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Abstract. Aiming at the problem of insufficient capacity
cost recovery caused by the fluctuation of renewable
energy and information asymmetry in Shanxi power
market, this paper constructs an improved two-layer
Stackelberg game model. The model constructs a
sequential decision-making framework of leaders and
followers. The backward induction method is used to
solve the equilibrium, and the information entropy is
innovatively introduced to quantify the uncertainty of
enterprise data, and the dynamic adjustment equation of
compensation coefficient is established. When the bid
deviation exceeds the threshold, the cost review is
automatically triggered, and the segmented subsidy
function is designed simultaneously to convert the
deviation of renewable energy consumption rate into the
increase or decrease of thermal power subsidy, forming a
"step punishment-excess reward" mechanism. The
non-convex problem is handled by improving the
ADMM (Alternating Direction Method of Multipliers)
algorithm, and the residual ε≤1e-4 is used as the
convergence criterion. Experiments show that the cost
recovery rate of the model in the "high demand-low cost"
and "high demand-high cost" scenarios is 93% and 89%,
and the proportion of days achieving the renewable
energy consumption target is increased to
82.74%±1.24%, an increase of 192% over the
benchmark, which verifies the effectiveness of the
mechanism.
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1. Introduction

Shanxi is an important energy base in China, with a high
proportion of thermal power installed capacity. However,
in recent years, renewable energy such as wind power
and photovoltaic power has developed rapidly, and the
installed capacity of new energy has accounted for a high
proportion, forming a typical "high thermal power + high
volatility new energy" structure; Shanxi's power market
is in the transition stage from planning to market, and the

capacity cost recovery mechanism is still imperfect.
There are problems such as rigid fixed cost allocation
and lagging compensation standards. A new mechanism
that adapts to the volatility of new energy is urgently
needed. The capacity cost recovery mechanism has
become a key factor affecting power supply security and
market stability [1,2]. The government needs to find a
balance between encouraging enterprises to invest in
flexible resources and ensuring market fairness, while
enterprises face the uncertainty of income brought about
by the volatility of new energy. The optimization of the
capacity compensation mechanism [3,4] is not only
related to the survival space of thermal power units, but
also directly affects the grid regulation capacity and the
level of new energy consumption. The capacity cost
recovery mechanism of the Shanxi power market has
exposed many deep-seated problems. The fixed cost
allocation method is rigid and difficult to adapt to the
fluctuation characteristics of wind power and
photovoltaic output. The frequent start and stop of
thermal power units has aggravated the pressure of
capacity compensation [5,6]. The current compensation
mechanism adopts a single standard, ignoring the
differences in the regulation capabilities of different units
[7,8]. Efficient and flexible units fail to obtain reasonable
returns, which inhibits the investment enthusiasm of
enterprises [9,10]. The compensation mechanism is out
of touch with the renewable energy consumption target
and lacks effective linkage [11,12]. The existing
mechanism fails to include renewable energy
consumption in the compensation scope, and thermal
power companies bear too much regulatory costs [13,14].
The strategic behavior of market participants has
exacerbated the complexity of capacity compensation.
Enterprises may influence market clearing prices by
manipulating bids, further distorting the cost recovery
mechanism [15,16]. There is a lag in policy
implementation, and the compensation standard
adjustment cycle is too long, which cannot reflect market
supply and demand changes in a timely manner [17,18].
The regulatory means are single and mainly rely on
post-audit, which makes it difficult to achieve dynamic
monitoring of the entire process. The allocation of
compensation funds lacks transparency, and some
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enterprises may obtain more subsidies through improper
means, which undermines market fairness [19,20]. These
problems have jointly restricted the sustainable
development of Shanxi's power market, and it is urgent
to establish a new capacity cost recovery mechanism.

This paper studies the construction of a capacity cost
recovery mechanism that adapts to the characteristics of
the Shanxi power market and solves the problem of fixed
cost recovery under the dual challenges of new energy
fluctuations and information asymmetry. The core
contribution lies in the innovative integration of dynamic
absorption constraints and information entropy theory
into the two-layer Stackelberg game framework to
achieve a precise balance between policy goals and
corporate interests. By designing a segmented subsidy
function, the deviation between the actual absorption rate
of renewable energy and the benchmark value is directly
mapped to the increase or decrease of thermal power
capacity compensation, and a linkage mechanism of
"step punishment-excess reward" is established to
effectively encourage enterprises to improve their system
regulation capabilities. The innovation is reflected in: 1)
In the information asymmetry processing link,
information entropy is used to quantify the uncertainty of
corporate private data; 2) A dynamic adjustment equation
for the compensation coefficient is constructed. When
the enterprise's quotation deviation exceeds the preset
threshold, the system automatically triggers the cost
review procedure, corrects the subsidy parameters, and
improves regulatory efficiency. 3) At the algorithm level,
an improved ADMM model is used to deal with
non-convex constraints. By relaxing the complementary
conditions, the two-layer optimization is transformed
into an alternating iterative process to ensure efficient
convergence of the model. This study breaks through the
limitations of the traditional static compensation
mechanism, realizes the coordinated optimization of
capacity cost recovery and new energy consumption, and
provides an operational solution for the green and
low-carbon transformation of Shanxi's power market.
This innovative research not only fills the existing
theoretical gap, but also provides an important reference
for the construction of capacity markets in other regions
with a high proportion of new energy.

2. Related Work

Many scholars have conducted extensive research on the
issue of capacity cost recovery. Early studies mainly
focused on the design of a single electricity price
mechanism. The real-time electricity price theory
proposed by some studies provided a theoretical basis for
capacity cost recovery [21,22]. Li G proposed a spot
market framework that included a temporary capacity
market for renewable energy and a real-time energy
sharing market. By decoupling renewable energy and
flexible resources, the market competitiveness and
resource allocation efficiency were improved. The
framework maximized social welfare through a
price-driven mechanism [23]. However, these studies did
not consider the impact of new energy fluctuations on

system operation. With the increase in the proportion of
renewable energy, more studies have begun to focus on
the capacity compensation issue under multi-energy
synergy. Some studies have proposed a capacity
compensation mechanism based on risk sharing, and
hedged the risk of new energy fluctuations by applying
financial derivatives [24,25]. Arenas-Falotico A J
explored the role of derivatives in financial markets,
risks, and their impact on investment and market
efficiency. Through theoretical analysis and practical
examples, it revealed the key role of derivatives in risk
management and speculation, and deepened the
understanding of derivatives in the modern financial
system [26]. However, there are still some shortcomings
in existing research. Most studies use static models,
which are difficult to adapt to the dynamic changes in
new energy output; they do not fully consider the
problem of information asymmetry, which may lead to
deviations in the model in practical applications; there is
a lack of systematic analysis of the interaction between
government supervision and enterprise decision-making,
which makes it difficult to achieve a balance between
policy goals and enterprise interests.

At the methodological level, the Stackelberg game model
[27,28] is widely used in the design of power market
mechanisms because it can characterize the hierarchical
decision-making relationship between leaders and
followers. Some scholars have used the Stackelberg
game to study the market equilibrium problem under the
renewable energy quota system and proved the
effectiveness of the model in describing the policy
transmission mechanism [29,30]. Xie D established a
Stackelberg game model for the power market under two
mixed policy scenarios: carbon emission rights
trading-grid premium and carbon emission rights
trading-renewable energy portfolio standard, and
compared the impact of different policy combinations on
the development of the renewable energy industry [31].
Some scholars have applied the double-layer
optimization theory to the capacity market design and
proposed a compensation mechanism based on game
equilibrium [32,33]. Existing studies mostly use the
traditional Stackelberg game framework, which has
problems such as poor model convergence and high
computational complexity. Traditional models are
difficult to deal with non-convex constraints [34,35] and
information asymmetry problems, which limits their
application in complex market environments. Research
on the structure of capacity markets primarily focuses on
market design, pricing mechanisms, and the analysis of
participant behavior. Some studies have explored how
long-term contracts in capacity markets affect market
stability and efficiency, as well as how different capacity
allocation mechanisms shape market competition
patterns [36,37]. These studies provide valuable insights
into the operational mechanisms of capacity markets, but
they fall short when it comes to addressing real-world
challenges such as fluctuations in renewable energy and
information asymmetry. While there has been extensive
research on capacity cost recovery mechanisms, most of
this research is concentrated on mature power markets or
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theoretical models in Europe and America, with less
attention paid to China's emerging markets, particularly
those like Shanxi, which have a high penetration rate of
renewable energy, are dominated by thermal power, and
have limited regulatory capacity. Shanxi is still in the
early stages of developing its spot market, lacking a
comprehensive ancillary service market and price
signaling mechanism, making traditional methods
difficult to apply directly. To this end, this paper
proposes an improved double-layer Stackelberg game
model. By applying information entropy compensation

coefficients and dynamic reward and punishment
mechanisms, it solves the shortcomings of traditional
models in information asymmetry and non-convex
constraint processing. At the same time, the improved
ADMM algorithm is used to improve the solution
efficiency of the model, providing a new solution for
capacity cost recovery in complex market environments.
Table 1 compares the limitations of existing methods for
recovering capacity costs in electricity markets with the
improvements proposed in this study.

Table 1. Comparison between existing methods and improvements in this study.

Method/Literature Limitations Proposed Improvements

Single-price
mechanism

Lacks dynamic adjustment, ignores renewable
volatility.

Introduces dynamic subsidy function with
segmented incentives to enhance market
adaptability.

Risk-sharing capacity
compensation

Static models, cannot adapt to dynamic output;
fails to address information asymmetry.

Implements entropy-driven compensation to
quantify uncertainty and dynamically adjust
coefficients.

Financial derivatives
hedging

Focuses only on risk management; lacks
coordination between compensation and
renewable goals.

Establishes "stepwise penalty-overreward"
mechanism linking absorption rate deviation to
subsidies.

Traditional Stackelberg
game

Poor convergence, high computational
complexity, struggles with non-convex
constraints.

Enhances bi-level Stackelberg model with ADMM
algorithm for improved efficiency and stability.

Bi-level optimization
theory

Ignores bidirectional feedback between
regulator and enterprise; lacks real-time
adjustment.

Designs closed-loop feedback mechanism for
dynamic policy-enterprise interaction.

Fixed cost allocation Rigid allocation, does not differentiate unit
regulation capabilities.

Applies dynamic subsidy based on unit type and
flexibility to incentivize efficient investments.

3. Methods

Figure 1 shows the capacity cost recovery optimization
framework of Shanxi power market based on the
double-layer Stackelberg game. The government
regulatory layer adjusts the compensation coefficient in
real-time and triggers the cost audit through the dynamic
subsidy generator, information entropy monitoring
module, and audit trigger mechanism to ensure the
authenticity of the enterprise’s declared data. The power
generation enterprise layer adopts a two-stage decision
engine, combined with long-term investment models and

short-term quotation strategies, to optimize the unit
operation and new energy consumption behavior. The
two parties realize two-way feedback through the
compensation coefficient correction module, and the
improved ADMM solver handles non-convex constraints
to ensure the efficient convergence of the game
equilibrium. The system realizes the effective recovery
of fixed costs and the coordinated achievement of new
energy consumption goals through the capacity cost
recovery optimization module, solving the dual
challenges brought by information asymmetry and new
energy fluctuations.

Figure 1. Overall framework.
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A. Design of the Government-enterprise
Double-layer Decision-making Structure

A sequential decision-making model of leaders
(government regulatory departments) and followers
(power generation enterprises) is established. The upper
layer guides enterprises to declare real costs through
subsidy policies, and the lower layer optimizes the unit
quotation strategy. The reverse induction method is used
to solve the subgame refined equilibrium.

1) Strategy Optimization Mechanism of Government
Regulatory Layer

As the game leader, the government regulatory
department designs capacity compensation policies to
guide power generation enterprises to disclose their true
costs. The core of the strategy is to construct a dynamic
subsidy function, linking the enterprise’s declared costs
with the audit verification results. The regulatory
department presets the capacity subsidy budget cap,
combines historical data with industry benchmarks, and
determines the initial value of the compensation
coefficient for each type of unit. When the enterprise’s
declared cost deviates from the actual fixed cost verified
by the audit, a nonlinear penalty term is triggered:

fix
adj base

fixexp i i
i i

i

C

C


 



 
   
 
 

(1)

i is the enterprise’s declared cost; fix
iC is the audit

true value;  is the adjustment factor. This exponential
function makes the subsidy coefficient show an
accelerated decay characteristic with the degree of
deviation, forcing enterprises to weigh the subsidy losses
caused by false reporting of costs. The regulatory
department adopts a distributed optimization framework
to decompose the social welfare function into three
sub-goals: electricity price stability, capacity adequacy,
and subsidy efficiency, and realizes multi-goal
coordination through weight coefficients. In the solution
process, shadow prices are applied to reflect the tightness
of market supply and demand, and the compensation
coefficient allocation priority is adjusted in real-time.
The government strategy iteration is achieved through
the gradient projection method. After each round of
iteration, the draft revision of subsidy parameters is
issued to enterprises, triggering enterprises to re-optimize
their quotation strategies and forming a two-way
feedback loop. Table 2 shows the key operating rules of
the dynamic subsidy adjustment mechanism.

Table 2. Key operating rules of the dynamic subsidy adjustment mechanism.

Trigger Condition Audit Response Action Parameter Adjustment Logic Effective Period

i > 5% Initiate third-party cost audit i ←0.9 i Effective next month

i ∈[2%, 5%] Require cost composition certification i ← i -0.1 fix
i iC Adjusted within current quarter

i < 2% Grant integrity reward certification i ← i ×1.05 Annual settlement

2) Response Strategy and Equilibrium Convergence
of Power Generation Enterprises

As followers, power generation enterprises optimize
long-term investment and short-term quotation strategies
based on the subsidy rules announced by the government.
At the investment decision-making level, enterprises
construct a multi-period profit model to quantify the
impact of capacity subsidies on the internal rate of return
of the project:

 
 

fix var
, ,1

1

T
i i t i t i i tt

i T
i

C q C q
IRR

r I

 


 





(2)

iI is the initial investment, and r is the discount rate.
Enterprises use random programming methods to deal
with the fluctuation of renewable energy output, generate
scenario trees to simulate the prediction error distribution

of wind power and photovoltaic power, and evaluate the
robustness of subsidy policies under different fluctuation
scenarios. At the spot quotation level, enterprises design
segmented quotation curves and integrate the marginal
cost of units and subsidy income into the quotation
function:

 
var

max1

m

i
i i

i i

C qb q k
q

 
    

  
(3)

Parameter ik controls the steepness of the quotation
curve, and m is a nonlinear index. Enterprises
dynamically adjust and value through reinforcement
learning algorithms, explore the mapping relationship
between government subsidy strategies and enterprise
income, and form the optimal response strategy. Table 3
shows the segmented setting of the new energy
consumption reward and punishment coefficients.
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Table 3. Segmented setting of the new energy consumption reward and punishment coefficients.

Absorption Rate
Interval

Thermal power
compensation coefficient Penalty/Reward Judgment Calculation Rule

<18% 0.85 Tiered Penalty Coefficient decreases by 0.08 per 1%
reduction

[18%, 22%) 0.95 Baseline Range Maintain initial coefficient

[22%, 25%] 1.1 Linear Reward Coefficient increases by 0.05 per 1% excess

>25% 1.25 Excess Reward Triggers additional green certificate incentives

Figure 2. Game equilibrium solution by reverse induction.

The game equilibrium solution adopts a two-way search
mechanism combining backward induction and forward
simulation. Figure 2 shows the iterative process of
finding the game equilibrium solution in the form of a
process. Each iteration involves optimizing the strategies
at the government and company levels until convergence
is achieved.

The government first pre-releases the trial value of the
subsidy policy, and the enterprise solves the optimal
bidding strategy set based on the trial value and feeds
back the results to the regulatory department. The
government modifies the weight coefficient in the
objective function based on the feedback data,
recalculates the subsidy parameters and starts a new

round of trials. This process continues until the change in
the enterprise’s bidding strategy is lower than the preset
threshold, or the marginal improvement of the social
welfare function approaches zero. During the
convergence process, sensitivity analysis is used to
identify the influencing path of key parameters. When
the penetration rate of new energy increases by 1%, the
thermal power compensation coefficient needs to be
adjusted up by  0.23exp 0.05t   to maintain
capacity margin. The final equilibrium state satisfies the
strong duality conditions of the government subsidy
budget constraint and the enterprise individual rationality
constraint, achieving effective Pareto improvement in the
strategy space.
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Figure 3. Detailed structure of the double-layer Stackelberg game.

Figure 3 shows the double-layer Stackelberg game
structure between the government and the enterprise
more clearly. As a leader, the government layer
formulates the capacity compensation coefficient 
vector through the social welfare maximization model
and dynamic subsidy strategy generator, and transmits it
to the enterprise layer. As a follower, the enterprise layer
optimizes the two-stage decision based on the  value:
the long-term investment model considers the fluctuation
of new energy output and calculates the internal rate of
return including subsidies; the short-term quotation
engine generates a nonlinear quotation curve through
reinforcement learning, and outputs the optimal
scheduling data q to feedback to the government layer.

The government layer uses the q value and the market
shadow price  to dynamically adjust the subsidy
strategy to ensure the budget constraint and incentive
compatibility conditions. The strategy gradient of the
enterprise layer further supports the calibration of
government subsidies to form a closed-loop feedback
mechanism. This structure is closely combined with the
actual situation of the Shanxi power market. Through the
coordinated optimization of the three elements of

q   , it solves the core contradiction between the
insufficient cost recovery of thermal power capacity and
the fluctuation of new energy consumption, and realizes
the maximization of policy efficiency under game
equilibrium.

B. Information Asymmetry Compensation Correction
Mechanism

Information entropy is applied to quantify the uncertainty
of enterprise private data, and a dynamic adjustment

equation for the compensation coefficient is constructed:
when the deviation of the enterprise’s quotation exceeds
the threshold, the cost audit procedure is automatically
triggered, and the subsidy parameters are corrected.

1) Uncertainty Quantification in Enterprise Behavior
Driven by Information Entropy

To solve the problem of information imbalance in the
game caused by the concealment of private data of
enterprises, a credibility assessment system of declared
information based on multi-source data fusion is
constructed. The regulatory authorities collect three types
of data, namely historical declaration records, unit
operation data, and industry benchmark costs, and fit the
characteristics of enterprise cost distribution through
non-parametric kernel density estimation. The
information entropy measurement function is defined as:

   
1

lnK i i
i k kk

H p p


  (4)

 i
kp is the probability density of the declared value of

enterprise i on the k -th cost item deviating from the
industry benchmark. The larger the entropy value iH ,
the higher the uncertainty of enterprise cost disclosure.
The entropy-compensation association rule is established:
the initial value init

i of the capacity compensation
coefficient is reversely linked to the entropy value; the
compensation attenuation factor  1 tani ih H   is
designed, where  is the adjustment coefficient, and

the final compensation benchmark is corrected to init
i i  .
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This mechanism forces high-uncertainty enterprises to
actively disclose detailed data to reduce entropy in
exchange for a higher subsidy benchmark.

2) Dynamic Correction of Audit Triggered by
Deviation Threshold

A dynamic deviation monitoring network between
enterprise quotation behavior and declared cost is
constructed. The quotation-cost deviation index of the
real-time computer group is:

  
 

var
,

var

1
100

1
i t i i i

i
i i

b C v

C





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
% (5)

,i tb is the actual quotation in period t , and iv is the
reasonable profit margin declared. When i exceeds
the threshold (default 8%) for three consecutive trading
cycles, a multi-level audit response is triggered. The
threshold should take into account multiple factors,
including market volatility, the unit's regulation
capability, and regulatory costs. If the threshold is set too
low, it may frequently trigger audits, increasing
regulatory and corporate compliance costs. If the
threshold is set too high, it might allow for false
reporting, thereby weakening the model's incentive
compatibility. Statistical analysis of historical bidding
data in the Shanxi power market shows that the
probability density of wind power output prediction
errors within ±8% is the highest. Moreover, the
short-term peak regulation costs of thermal power units
within this range are relatively stable, with an 8%
deviation covering normal market fluctuations, which is
technically reasonable.

Level 1 verification: the enterprise’s power generation,
maintenance records, and fuel purchase vouchers in the
same period are automatically retrieved, and the gradient
boosting decision tree model is run to verify the cost
consistency;

Level 2 audit: if the level 1 verification does not resolve
the doubt, the on-site audit procedure is started to verify
the actual fixed cost;

Parameter reset: the compensation coefficient is
corrected according to the audit results, and the penalty
function is designed as:

fix fix
new old

fixexp i i
i i

i

C C

C
 







 
   
 
 

(6)

Parameter  controls the penalty intensity, forming a
negative feedback chain of “false reporting cost →
entropy increase → compensation attenuation → audit
risk”.

3) Dynamic Adjustment Equation of Compensation
Coefficient

A subsidy parameter collaborative optimization model is
established based on random matrix theory. Assuming
that the data declared by the enterprise group in period t
constitutes the matrix N D

tX
 (N is the number of

enterprises, and D is the cost dimension), its covariance
matrix is calculated, and the maximum eigenvalue is
extracted to represent the overall information confusion
of the system. The compensation coefficient adjustment
differential equation is constructed:

 
current max

d
d i

ti i
i

i

U
t 


  


 

   
(7)

 is the individual utility response rate, and  is the
system entropy suppression coefficient. This equation
balances individual rationality and system information
order. When  

max
t increases suddenly, the compensation

coefficient attenuation strength is automatically
enhanced to suppress group information distortion. The
audit correction data is synchronously updated to the
double-layer game model: the government substitutes the
verified fix

iC
 into the objective function to re-solve the

optimal compensation strategy, and the enterprise
receives the revised penalty function to trigger the
re-optimization of the quotation strategy. The system
convergence is proved by the Lyapunov function

 2

1

N
i i ii

V H  


   . i
 is the ideal equilibrium

value, and  is the entropy value weight. Theoretical
proof and numerical simulation show that when the

adjustment parameter satisfies   max
1 max
4

t  , the

compensation coefficient and information entropy can
converge to a stable attraction domain.

4) Incentive Compatibility Design of Audit Cost
Endogenization

To avoid excessive consumption of audit resources, an
incentive mechanism for enterprise self-evidence is
designed. An audit cost allocation function is established:

 
  total

1

exp

exp
i

i N
jj







 


(8)

total is the total audit budget, and  is the sensitivity
parameter. The higher the deviation i , the greater the
proportion of audit costs i borne by the enterprise. At
the same time, enterprises are allowed to submit
third-party certification reports to apply for i reset,
and the certification fee is included in the calculation of
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i . This mechanism encourages enterprises to actively
maintain i below the threshold to avoid audit cost

shifting and achieve the Nash equilibrium of regulatory
efficiency and enterprise self-discipline.

Figure 4. Entropy-subsidy decay relationship and deviation monitoring time series. Figure 4(a). Entropy-subsidy decay relationship;
Figure 4(b). Deviation monitoring time series.

Figure 4 shows the entropy-subsidy decay relationship
and deviation monitoring time series:

In the entropy-subsidy decay relationship, the
information entropy ranges from 0 to 2, quantifying the
uncertainty of enterprise cost disclosure; the
compensation decay factor ρ ranges from 0 to 1,
characterizing the degree of subsidy reduction. The three
curves show the impact of different adjustment
coefficients  on the decay rate. When  =1.5, ρ
decreases rapidly, while  =0.5 decreases relatively
slowly; The monotonically decreasing nature of the
Lyapunov function during the iteration process indicates
that the system's state gradually stabilizes towards
equilibrium. The design of the system, which
incorporates information entropy, a dynamic adjustment
formula for the compensation coefficient, and an audit
mechanism, further ensures the system's convergence
under non-convex constraints. When the adjustment
parameters meet specific conditions, the compensation
coefficient and information entropy can converge to a
stable attractor domain. The nonlinear characteristics of
the curves indicate that the regulatory strategy imposes
accelerated penalties on high-entropy enterprises, forcing
enterprises to reduce the degree of information
asymmetry to maintain the subsidy benchmark.

In the deviation monitoring time series, the operation
effect of the dynamic audit mechanism is intuitively
presented through the deviation monitoring time series of
30 trading days. The quotation deviation index fluctuates

below the threshold under normal market conditions,
while when the output of new energy changes
dramatically or the market supply and demand is
unbalanced, the deviation increases significantly and
triggers an audit event. In Figure 4(b), the data begins to
trigger the audit on the 15th trading day. This mechanism
can not only obtain abnormal bidding behavior, but also
maintain market stability by correcting subsidy
parameters in real-time, which reflects the
forward-looking and adaptable nature of the regulatory
strategy. The entropy-subsidy decay relationship and the
deviation monitoring time series jointly verify the
scientificity and practicality of the information
asymmetry compensation correction mechanism.

C. Dynamic Reward and Punishment Mechanism for
New Energy Consumption

A segmented subsidy function is designed, and the
deviation between the actual consumption rate of
renewable energy and the benchmark value is converted
into the increase or decrease of thermal power capacity
subsidy in proportion, forming a “step
punishment-excess reward” linkage mechanism.

1) Construction of Subsidy Function of Step
Punishment and Excess Reward

In the consumption of new energy, due to the volatility
and intermittency of renewable energy output, thermal
power units bear the responsibility of regulating loads,
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and the economic efficiency of operation is affected. The
study designs a segmented subsidy function based on the
actual consumption rate of renewable energy, enhances
the new energy consumption capacity, and maintains the
balance of the power system, forming a “step
punishment-excess reward” linkage mechanism.

The renewable energy consumption rate R and the
benchmark value 0R are set, and the unit capacity
subsidy of thermal power units is defined as a piecewise
function that varies with the consumption rate:

 
 
 

0 1 0 0

0 2 0 0

,

,

C k R R R R
S R

C k R R R R

    
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(9)

0C is the benchmark subsidy, and 1k and 2k
represent the subsidy reduction coefficient when the
consumption is insufficient and the subsidy growth
coefficient when the consumption is excessive,
respectively. Due to the insufficient consumption of new
energy, thermal power units need to bear a greater
regulation burden. 1 2k k is set, that is, the subsidy
reduction is greater when the consumption is insufficient,
which enhances the grid’s ability to accept new energy.

Under this subsidy mechanism, when the consumption
rate is lower than the benchmark value, the subsidy of
thermal power units decreases as the consumption gap
increases, forcing scheduling optimization and
improving the level of new energy grid connection; when
the consumption rate is higher than the benchmark value,
thermal power units receive moderate rewards to
improve the overall regulation capacity of the system.
However, a single linear subsidy adjustment may lead to
incentive imbalance, so a boundary constraint is applied:

     min maxmax in ,S R S S S R  (10)

minS and maxS are the lower and upper limits of the
subsidy, respectively, to ensure that the subsidy
adjustment is within a reasonable range and prevent
incentive distortion under extreme market conditions.

2) Dynamic Adjustment Mechanism of Subsidy
Function

Due to the uncertainty of new energy output, fixed

subsidy parameters may not be able to adapt to the
dynamic changes of the system. Therefore, it is necessary
to apply an adjustment mechanism in the time dimension
so that the subsidy coefficients 1k and 2k can be
dynamically optimized as the historical absorption rate
changes. The rolling mean absorption rate tR is defined
as the basis for adjustment, and the subsidy coefficient is
adjusted:
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  


      
 

(11)

1,0k and 2,0k are the initial subsidy coefficients, and
 is the adjustment factor. If the historical absorption
rate is low for a long time, the penalty is increased, while
the reward is moderately converged to prevent new
energy power generators from relying on subsidies and
reducing their market competitiveness.

A smooth adjustment mechanism is set to avoid the
impact of drastic fluctuations in subsidies on the market,
and a time window is applied for subsidy updates to
make the subsidy adjustment process have hysteresis and
smoothness:

   1 1t t tS S S R    (12)

 ranges from [0,1] to control the smoothness of
subsidy adjustment. A larger  makes the subsidy
adjustment more stable, which is suitable for areas with
large fluctuations in new energy output, while a smaller
 can quickly reflect changes in new energy absorption
and improve the real-time nature of subsidy regulation.

In practical applications, this mechanism can be further
optimized according to market conditions, and
differentiated subsidy adjustment strategies can be set for
different types of new energy (wind power, photovoltaics)
to improve the optimization level of the overall energy
structure. Through historical data analysis and simulation
tests, the optimal subsidy parameters are determined to
achieve a dynamic balance between the new energy
consumption capacity and the grid dispatching capacity.
Table 4 shows the subsidy dynamic adjustment
coefficient.

Table 4. Subsidy dynamic adjustment coefficient.

Time Window (months) Smoothing Coefficient Applicable Scenario

1-3 0.1-0.3 Regions with stable renewable energy output, fast subsidy adjustment

4-6 0.4-0.6 Areas with moderate fluctuations, balancing stability and flexibility

7-12 0.7-0.9 High-variability regions, avoiding excessive subsidy fluctuations
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D. Non-convex Constrained Distributed Solution
Algorithm

The improved ADMM algorithm is used to process the
non-convex feasible domain of the game model. The
double-layer optimization is transformed into an
alternating iterative process by relaxing the
complementary constraints, and the residual threshold

le 4   is set as the convergence criterion.

1) Relaxation and Alternating Solution of
Non-convex Feasible Domain

The feasible domain of the game model in the
optimization solution contains non-convex constraints.
There are local optimal traps in direct solution, and
traditional methods are difficult to ensure the
convergence of distributed computing. The study uses
the improved alternating direction multiplier method
(ADMM) to overcome this problem. By relaxing the
complementary constraints, the original problem is
transformed into an alternating iterative form, which
improves the computational efficiency and enhances the
solution stability.

The optimization variable is x ; the non-convex
constraint set is C ; the original optimization problem
can be expressed as  min ,

x
f x xC .  f x is the

objective function, and C consists of multiple
non-convex constraints. The non-convex feasible domain
increases the difficulty of solving the problem. The
method of relaxing complementary constraints is adopted,
and the slack variables are applied. The Lagrangian
function is constructed:

      2, ,
2

Tx z f x Ax z Ax z     L (13)

A is the mapping matrix;  is the Lagrangian
multiplier;  is the penalty factor. The optimization
problem is decomposed into two alternating
sub-problems:

Original variable update: z and  are fixed, and x
is updated to reduce the objective function:

 1 arg min , ,k k k

x
x x z   L (14)

Slack variable update: based on complementary
relaxation, z is adjusted to optimize the solution in the
non-convex feasible domain:

 1 1arg min , ,k k k

z
z x z   L (15)

Multiplier update: the Lagrangian multiplier is adjusted
to enhance the constraint convergence:

 1 1 1k k k kAx z       (16)

The above steps are iterated alternately, so that the
problem gradually converges to a feasible solution. Due
to the application of relaxed complementary constraints,
the update of the optimization variables can converge
near the non-convex feasible domain, effectively
reducing the local optimal trap, while maintaining the
stability of the distributed solution.

2) Residual Control and Distributed Convergence
Strategy

During the solution, the convergence and computational
efficiency of the algorithm need to be ensured. The
residual threshold 410ò is used as the convergence
criterion, and the distributed computing framework is
combined to improve the solution efficiency. The primal
residual and the dual residual are defined as:

1 1 1k k kr Ax z    (17)

 1 1k T k ks A z z   (18)

The convergence criteria are set: 1 1,  k kr s   .

When both the primal residual and the dual residual meet
the threshold conditions, the iteration is stopped to
ensure the solution accuracy while controlling the
computational complexity. To improve the computational
parallelism, the optimization problem is divided under
the distributed computing architecture. Each computing
node only needs to update the local variables and
exchange multiplier information through the
communication mechanism to achieve global constraint
consistency. The process is as follows:

Local update: each computing node independently solves
the local variables and relaxes them according to the
local non-convex constraints.

Global coordination: through the message passing
mechanism, the z and  information of all nodes are
summarized to ensure the consistency of the dual
variables.

Iterative optimization: the update step size is adjusted
according to the convergence criterion, and the relaxation
coefficient is gradually reduced to improve the accuracy.

This method can ensure computational efficiency, avoid
the problem of unstable solution caused by non-convex
constraints, and improve the overall optimization
accuracy by dynamically adjusting the residual threshold.
Table 5 shows the convergence and residual changes
under different relaxation coefficients.
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Table 5. Convergence and residual changes under different relaxation coefficients.

Relaxation Coefficient Final Objective Function Value Iteration Count Final Primal Residual Final Dual Residual
0.1 0.874 9 0.015 0.018
0.5 0.869 8 0.02 0.022
1 0.86 7 0.025 0.027
2 0.84 6 0.03 0.032

4. Method Effect Evaluation

A. Dynamic Adjustment Mechanism of Government
Subsidy Coefficient and Enterprise Investment
Decision

Figure 5 shows the dynamic adjustment mechanism of
government subsidy coefficient and the dynamic
adjustment mechanism of government subsidy
coefficient.

In the dynamic adjustment mechanism of subsidy
coefficient, the deviation between the declared cost of
power generation enterprise and the actual cost verified
by audit is 0%-50%, and the vertical axis is the adjusted
capacity subsidy coefficient  . The curve shows the
attenuation characteristics of subsidy coefficient under
different adjustment factors  (0.1, 0.2, 0.3). When the
deviation exceeds 10%, the subsidy coefficient of

0.1  drops sharply to below 0.2, while it only drops
to about 0.36 when 0.3  . The data shows that a
smaller  value increases the government’s punishment
for enterprises’ false reporting of costs, and forces
enterprises to converge to the real cost declaration
through the exponential decay function. This mechanism
reduces the moral hazard caused by information
asymmetry through nonlinear response and ensures the
precise delivery of subsidy budget.

In the analysis of the correlation between enterprise
investment decision and subsidy, the capacity subsidy
coefficient  provided by the government ranges from
0 to 1, and the vertical axis is the internal rate of return
of the enterprise. The three curves correspond to the
scenarios of renewable energy penetration of 20%, 30%,
and 40%, respectively. When  increases from 0 to 1,
the IRR increases linearly from 15% to about 37% at a
penetration rate of 20%, while it only increases to about
29% at a penetration rate of 40% due to the suppression
effect of electricity prices. The data shows that high
penetration of new energy weakens the effect of
subsidies on IRR improvement, and the government
needs to dynamically adjust  to compensate for the
peak-shaving cost of thermal power.

The combination of the dynamic adjustment mechanism
of the government subsidy coefficient and the enterprise
investment decision reveals the two-way interactive
relationship between government subsidy policy and
enterprise investment behavior: the dynamic adjustment
mechanism of the government subsidy coefficient shows
that the government responds to enterprise cost false
reporting by dynamically adjusting  , and the
enterprise investment decision shows the sensitivity of
the decision to the subsidy policy. This linkage
mechanism ensures the consistency of policy goals and
enterprise interests, and provides theoretical support for
capacity cost recovery in the power market.

Figure 5. Dynamic adjustment mechanism of government subsidy coefficient and enterprise investment decision. Figure 5 (a).
Dynamic adjustment mechanism of subsidy coefficient; Figure 5 (b). Analysis of the correlation between enterprise investment

decision and subsidy.

B. Comparison of Capacity Cost Recovery Rate

The indicator capacity cost recovery rate = actual
recovery of fixed costs/theoretical receivable costs ×

100% is defined. The experiment compares the proposed
model with three baseline models: traditional
single-layer game, static subsidy model, and
non-cooperative equilibrium model (Nash game). Based
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on the actual operational characteristics of Shanxi's
power market, four market scenarios have been defined:
—— "high demand low cost," "high demand high cost,"
"low demand low cost," and "low demand high cost."
These scenarios are defined by the relationship between
demand and cost. They reflect the operational conditions

of the power market under different supply and demand
conditions, where high demand can result from economic
growth or extreme weather, and high costs may arise
from fluctuations in fuel prices or policy changes. Given
the actual situation of Shanxi's power market, these
scenarios are designed with a solid foundation in reality.

Figure 6. Comparison of capacity cost recovery rates of different models under different market scenarios.

Figure 6 shows the comparison of capacity cost recovery
rates of four game models under four different market
scenarios. The four market scenarios include “high
demand, low cost”, “high demand, high cost”, “low
demand, low cost”, and “low demand, high cost”. The
vertical axis lists four game models, namely the
improved double-layer Stackelberg game, the traditional
single-layer game, the static subsidy model, and the
non-cooperative Nash game, and the data is presented in
the form of a heat map.

It can be seen from the data that in the “high demand,
low cost” and “high demand, high cost” scenarios, the
recovery rate of the improved double-layer Stackelberg
game model is significantly higher than that of the other
three models, with capacity cost recovery rates of 93%
and 89%, respectively. This model can more effectively
achieve capacity cost recovery in a market environment
with high demand and drastic cost changes. In the “low
demand, low cost” and “low demand, high cost”
scenarios, the recovery rates of each model are relatively
low, and the performance of the traditional single-layer
game and non-cooperative Nash game models is
relatively stable. This shows that the improved
double-layer Stackelberg game model has a more
prominent advantage in the high demand market, while
its advantage in the low demand market has weakened.
Overall, the heat map clearly shows the differences in the

recovery rates of each model in different market
scenarios, which can provide an important basis for
model selection and market strategy formulation.

C. Evaluation of Enterprise Earnings Volatility
Coefficient

To quantify the impact of new energy fluctuations on
enterprise earnings stability, a earnings volatility
evaluation framework based on Monte Carlo simulation
is constructed. Based on the historical wind power
prediction error data of Shanxi Power Grid in 2023, the
probability distribution of wind power output
fluctuations is fitted, and the output scenario tree is
generated using the kernel density estimation method,
covering typical day, seasonal, and extreme weather
scenarios. The earnings volatility coefficient is defined as
the ratio of the quarterly earnings standard deviation to
the mean (  ), in CNY (Chinese Yuan), reflecting the
degree of dispersion of the earnings distribution. In the
Monte Carlo simulation, 1,000 groups of wind power
output sequences are randomly selected, and each group
of sequences corresponds to a market clearing scenario.
The quarterly earnings of the enterprise under this
scenario are calculated. To evaluate the earnings stability
under different confidence levels, a conditional value at
risk (CVaR) model is constructed to quantify the tail risk
under extreme volatility scenarios.
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Figure 7. Quarterly earnings distribution.

Figure 7 shows the probability density distribution of
enterprise quarterly earnings. The quarterly earnings unit
is is in millions of yuan, and the ordinate is the
probability density. The earnings data is generated based
on Monte Carlo simulation, with a mean of 500 million
yuan and a standard deviation of 200 million yuan. The
red dotted line in the figure marks the mean of the
earnings, and the green dotted lines represent the range
of the mean plus or minus one standard deviation. The
earnings distribution shows the characteristics of an
approximate normal distribution, with most of the
earnings concentrated between 300 and 700 million yuan.
Among them, the probability density near the mean is the
highest, indicating that the enterprise can obtain stable
earnings in most scenarios. There are obvious tail risks at
both ends of the distribution, especially in the area where
the earnings are less than 300 million yuan or more than
700 million yuan. Although the probability density is low,
the corresponding extreme scenarios may have a
significant impact on the enterprise. The earnings
volatility coefficient   is 0.4, further indicating that
the enterprise’s earnings are highly volatile. The
existence of tail risks suggests that the fluctuation of new
energy output may cause the enterprise’s earnings to
deviate significantly from the mean in extreme cases, and
it is necessary to further smooth the earnings fluctuations
through policies or market mechanisms to enhance the
stability of the enterprise’s earnings.

Figure 8 shows the results of the conditional value at risk
(CVaR) analysis based on Monte Carlo simulation,
which is used to assess the potential risks of enterprise
earnings under extreme volatility scenarios. The
horizontal axis is the simulation scenario number, and
the quarterly revenue unit is 10 million yuan. The blue
curve represents the quarterly revenue distribution in
ascending order, and the red dotted line marks the value
at risk (VaR) threshold at a 95% confidence level. The
VaR value is about 200 million yuan, and the CVaR
value is about 130 million yuan. At a 95% confidence
level, about 5% of the scenario revenues are lower than
the VaR threshold, and the mean revenue of these

scenarios is significantly lower than the overall mean
revenue. The revenue distribution in the tail area shows
that enterprises may face a greater risk of revenue loss
under extreme volatility scenarios. CVaR analysis
quantifies this tail risk and provides an important basis
for enterprises to formulate risk management strategies.
The fluctuation of new energy output has a significant
impact on the stability of enterprise revenues. In extreme
scenarios, revenue fluctuations may be further amplified.
It is necessary to smooth revenue fluctuations through
policies or market mechanisms to reduce the impact of
extreme risks on enterprise operations.

Figure 8. Conditional Value at Risk (CVaR) Figure.

D. Verification of Renewable Energy Consumption
Rate and Impact Analysis of Core Indicators of
Low-Carbon Transition

To evaluate the incentive effect of different subsidy
mechanisms on renewable energy consumption, the
consumption rate compliance index  = actual
consumption/policy quota × 100% is constructed, and the
daily average fluctuation rate is

 2365 24
,1 1

1 1 100
365 24 d h dd h

 
 

   % . Based on the

historical operation data of Shanxi power grid, the 2025
consumption rate benchmark value of 22% is set as the
policy quota. Three types of comparison scenarios are
designed: baseline scenario (no reward and punishment
mechanism), linear subsidy mechanism (the consumption
rate is linearly linked to subsidies), and this paper’s
segmented reward and punishment mechanism (step
punishment-excess reward). In the simulation
environment, the fluctuations in wind power and
photovoltaic output and changes in load demand are
simulated, and the actual consumption in each scenario is
calculated. Through the time series analysis method, the
dynamic changes in the consumption rate are tracked,
and the consumption bottleneck periods under different
mechanisms are identified. The consumption rate
fluctuation index is applied to quantify the impact of the
mechanism on the stability of consumption. The
simulation is based on the 8760-hour time series data of
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Shanxi Power Grid in 2023. The Beta distribution model
is used to model the fluctuation of renewable energy
output (wind power: Beta ( 2.1  , 3.3  );
photovoltaic: Beta ( 1.8  , 2.6  )), and 1000 Monte
Carlo samplings are used to ensure statistical robustness
(95% confidence interval). The segmented mechanism
uses the nonlinear structure of “heavy penalties below
the benchmark (penalty coefficient 1 0.8c  when

3   % ) and light rewards for excess (reward
coefficient 2 0.5c  when 22  % )” to encourage
thermal power flexibility resources to actively support
the consumption of renewable energy. At the same time,
the marginal increase in subsidy costs is constrained to
achieve Pareto improvements in policy goals and market
efficiency.

Table 6. Verification results of renewable energy consumption compliance rate.

Metric Baseline (No Incentive) Linear Subsidy Segmented Incentive Statistical Significance
(p-value)

Compliance Index(%) 83.24 ± 4.52 91.65 ± 3.12 103.48 ± 2.76 0.0008*

Daily Absorption Volatility (%) 18.63 ± 1.24 12.27 ± 0.89 7.35 ± 0.57 0.0007*

Annual Mean Absorption Rate(%) 19.82 ± 0.65 21.53 ± 0.48 23.91 ± 0.32 0.0004*

Compliance Days Ratio (%) 28.37 ± 2.15 55.62 ± 1.78 82.74 ± 1.24 0.0006*
Note: * indicates the significance level of the difference between groups ( 0.05  ).

Table 6 systematically evaluates the difference in
effectiveness of the baseline scenario (no reward and
punishment mechanism), the linear subsidy mechanism,
and the segmented reward and punishment mechanism in
achieving the renewable energy consumption target. In
the consumption rate compliance index, the segmented
reward and punishment mechanism is significantly better
than the linear subsidy mechanism and the baseline
scenario with a mean of 103.48%±2.76%. The ANOVA
(Analysis of Variance) one-way analysis of variance
shows that the difference between the groups is
extremely significant ( p <0.001). The daily consumption
volatility reflects the standard deviation of the hourly
consumption rate from the daily average. It is
18.63%±1.24% in the baseline scenario, and the
segmented mechanism reduces it to 7.35%±0.57%, a
decrease of 60.5%, indicating that the asymmetric reward

and punishment design can effectively smooth the
system fluctuations. The annual average absorption rate
increases from 19.82%±0.65% in the baseline scenario to
23.91%±0.32% in the segmented mechanism, verifying
the enhancement effect of the tiered subsidy on the
system absorption capacity. The proportion of days
meeting the standard quantifies the proportion of days
meeting the standard for the whole year. The segmented
mechanism reaches 82.74%±1.24%, an increase of 192%
compared with the baseline scenario (28.37%±2.15%),
highlighting the mechanism’s ability to drive continuous
compliance. The ANOVA test further confirms that there
are statistically significant differences in absorption
stability and compliance sustainability among the three
types of mechanisms, which confirms the theoretical
superiority of the segmented reward and punishment
mechanism.

Table 7. Analysis of the impact of the model on the core indicators of low-carbon transition.

Indicator Baseline (No Incentive) Linear Subsidy Segmented Incentive

Annual Average Electricity Price Volatility 12.5% ± 1.8% 9.2% ± 1.3% 6.7% ± 0.9%

Renewable Energy Investment Return Rate 8.3% ± 0.6% 10.5% ± 0.8% 12.9% ± 1.1%

Thermal Power Carbon Emission Intensity (g/kWh) 820 ± 30 750 ± 25 680 ± 20

Wind and Solar Curtailment Rate (%) 16.8% ± 2.1% 11.4% ± 1.5% 5.6% ± 0.8%

System Low-Carbon Benefit Index¹ 1 1.23 1.58

Table 7 presents the comparison results of the segmented
reward and punishment mechanism, benchmark scenario,
and linear subsidy mechanism in this paper on key
indicators such as electricity price volatility, return on
investment for renewable energy, carbon emission
intensity from thermal power, wind and solar curtailment
rates, and the system's low-carbon benefit index. The
table shows that, compared to the benchmark scenario
without incentives, the model significantly reduces the
annual average electricity price volatility to 6.7%, a
substantial reduction, demonstrating its superior
performance in stabilizing market electricity prices.

Additionally, the return on investment for renewable
energy increases to 12.9%, surpassing the benchmark
scenario, effectively enhancing the appeal of new energy
projects. In terms of carbon reduction, the carbon
emission intensity from thermal power is reduced to 680
g/kWh, and the wind and solar curtailment rates are
lowered to 5.6%, highlighting the model's significant
optimization of new energy consumption capacity. The
system's low-carbon benefit index reaches 1.58,
reflecting the synergistic improvement in new energy
penetration, consumption efficiency, and carbon
emissions. Overall, these data validate the model's
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effectiveness in promoting low-carbon transformation,
enhancing the stability of the power market, and
improving resource allocation efficiency.

5. Conclusions

This study aims at the dual challenges of insufficient
capacity cost recovery and fluctuations in new energy
absorption in the Shanxi power market, and proposes a
capacity compensation mechanism optimization
framework based on an improved double-layer
Stackelberg game. By constructing a
government-enterprise sequential decision-making model
and designing a dynamic subsidy-audit linkage
mechanism, the information asymmetry problem can be
effectively alleviated to ensure the true cost declaration
of enterprises. Information entropy is applied to quantify
the uncertainty of enterprise private data, and the
deviation threshold is combined to trigger the audit
procedure to form a closed-loop supervision system of
“declaration-verification-correction”. The segmented
reward and punishment mechanism dynamically links
the renewable energy consumption rate with the thermal
power capacity subsidy. Through the asymmetric
punishment-reward structure, it encourages thermal
power flexibility resources to support the consumption of
new energy, and realizes the coordinated optimization of
system regulation capacity and policy goals. At the
algorithm level, the improved ADMM algorithm handles
the non-convex feasible domain by relaxing
complementary constraints, transforms the double-layer
optimization into an alternating iterative process, and
significantly improves the model solution efficiency and
convergence stability. The simulation results show that
the proposed mechanism is superior to the traditional
model in key indicators such as capacity cost recovery
rate, enterprise profit stability, and renewable energy
consumption compliance rate, which verifies the
effectiveness and practicality of the theoretical
framework.

The model effectively addresses the challenges posed by
fluctuations in new energy and information asymmetry
through dynamic cost auditing and subsidy adjustment
mechanisms, demonstrating strong practical adaptability.
Its core mechanisms, such as information entropy to
quantify uncertainty, nonlinear penalty functions, and
segmented reward and punishment designs, are not
dependent on specific regional data and can be extended
to other provinces with a high proportion of new energy.
By adjusting local parameters, such as consumption rate
benchmarks and regional cost baselines, the mechanism
can be seamlessly adapted. Furthermore, the improved
ADMM algorithm leverages distributed computing
advantages, supporting cross-regional collaborative
optimization, which provides technical support for the
construction of multi-provincial joint capacity markets,
significantly enhancing the model's promotional value
and policy impact. While the improved two-layer
Stackelberg game model has demonstrated good
performance in enhancing capacity cost recovery
efficiency and new energy consumption, it still has

certain limitations. The model assumes that market
participants are entirely rational, which may not fully
capture the complex strategic behaviors observed in real
markets. Moreover, the information entropy
quantification method depends on the quality and
completeness of historical data, and its adaptability to
data gaps or anomalies needs further validation.
Additionally, the practical application of the dynamic
subsidy mechanism must be tailored to specific policy
environments and regulatory capabilities. Future research
will aim to enhance the robustness of the model and
explore a broader range of application scenarios.
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