to January 1, 2022. Data collection is carried out every
20 minutes to ensure the continuity and integrity of time
series data. The collected data covers core indicators
such as system load, photovoltaic power generation
output, and energy storage system status, supplemented
by meteorological data and other external environmental
variables, providing sufficient information support for
subsequent model construction and feature extraction.
System load data reflects the electricity demand of the
entire system in different time periods, while
photovoltaic power generation output records the power
generation of solar power generation equipment in
different time periods. Energy storage status data mainly
describes the charging and discharging status of energy
storage devices and their remaining capacity.
Meteorological data can reveal the impact of weather
factors on photovoltaic output and load changes, such as
the changing trends of temperature and solar radiation.
By performing time-series synchronization on these
multi-dimensional data, the consistency and accuracy of
each indicator in time are ensured, thus building a
high-quality and comprehensive database.The collected
data is shown in Table 1.

Table 1. Display of collected data.

Timestamp System load (MW) Photovoltaic output (MW) Storage state (%) Temperature (°C) Solar irradiance
(W/m²)

2021/1/1 0:00 115.2 20.1 78 4.8 0
2021/1/1 0:20 115.7 20.3 77 4.9 0
2021/1/1 0:40 116.0 20.5 78 5.0 0
…
2021/1/1 8:20 164.0 21.2 76 8.5 120
2021/1/1 8:40 169.5 21.5 76 9.8 160
2021/1/1 9:00 174.0 21.8 75 10.0 200
2021/1/1 9:20 178.2 22.0 75 12.2 230
…
2022/1/1 0:00 119.0 22.5 74 6.8 0

145



The system load, photovoltaic output and energy storage
status in the early morning hours remain relatively stable,
and the solar radiation is 0, which is consistent with the
physical reality that the sun does not rise at night. The
data in the late morning show that the temperature,
photovoltaic output and solar radiation gradually
increase, indicating that as the ambient temperature rises
after sunrise, the solar radiation increases, photovoltaic
power generation begins to play a role, and the system
load also shows an upward trend.

The missing values of the original collected data are
processed. For continuous variables, such as system load
and photovoltaic output, the mean filling method is used.
The observed values of a certain feature are 1 2, , , nx x x ,
the missing value is recorded as jx , and the mean x is
used to fill it. The formula is:

1

1 n
ii

x x
n






 (1)

In formula 1, n is the number of non-missing samples.
If there are too many missing values in a sample,
exceeding 55%, the sample can be removed to avoid
adverse effects on the overall model training.Outlier
detection is an important step in data preprocessing. The
Z-score standardization method is used to determine
whether it is an outlier by calculating the difference
between each data point and the mean. The calculation
formula is:

xz 



 (2)

In Formula (2),  represents the standard deviation of
the data points and  is the mean.For outliers,

neighboring data interpolation is used to replace them to
ensure the rationality of data distribution and reduce the
interference of noise on model training. Align each data
source according to the timestamp, set a unified sampling
interval, standardize the timestamp, and then merge the
data. For time alignment, if there is a time gap in a data
source, linear interpolation is used to fill it to ensure that
each feature has a corresponding value at the same time
point.

In the process of data preprocessing, normalization is a
key step, especially when training deep learning models,
different variables have different value ranges. If
normalization is not performed, data of different scales
may cause unstable gradient descent, affecting the model
convergence speed and prediction performance.

The mathematical formula of Min-Max normalization is:

min

max min

x x
x

x x
 


(3)

Among them, minx is the minimum value of the data,

maxx is the maximum value of the data, and x is the
data after regularization.

B. VAE Model Construction and Latent Feature
Extraction

VAE is a generative model based on probabilistic
graphical models. Its key goal is to learn the probability
distribution of latent variables and generate samples that
approximate the original data distribution by sampling
latent variables. The core structure of VAE includes
encoder, latent variable sampling layer and decoder.

The VAE model is shown in Figure 1.

Figure 1. VAE model structure.
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The encoder is used to map the data to a
low-dimensional latent space to extract key latent
features, including daily cycle amplitude features, peak
period features, load fluctuation frequency features,
photovoltaic output sensitivity features, temperature
impact features, energy storage system response features,
noise and abnormal fluctuation features, and load trend
change features.

The dimension X of the input data is determined by T
(time step) and d (number of features per time step). We
use a multi-layer fully connected network as the hidden
layer, with the number of neurons in each layer gradually
decreasing, to achieve feature extraction and
dimensionality reduction:

 1 1 1h f W X b  (4)

 2 2 1 2h f W h b  (5)

In formulsa 4-5, 1W , 1b , 2W , 2b are network
parameters. The encoder outputs two vectors, the mean
and variance of the latent variable, and the formulas are:

2W h b    (6)

2
2log W h b    (7)

In formulas 6-7, W and W are weight matrices

mapped to mean and log variance.  and 2 jointly
determine the probability distribution of latent
variables.In order to enable VAE to be optimized by
gradient descent, the reparameterization technique is
used for sampling:

z    ò (8)

In formula 8, ò follows the standard normal
distribution  0, Iò N , which allows the gradient to
flow to the mean and variance, thereby performing
back-propagation optimization. The role of the decoder is
to map the latent variables back to the original data space,
thereby achieving reconstruction. The latent variables are
used as the input of the decoder and are gradually
mapped back to the original data dimension:

 3 3 3h f W z b  (9)

 4 4 3 4h f W h b  (10)

 out 4 outX̂ W h b  (11)

In formula 11,    uses the Sigmoid activation function

to keep the output range in [0,1] to ensure numerical
stability.The formula for reconstruction loss is:

2

recon 1

1 ˆN
i ii

L X X
N 

  (12)

In Formula 12, ˆ
iX is the reconstructed output of the

VAE model, and iX is the real data.KL divergence
measures the difference between the posterior
distribution  q z X and the standard normal
distribution:

 2 2 2
KL 1

1 1 log
2

zd
j j jj

L   


     (13)

The total loss function of VAE consists of reconstruction
loss and KL divergence, and the formula is:

recon KLL L L  (14)

In formula 14,  is a balance coefficient used to
control the trade-off between reconstruction ability and
regularization strength. When 1  , the model is more
inclined to learn good latent variable representation, but
it may affect the reconstruction ability. When 1  , the
model pays more attention to the reconstruction quality,
but it may cause the latent variable distribution to deviate
too much from the standard normal distribution.

In order to effectively train the VAE model, the Adam
optimizer is used to achieve stable gradient updates, and
the formula is:

 * argmin L


  (15)

C. Informer Model Construction and Latent Feature
Fusion Prediction

Informer is an improved model based on Transformer,
designed for long-sequence time prediction. Due to its
global self-attention mechanism, the traditional
Transformer has high computational complexity when
modeling long sequences, which limits its application in
large-scale time series tasks. Informer uses a sparse
attention mechanism to focus only on key query points,
improving computational efficiency. Informer uses
multi-scale convolution filtering for dimensionality
reduction and bidirectional residual connections to
improve feature expression capabilities, thereby having
stronger generalization capabilities in long-term
forecasting tasks.

The process of load forecasting by the Informer model
combined with latent features is shown in Figure 2.
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Figure 2. The process of load forecasting by combining the Informer model with latent features.

The latent features are concatenated with the original
load data so that the model can use both the key features
after dimensionality reduction and the original
information. The input sequence is L dX  , L is the
time step, and d is the input feature dimension. The latent
variable L kZ  after VAE processing, then the
complete input is represented as:

 input ,X X Z (16)

Time series data has a strict time order. In order to
preserve the time sequence information, Informer uses
sine-cosine position encoding:

 ,2 2sin
10000

t i i
d

tPE
 
 
 
 

(17)

 ,2 1 2cos
10000

t i i
d

tPE 

 
 
 
 

(18)

In formulas 17-18, t is the time step and i is the feature
index. The position encoding vector is added to the input
data to enhance the model's time perception.Informer's
encoder contains multiple Transformer layers with sparse
self-attention:

  QKPSA Q , K , V softmax V
T

d
 

  
 

(19)

The encoder uses multi-head attention, the formula is:

   1MultiHead Q,K,V Concat head , , headh OW  (20)

Informer uses the Adam optimizer:

 1 1 11t t tm m g    (21)

  2
2 1 21t t tv v g    (22)

1
t

t t
t

m
v

   
 ò

(23)

In formulas 21-23, tm and tv are the first-order and
second-order momentum of the gradient, respectively,
and  is the learning rate.

In terms of training strategy, a phased training method is
used to fix the VAE part so that it can stably extract
potential features and reduce interference with
downstream tasks. On this basis, the Informer model is
trained with the potential features extracted by VAE so
that it can fully learn the temporal pattern of load data
and the correlation between multidimensional features.
In order to prevent the model from overfitting, L2
regularization and early stopping strategies are
introduced during the training process. The performance
changes of the model are monitored by setting the
number of training rounds and thresholds to ensure that
the model maintains a high generalization ability under
the premise of stable convergence. In this study, data
collected from January 1, 2021 to January 1, 2022 were
used for training, totaling approximately 35,040 data
points. The model predicts the load data for the next 24
hours and uses an independent test set containing 2,628
data points covering two weeks of load data for
verification to ensure the accuracy and reliability of the
prediction results.

In this study, in order to optimize the performance of the
VAE-Informer model, this study systematically adjusted
the hyperparameters. For the VAE part, this study
selected the latent dimension as 8, which can effectively
extract key features and reduce computational
complexity; the hidden dimension is set to 128 to balance
the feature expression ability and model complexity; the
KL weight is set to 0.01 to balance the reconstruction
ability and regularization strength. In the Informer part,
the encoder layer is set to 4 layers and the decoder layer
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is set to 2 layers to efficiently capture long-term
dependencies; the feedforward network dimension is set
to 512 to improve the model expression ability. We use
the Adam optimizer, the learning rate is set to 0.001, and
the batch size is set to 64 to ensure training stability and
efficiency. The input dimension is 16, the prediction

range is 24, and the number of iterations is set to 100.
The selection of these hyperparameters is based on
multiple experimental verifications and can give full play
to the model performance., the parameter initialization
settings of the VAE-Informer model are shown in Table 2.

Table 2. Parameter initialization of the VAE-Informer model.

VAE parameters Value Informer parameters Value
Latent dimensions 8 Encoder Layers 4
Hidden dimensions 128 Feedforward network dimensions 512
Optimizer Adam Learning rate 0.001
KL weight 0.01 Batch size 64
Epochs 100 Forecast horizon 24
Input dimensions 16 Decoder Layers 2

3. Experimental Environment and Model Evaluation

This study is based on NVIDIA Tesla series GPUs. The
specific models include 4 NVIDIA Tesla V100 graphics
cards, each with 32GB of video memory, which are
interconnected through NVLink to achieve efficient
parallel computing. This hardware configuration can
accelerate the training and inference process of deep
learning models, significantly improve the efficiency of
large-scale matrix operations, thereby improving training
efficiency and reducing convergence time. This study
used a dual-core Intel Xeon Gold 6248 processor with a
main frequency of 2.50GHz, a system equipped with
512GB of memory, and ran the Ubuntu 20.04 operating
system, providing powerful computing support and a
stable operating environment for deep learning tasks.

The experiment was developed and tested based on
Python 3.8.10 and above, and the Anaconda environment
management system was used to ensure the consistency
and reproducibility of the dependent environment. This
study used the TensorFlow 2.6.0 deep learning
framework for model building and training, and used its
efficient automatic differentiation mechanism and GPU
acceleration function to simplify the model development
process and improve training efficiency. In terms of data
preprocessing and analysis, we used Pandas 1.3.5 and
NumPy 1.21.5 for data loading, cleaning, feature
engineering, and matrix calculation, giving full play to
their convenience and efficiency in data operations. For
visual analysis, this study used Matplotlib 3.4.3 to draw
loss change curves, prediction result comparison charts,
and confusion matrices, etc., to intuitively display the
model training process and prediction results, and assist
in model tuning and result interpretation.

In order to comprehensively evaluate the prediction
performance of the VAE-Informer model, this study used
three common error indicators. RMSE measures the
square root of the mean square error between the
predicted value and the true value, reflecting the overall
error level of the model. The formula is:

 21

1 ˆn
i ii

RMSE y y
n 

  (24)

In formula 24, iy is the true value, ˆiy is the model
prediction value, and n is the number of samples.MAPE
measures the percentage of the prediction error relative
to the true value, and the formula is:

1

ˆ1 100n i i
i

i

y yMAPE
n y


  % (25)

R2 reflects the model's ability to explain data variance,
and the formula is:

 
 

2
2 1

2

1

ˆ
1

n
i ii

n
ii

y y
R

y y





 






(26)

In formula 26, y is the mean of the true value. When
2R is close to 1, it indicates that the model has a good

fitting effect.After the model training is completed, it is
evaluated on the test set to measure its generalization
ability and performance in real application scenarios. In
order to verify the effectiveness of the latent features
extracted by VAE in improving the performance of time
series prediction, this article designs a comparative
experimental analysis, directly uses the original load data
to train the Informer model without extracting latent
features. Other latent feature extraction methods (PCA,
SAE) are used and compared with the features extracted
by VAE.

4. Results

A. Hidden Feature Visualization

In this study, the t-distributed stochastic neighbor
embedding (t-SNE) method is used to visualize the
hidden features extracted by VAE, and the results are
shown in Figure 3.
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Figure 3. t-SNE latent feature visualization.

In this study, the eight potential features extracted by the
VAE model represent the daily cycle amplitude, peak
cycle, load fluctuation frequency, photovoltaic output
sensitivity, temperature impact, energy storage system
response, noise and abnormal fluctuations, and load trend
changes. After reducing these high-dimensional potential
features to two-dimensional space through t-SNE
technology, points of different colors represent samples
of different explicit potential features. The cluster
corresponding to the load fluctuation frequency feature
reflects the stability of the load fluctuation law of the
sample at a specific frequency, which is usually related
to the operating cycle of industrial equipment or the
regularity of residential electricity consumption patterns.
The cluster corresponding to the energy storage system
response feature reflects the response speed and
consistency of the discharge strategy of the energy
storage system in the process of regulating load peaks
and valleys, which is of great significance for optimizing
the charge and discharge management of the energy
storage system. The cluster corresponding to the
temperature impact feature reflects the comprehensive
impact of temperature changes on photovoltaic output
and load demand, which helps to predict the balance of
power supply and demand under extreme weather. These
clustering structures not only show the distribution of
data in the latent space, but also directly correspond to
the key physical factors and dynamic patterns in the
operation of the photovoltaic storage system. The cluster
boundaries in the overall image are clear, indicating that
the VAE model can effectively remove interference
information and compress complex high-dimensional

data into low-dimensional representations with practical
significance, providing an intuitive visual tool for
understanding the inherent mechanism of load
fluctuations in photovoltaic storage systems.

The distribution of each cluster in the t-SNE
visualization results not only reveals the obvious
differences between the latent features, but also reflects
the various dynamic modes that exist in the actual
operation of the photovoltaic-energy storage system.
Each cluster corresponds to a dominant latent feature,
and the data points in the same cluster are relatively
concentrated, indicating that these samples have a high
degree of consistency in the performance of the
corresponding features. The cluster corresponding to the
load fluctuation frequency feature may reflect the sample
with a relatively stable load fluctuation law at a specific
frequency, while the cluster of the energy storage system
response feature may focus on the response speed and
consistency of the discharge strategy of the energy
storage system in the process of adjusting the load peak
and valley.

B. Load Prediction Accuracy

This article uses the potential features extracted by VAE
and combines it with Informer for load forecasting. The
test set contains 2628 data points. The comparison
between the model prediction and the actual load change
is shown in Figure 4.
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Figure 4. Model prediction and actual load changes.

The VAE-Informer model is closest to the actual load
data compared to other models (Informer, SAE-Informer,
PCA-Informer), indicating that the model has stronger
adaptability in learning time series patterns and
extracting deep features. VAE can effectively capture the
potential distribution of data, and reduce the dimension,
denoise and reconstruct features of the original input data,
thereby enhancing the ability to express complex
nonlinear load data. Compared with the standard
Informer model, VAE-Informer introduces latent variable
distribution constraints in the encoding process, which
enables the model to have better generalization ability
when facing uncertain factors (such as power
consumption fluctuations, weather effects, etc.). The
prediction results of VAE-Informer are closer to the
actual load in terms of trend and value, with the smallest
deviation. In comparison, the performance of the
SAE-Informer model is inferior. Although SAE can also
extract high-dimensional features, its feature extraction
method is slightly simpler than that of VAE, and is easily
limited by the local optimal solution, resulting in slightly
larger prediction errors. PCA-Informer, because its
dimensionality reduction method is mainly based on
linear projection, cannot well capture the complex
nonlinear structure in the load data, so the prediction
error is further increased. The worst model is Informer,
which only relies on its own attention mechanism to
model long-term time dependencies. However, due to the
lack of additional feature extraction capabilities, it is
easily affected by factors such as data noise and mutation
points, resulting in the largest prediction error.

The analysis of error sources is of great significance for
optimizing load forecasting models. The error of
VAE-Informer mainly comes from the sampling noise
and reconstruction error of the latent variable distribution,
but due to the regularization characteristics of VAE,
these errors are small and have little impact on the
prediction results. The error of SAE-Informer is mainly
limited by the sparsity constraint of SAE. Although it
helps to extract key features, when there are drastic
fluctuations in load data, some important features may be
ignored, resulting in a certain degree of information loss.
In addition, since PCA-Informer uses a linear
dimensionality reduction method, it can lose some
nonlinear information when processing highly nonlinear
time series data. In particular, when the load data
presents complex periodic changes, it is difficult to
accurately capture the dynamic changes of load peaks
and valleys. The error of the Informer model comes from
the limitations of its attention mechanism. When
modeling long time series, it may be affected by gradient
vanishing and computational complexity, thereby
reducing the ability to model long-term dependencies.
VAE-Informer can improve the accuracy of power load
scheduling and reduce energy waste caused by prediction
errors due to its lower prediction error, and is suitable for
real-time load forecasting of smart grids.

The load forecasting performance is evaluated by RMSE,
MAPE, and R2, and the results are shown in Table 3.

Table 3. Load forecasting performance.

Model RMSE MAPE (%) R2
Informer 3.50 4.80 0.91
VAE-Informer 1.80 2.10 0.97
SAE-Informer 2.50 3.20 0.95
PCA-Informer 3.00 3.80 0.93
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Among them, the RMSE of the VAE-Informer model is
only 1.80, the MAPE is 2.10%, and the R² reaches 0.97,
which is significantly better than other models,
indicating that the model can show higher accuracy in
capturing the complex dynamic characteristics in load
data. The reason why VAE-Informer performs well is
mainly due to its ability to extract latent features using
VAE. VAE maps high-dimensional input data to
low-dimensional latent space through a probabilistic
generation model, and introduces KL divergence
constraints to ensure the continuity and controllability of
the latent space, thereby effectively extracting key
information from load data (such as daily cycles, peak
hours, nonlinear fluctuations, etc.). This feature
extraction method not only reduces the impact of data
noise, but also enhances the model's robustness to
abnormal fluctuations. Therefore, in the prediction
process, VAE-Informer can more accurately reproduce
the load change trend. Relatively speaking, the Informer
model does not combine the implicit feature extraction
mechanism, and its prediction results have an RMSE of
3.50, a MAPE of 4.80%, and an R² of only 0.91,
indicating that its ability to capture complex nonlinear
changes is weak. On this basis, the SAE-Informer model
uses sparse autoencoders to extract features, which can
improve the load forecasting performance to a certain
extent. Its RMSE is 2.50, MAPE is 3.20%, and R² is 0.95.
However, it is still not as good as VAE-Informer in
handling randomness and diversity in data.
PCA-Informer uses principal component analysis for
linear dimensionality reduction. Although it is easy to
calculate and reduces the data dimension to a certain
extent, since load data usually presents a complex
nonlinear structure, its prediction results (RMSE 3.00,
MAPE 3.80%, R² 0.93) are still difficult to fully reflect
the actual load fluctuations. Overall, the evaluation
indicators show that VAE-Informer has obvious
advantages in balancing reconstruction error and model
generalization ability. Its low RMSE and MAPE as well
as high R² value prove the feasibility and superiority of
using VAE to extract latent features combined with
Informer for load forecasting.

RMSE reflects the average deviation between the model
prediction value and the actual load data. The lower the
RMSE, the higher the prediction accuracy. MAPE
provides a percentage perspective of relative error, which
can intuitively show the proportion of prediction error in
the actual load. R² is used to measure the model's ability
to explain data variance. The closer it is to 1, the more
comprehensive the model's capture of actual data
fluctuations. In this experiment, VAE-Informer fully
utilized the advantages of the VAE model in latent
feature extraction and effectively characterized the
nonlinear features and complex dynamic patterns in the
data, which greatly reduced the deviation between the
predicted value and the actual load. This is directly
reflected in its RMSE and MAPE indicators, which are
significantly better than other models. In contrast, the
Informer model does not introduce additional feature
extraction mechanisms and directly relies on the
Transformer architecture to capture temporal

dependencies, resulting in large prediction errors when
facing noise and random fluctuations in actual data.
Although SAE-Informer uses sparse autoencoders to
extract some effective features, it is inferior to VAE in
terms of data expression ability and feature robustness,
which leads to a certain degree of prediction bias. Since
PCA-Informer uses a linear dimensionality reduction
method, it is limited in processing highly nonlinear and
complex fluctuation patterns, and its prediction effect is
between Informer and SAE-Informer. The prediction
model that uses VAE to extract latent features and
combines it with Informer can more accurately reproduce
the real load changes when processing actual
photovoltaic-energy storage system load data, providing
more reliable data support for smart grid scheduling and
load management. Its performance indicators perform
best in the current comparative experiments.

C. Prediction Loss

This article compares the impact of three latent feature
extraction methods, VAE-Informer, SAE-Informer, and
PCA-Informer, on load forecasting. The changes in loss
values of different models are shown in Figure 5.

Figure 5. Changes in loss values of different models

In the initial training stage (epoch=1), the loss values of
the VAE-Informer, SAE-Informer and PCA-Informer
models are 0.872, 0.875 and 0.923 respectively. Each
model can capture the basic characteristics of the load
data in the early stage, but the difference is not
significant. After 41 rounds of training, all three have
converged, and the final loss values have dropped to
0.022, 0.031, and 0.041, respectively, with
VAE-Informer having the lowest loss. This shows that
the method of extracting latent features using VAE is
more efficient in expressing complex nonlinear load data.
VAE encodes the input data and uses KL divergence to
constrain the distribution of latent variables, so that the
latent space remains smooth and continuous, thereby
more accurately capturing the periodic fluctuations,
nonlinear dynamics and noise characteristics in the load
data. In contrast, although SAE-Informer uses a sparse
autoencoder, it lacks strict regularization of the latent
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space distribution during feature extraction, resulting in a
slightly inferior ability to capture subtle changes in the
load. PCA-Informer is limited by the linear
dimensionality reduction method and has difficulty in
revealing the complex nonlinear relationships in the data,
which ultimately shows a higher loss value. The lower
loss value directly reflects the model's ability to retain
information and the accuracy of feature expression when
reconstructing load data. Using VAE to extract latent
features and combining it with Informer for effective

noise reduction also significantly improves the ability to
capture the deep structure of load data, providing a more
accurate and robust input representation for load
forecasting.

D. Stability Analysis

The load characteristics of different time periods are
shown in Table 4.

Table 4. Load characteristics of different time periods.

Time period type Time range Load level Average load value (MW)
Peak period 19:00-21:00 Very high 135
High period 8:00-12:00, 18:00-22:00 High 125
Flat period 6:00-8:00, 12:00-18:00 Medium 115
Trough period 22:00-6:00 the next day Low 105

Figure 6. Stability analysis results.Figure 6 (a) Effect of time period; Figure 6 (b) Effect of season.

The load forecasting stability under load fluctuation
scenarios is analyzed by using data from different time
periods and seasons, and the load forecasting
performance is measured by RMSE. The results are
shown in Figure 6.

From the RMSE data of time period type, it can be seen
that there are obvious differences in the load forecasting
performance of each model during peak, high, flat and
trough periods. Among them, VAE-Informer always
performs best, with a peak RMSE of only 2.1, while
Informer is as high as 4.5. This shows that using VAE to
extract latent features can more accurately capture subtle
changes in load fluctuations, especially during spikes and
peak periods when the load fluctuates violently. The
model relies on low-dimensional latent variables to
effectively remove noise and redundant information,
achieving high-fidelity reconstruction of load data. In
contrast, although SAE-Informer and PCA-Informer also
extract features of load fluctuations to a certain extent,
since the former mainly relies on sparsity constraints and
the latter relies on linear dimensionality reduction, it is
difficult to fully reveal the nonlinear relationship in the
data, resulting in a slightly higher prediction error than
VAE-Informer. The RMSE of VAE-Informer in the flat

and trough periods are 1.8 and 1.7 respectively, which
further proves that it can maintain a low error even in the
stable load stage. However, the Informer model shows a
large error in all periods, which may be related to its
failure to fully extract the intrinsic structure of load
fluctuations. By comparing the RMSE of data in
different time periods, the latent features extracted by
VAE have significant advantages in capturing complex
dynamic load changes and suppressing noise interference,
thereby improving the stability and accuracy of the
prediction and providing more refined data support for
smart grid scheduling and energy storage management.

In terms of seasonal load forecasting performance, the
RMSE indicators of each model also reflect the
importance of extracting latent features. Figure 6(b)
shows that the RMSE of VAE-Informer in spring,
summer, autumn and winter are 1.8, 2.1, 1.6 and 1.9
respectively, which are 3.5, 4.4, 3.4 and 4.5 respectively
for the Informer model, and its prediction error is
significantly reduced. This advantage is mainly due to
the fact that VAE makes the latent space distribution
continuous and stable through KL divergence
regularization in the latent variable modeling process,
thereby capturing the nonlinear and complex fluctuation
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characteristics caused by seasonal changes in load data.
Seasonal loads are greatly affected by climate, electricity
usage habits and external environment, and load changes
have obvious periodic and trend characteristics.
VAE-Informer uses the low-dimensional representation
extracted by the deep generative model to effectively
integrate these seasonal information, allowing the model
to maintain a high prediction accuracy when dealing with
factors such as temperature changes, sunshine duration
and holidays. In contrast, although SAE-Informer has
made some improvements in latent feature extraction, it
is limited by sparse constraints when dealing with
variable seasonal characteristics, and its ability to capture
complex seasonal changes is not as good as VAE.
PCA-Informer uses linear dimensionality reduction,
which makes it difficult to reflect the nonlinear dynamic
characteristics in load data, and its prediction
performance is also slightly inferior. The Informer model
itself lacks an effective latent feature extraction
mechanism, which is particularly evident in summer and
winter when seasonal load fluctuations are drastic. The
model that uses VAE to extract latent features and
combines it with Informer shows a low RMSE in
seasonal load forecasting, proving that it has significant
advantages in accurately capturing seasonal load
characteristics and robustness, which provides a
scientific and effective technical means for load
forecasting in complex and changing environments.

5. Conclusions

This study combines VAE with Informer to successfully
extract the implicit characteristics of load fluctuations in
the photovoltaic storage system and build a
high-precision load forecasting model. Experimental
results show that VAE-Informer is significantly superior
to traditional Informer, SAE-Informer and PCA-Informer
in terms of RMSE, MAPE and R², which fully
demonstrates the advantages of VAE in capturing
nonlinear dynamic characteristics of data and
suppressing noise. This study enriches the theoretical
system of deep generative models in time series data
analysis and provides scientific and reliable decision
support for smart grid scheduling, energy storage
management and new energy applications.

However, this study still has some limitations. Future
work will focus on integrating multi-source data,
including but not limited to energy consumption patterns,
to further enhance the performance of the model.
Specific expansion directions include: first, expanding
the scale of the data set to cover more diverse energy
consumption patterns and operating scenarios; second,
integrating multiple external variables, such as
meteorological data, economic indicators, etc., to more
comprehensively capture the factors affecting load
fluctuations; third, exploring end-to-end joint training
strategies, optimizing model architecture and parameter
tuning processes, and improving the robustness and
generalization ability of the model. Through these efforts,
we hope to gradually promote this method to a wider
range of practical engineering applications, and provide

more comprehensive and accurate technical support for
load forecasting and intelligent control.
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