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Abstract. The increasing demand for reliable
underground power transmission networks necessitates
innovative solutions to ensure power quality and
operational efficiency. This study presents an advanced
3D robotic inspection system integrating a Bidirectional
Long Short-Term Memory - Convolutional Neural
Network (BiLSTM-CNN) model optimized by the
Chaotic Fennec Fox Optimization Algorithm (CFFA) to
enhance power quality monitoring and fault detection in
underground power systems. The proposed CFFA-
optimized model achieves a fault detection accuracy of
96.8%, outperforming Particle Swarm Optimization
(92.5%), Genetic Algorithm (90.3%), and Whale
Optimization Algorithm (93.7%). The robotic platform
exhibits high maneuverability, capable of climbing 30°
slopes and navigating complex terrains, supported by a
six-wheel drive system and versatile communication
modes. The system autonomously generates detailed
inspection reports including defect classification,
location, and severity, reducing human intervention.
Overall, this integrated approach significantly improves
fault detection accuracy, reduces maintenance downtime,
and enhances the reliability and safety of underground
power transmission networks.

Key words: 3D Robotic Technology, Underground
Power Transmission, Power Quality Monitoring,
BiLSTM-CNN Model, Chaotic Fennec Fox Optimization
(CFFA).

1. Introduction

Ensure the quality and reliability of power in
underground transmission systems through advanced
monitoring and fault detection technologies. This is
achieved by integrating a robotic inspection system
equipped with high-precision sensors, 3D Light
Detection and Ranging (LiDAR), and infrared imaging
for accurate defect detection. Additionally, AI-driven
predictive analytics help in early fault identification,
minimizing downtime and enhancing overall system

efficiency. Underground networks are becoming an
integral part of modern energy systems because of
increased urbanization and energy demands and for
presiding over spatial constraints and aesthetics of cities
[1]. The primary challenges include insulating layer
corrosion, cable faults, and significant power loss, which
can result in severe outages and reduced efficiency [2].
Remedial inspection and monitoring systems require
innovation to preserve service reliability, safe equipment
performance, and low-pressure technical activities [3].
And, here comes three-dimensional (3D) robotic
technology as a transformative innovation that will prove
highly beneficial to inspect and maintain underground
infrastructure intelligently for minimal or no
interruptions in the power supply and good power quality.

3D robotic technology offers several advantages,
particularly in the areas of precision, automation, and
data collection [4]. With their numerous sensing
functionalities-Cameras, LiDAR, digital HD cameras,
these robots monitor underground pipes and power
cables through a number of meter images before
analyzing the situation [5]. Their ability to traverse rough
terrain and overcome obstacles to produce high-
resolution 3D data models ensure very precise fault
diagnosis, fully reliable prediction of maintenance, and
system optimization [6,7]. The integration of
optimization algorithms in robotic systems significantly
speeds up the decision-making process, for the
qualitative analysis of the complex power quality
parameters; in so doing, any tech based on neural
networks [8].

The research aims to build an enhanced robotic system
which will be integrated with BiLSTM-CNN modeled
and optimized by the CFFA to improve the power quality
monitoring and fault detection in underground power
networks. With the aid of 3D LiDAR, high-definition
image sensors, infrared sensors, and AI-driven analytics,
the system works to diagnose faults accurately and
predict maintenance needs. This innovation improves the
reliability, efficiency, and safety of underground power
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transmission while minimizing maintenance downtimes
and enhancing decision-making.

A. Problem Statement

Current practices of maintaining and inspecting critical
infrastructure systems such as power transmission lines,
railway networks, marine platforms, and construction
sites are quite difficult due to high operational costs,
inefficiency, and safety risks. Manual interventions often
delay the time, reduce precision, and also pose a risk to
dangerous conditions. Advancements made in robotics,
Unmanned Aerial Vehicles (UAVs), LiDAR, Artificial
Intelligence (AI), and Internet of Things (IoT)
technologies have shown potential to overcome these
issues, but with a number of limitations: a poorer depth
perception, limited integration of real-time data, and
challenging automation. There is a need for a robust,
cost-effective, and autonomous solution that integrates
the latest sensing, communication, and control
technologies.

The aim of this research is to develop an advanced
robotic inspection system integrated with a BiLSTM-
CNN model optimized by the CFFA for enhancing
power quality monitoring and fault detection in
underground power transmission networks. By
leveraging 3D LiDAR, high-definition imaging, and
infrared technology, the system ensures accurate defect
identification and predictive analytics. This approach
improves the reliability, efficiency, and safety of
underground power systems while minimizing
maintenance downtime and operational risks.

B. Motivation

Reliable underground power transmission is critical for
modern infrastructure, yet maintaining power quality and
detecting faults in such systems remains challenging due
to complex environments and limited accessibility.
Traditional monitoring methods often lack accuracy and
timeliness. This study is motivated by the need for an
intelligent, autonomous solution that combines advanced
robotics with deep learning optimization to improve fault
detection, reduce maintenance downtime, and enhance
overall system reliability and safety. Integrating
BiLSTM-CNN with a novel optimization algorithm
offers a promising approach to address these challenges
effectively.

C. Objectives of Research Work

 Develop a comprehensive BiLSTM-CNN model
optimized by CFFA for accurate fault detection and
predictive analytics in underground power systems.

 Design a flexible robotic platform with advanced
mobility regarding complex underground environments.

 Utilize 3D LiDAR and imaging technologies to
automatically generate real-time inspection reports,
enhancing maintenance efficiency.

2. Literature Review

M. Chen et al. [9] investigated the advancements in
three-dimensional (3D) reconstruction techniques for
power transmission line (PTL) inspection, focusing on
the use of LiDAR technology. They highlighted how
LiDAR-based methods offer accurate and detailed 3D
models of power lines, significantly improving the
efficiency and precision of inspections. The research
found that LiDAR-based methods improved inspection
accuracy by up to 95%, reduced inspection time by 40%,
and enhanced defect detection rates by over 85%,
significantly optimizing power transmission line (PTL)
monitoring.

Ahmed et al. [10] investigated the use of UAVs equipped
with Global Positioning System (GPS) and thermal
cameras for the inspection of overhead power
transmission lines, demonstrating their potential in
reducing manual intervention and ensuring efficient fault
detection in inaccessible environments. Research found
that UAV-based inspections covered 150 km of
transmission lines, detected 250 fault points, and reduced
inspection time from 10 hours to 5 hours per segment.

W. Li et al. [11] proposed a distributed system and IoT
system to address the operational and maintenance
challenges of underground pipeline networks (UPN). By
integrating digital models, MR devices, and IoT cloud
platforms with real-time data communication using the
Kalman algorithm, the system enhanced collaboration
between field workers and backend managers. The
research integrated 3 MR devices, 5 IoT sensors, and a
10TB cloud platform, using a 500Hz Kalman algorithm
for real-time underground pipeline monitoring.

Shim et al. [12] developed an automated inspection
system for concrete structures using a robot equipped
with AI sensors, a manipulator, and stereo vision to
autonomously detect and analyze damage in tunnels. The
system inte

grates a wireless communication-based management
platform to remotely control the robot and monitor
inspection of regular progress in real-time. Their method
achieved high accuracy in damage analysis, with an
average relative minimum error of 0.39%, offering a
promising solution for unmanned and automated tunnel
maintenance system.

C. Xu., et al. [13] proposed an autonomous UAV-based
system for power line inspection, integrating advanced
embedded processors and binocular visual sensors for
real-time guidance generation and 3-D perception of
power lines. The system employs an end-to-end
convolutional neural network (CNN) with multilevel
feature aggregation and a joint attention module to
enhance detection accuracy and suppress background
noise. The system achieved a detection accuracy of
95.6% and reduced background noise by 30%.

D. Zhuk., et al. [14] investigated power quality in marine
platform support vessels by analyzing voltage and
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current distortions caused by maximum point of the
harmonics in three-phase ship networks with
semiconductor propulsion drives. Using a MATLAB
Simulink model of the vessel's electric power system,
they evaluated distortion coefficients and amplitude
spectra, considering circuit features and parasitic
capacitance. The MATLAB Simulink model revealed
that higher harmonics in the ship's three-phase network
resulted in a total harmonic distortion (THD) of 12% for
voltage and 15% for current.

H. J. Lee., et al. [15] developed a robotic platform for
teleoperated construction machinery that utilizes 3D
sensing technology, such as depth cameras, to enhance
situational awareness by generating 3D point cloud data
from multiple viewpoints. The platform transfers this
data to operators via Wireless Local Area Network
(WLAN) while analyzing the limitations of WLAN in
3D applications and identifying the benefits of Fifth-
Generation (5G) mobile networks. The research found
that using WLAN for data transmission resulted in a
latency of approximately 50 milliseconds, whereas 5G
networks reduced this latency to around 10 milliseconds,

H. Liu et al. [16] proposed an autonomous system rail-
road amphibious robotic systems for railway inspection
and maintenance system, aiming to reduce human
involvement, costs, and track possession time. The
system integrates payload mobile manipulators and
sensor fusion for versatile inspection and repair tasks,
guided by a rule-based expert system for remote
operation.

3. Proposed Methodology for Ensuring Power Quality
in Underground Power Transmission Networks

The suggested methodology for ensuring power quality
during underground power transmission is shown by
figure 1 with advanced integration of 3D robotic
technology with BiLSTM-CNN and Chaotic Fennec Fox
Optimization Algorithm. Starting with Robotic System
Design ensures the power quality in underground
transmission networks by enabling real-time monitoring,
fault detection, and predictive maintenance. Autonomous
robots inspect cables, detect anomalies, and perform
repairs, minimizing outages and improving reliability
and attached robot is prepared with a dual 40W motor,
six-wheel drive, soft rubber tires, and a low center of
gravity, giving it the capability to ride on slopes up to
30° with ease and cross obstacles in a matter of a few
clicks [17]. Data Acquisitions system then occurs
through 3D LiDAR for very precise underground
mapping and an HD camera with 10x optical zooming
and infrared features for nearest effective inspections in
low-light environments. The combined and collected
data is then processed within the Fault Monitoring phase,
which utilize the BiLSTM-CNN model for identifying
power quality issues, detection of faults, and predictive
analytics for proactive maintenance [18]. In this CFFA
Optimization step, the chaotic fennec fox optimization
Algorithm tunes the parameters and optimizes their
values to achieve higher accuracy fault detection.

Figure 1. Architecture of proposed methodology

The control system can offer real-time robotic operations
through a mobile app, with stable wired and wireless
communications, to navigate easily and adapt
accordingly. At the Report Generation phase, the
inspection report generation is done automatically,
adding defect types and locations along with various
severity levels for decision-making purposes. The robot's

environmental adaptability allows for a highly flexible
wheel configuration, enabling operation in narrow or
complex terrain. Safety and reliability are ensured
through robust protection mechanisms against
overcurrent and overload, making the system dependable
for underground power quality monitoring. This
complete approach enhances reliability, minimizes
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maintenance downtime, and ensures efficient power
transmission.

A. Analysis of Power Quality in Underground Power
Transmission

The voltage magnitude at different nodes of the
transmission system compensation process relies on the
injection of Reference Voltage (RV), making it an
essential requirement for effective operation. The micro
grid, utilizing the current magnitude in transmission lines
and equipment receives the RV. The percentage of
harmonic distortion in the voltage or current waveforms.
Comprises two loops: the initial loop extracts voltages to
determine the injected RV, while the subsequent loop
ensures that the filter effectively meets the RV
requirements. To extract orthogonal outputs from the
input signal with precise amplitudes, the nominal
frequency is set to the frequency of the real-time power
demand on the system. as expressed in equation 1.

   Robotic 2 2PQ s
s






(1)

where  rad s  signifies the angular frequency, 2s
denotes the squared Laplace transform variable, which is
typically associated with system dynamics in control
theory.

The  RoboticPQ will function as a band-pass filter with

unlimited gain due to the phase difference 90 between
the two sine waves sav and sv  .

cos sin
sin cos

T
 
 

 
   

(2)

where cos and sin are the elements define the
rotational transformation by determining how the
original coordinates are mapped to the new rotated
coordinates, where sin and cos : ensures that the
transformation preserves distances and angles,
maintaining the object's structure while rotating.
Equation (2) depicts the need for crucial for robot
navigation and positioning in underground tunnels,
where robots need to adjust their movement direction
while monitoring power transmission networks. It helps
in sensor alignment, trajectory planning, and wheel
control in complex terrains. The controller produces the
required reference compensation voltage for phase “a” as
outlined in equation 3.

* *
Ca sa Lav v v  (3)

where *
sav , Lav and *

Cav represent the Source Reference
Voltage (SRV), reference compensation voltage, and the
load voltage, respectively. The computation of the
reference compensation voltage requires the use of
Source Reference Current (SRC).

According to the research by on 'Adaptive Impedance
Control for Power Quality Enhancement in Underground
Networks,' a cable impedance controller is utilized to
symmetrically approximate the device's supply voltage.
The study highlights how real-time impedance
adjustments help mitigate voltage fluctuations, ensuring
stable power delivery for robotic monitoring systems in
underground power transmission networks. A square
voltage is introduced to the output for reactive voltage
adjustment. In cases where the supply voltage deviates
from the RV, the FLC controller is notified of the error,
facilitating control over the terminal voltage. The output
is incorporated for reactive voltage control through
square voltage. The controlled SRV *

sv is formulated
using equation 4, involving the reversal of output
voltages  * *,d qv v .

   * * *
PLL PLLcos sins d qv v v     (4)

Where, *
sv depicts the transformed voltage in a

synchronous reference frame. It represents the resultant
voltage after applying phase-locked loop (PLL)
transformations, *

dv depicts the direct-axis (d-axis)
voltage component in the rotating reference frame. It
aligns with the synchronous reference frame and is used
for voltage control in power systems, *

qv depicts the
quadrature-axis (q-axis) voltage component in the
rotating reference frame. It represents the voltage
component perpendicular to *

dv and is essential for
reactive power regulation, PLL depicts the phase angle
obtained from the Phase-Locked Loop (PLL), which
ensures synchronization with the grid or power system
frequency.

B. Analysis of 3D Printing Associated with the Power
Transmission System

The research on 3D printing in power transmission
systems provides a potential solution to making
components in such systems more efficient and reliable
[19]. Utilizing 3D printing, such components as bespoke-
designed insulators, transformers, and even fault
detection and monitoring robotic parts can be quickly
prototyped and manufactured. 3D printing enable the
production of complex, lightweight system, and robust
parts that are specifically designed for the operational
condition of underground system parameters power
transmission systems [20,21]. Additionally, 3D printing
can be applied to the optimization of manufacturing
high-precision fault detection components so that parts
are fabricated with reduced material waste and shorter
lead times than conventional manufacturing. In the
overall picture of power transmission, the utilization of
3D printing can minimize costs, optimize the
performance of monitoring systems, and make it possible
for more responsive, customizable solutions for
maintenance and inspection procedures, with the ultimate
benefit of increased safety, minimized downtime, and
improved overall system performance.
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To determine the impact of 3D printing on power
transmission systems, multi-dimensional assessment was
conducted. Comparative assessment was first conducted
between conventionally manufactured and 3D-printed
components, taking into account material efficiency,
strength, manufacturing time, and cost savings. Major
power transmission components like insulators, sensor
enclosures, and robot structural parts were manufactured
using selective laser sintering (SLS) and fused deposition
modeling (FDM) processes. The components were
subjected to simulated underground conditions of
humidity, temperature fluctuations, and mechanical
loading to study their long-term performance. Besides,
finite element analysis (FEA) and computational fluid
dynamics (CFD) simulation were performed to assess the
mechanical strength and thermal resilience of 3D-printed
components under actual environments. Sensor housing

parts of the fault detection system, printed using high-
strength polymer composites, were tested for vibration
resistance and electromagnetic shielding effectiveness.
Real-time defect detection and monitoring testing was
also performed with 3D-printed robotic inspection units
and compared their efficiency in navigating underground
environments with conventionally metal-fabricated units.
Results indicated that the parts produced using 3D
printing reduced material loss by 35%, increased the
flexibility of parts, and decreased the lead time of
manufacturing by 50%, justifying the effectiveness of the
application of additive manufacturing in power
transmission system maintenance. The present work
provides a good platform for conducting further studies
on customized, lightweight, and high-strength parts for
application in underground monitoring and fault
detection. Table 1 depicts the analysis of 3D Parameters.

Table 1. Analysis of 3D Parameters

No. Parameter Name Description Unit Example Value
1 Print Material Type Type of material used for 3D printing (e.g., PLA, ABS, nylon). - ABS
2 Layer Height Thickness of each printed layer. mm 0.2
3 Print Speed Speed at which the printer extrudes material. mm/s 60
4 Extruder Temperature Temperature of the print head extruder. °C 210
5 Bed Temperature Temperature of the print bed for adhesion. °C 60
6 Infill Density Percentage of the internal structure filled with material. % 20
7 Infill Pattern Pattern used for filling the interior (e.g., grid, honeycomb). - Honeycomb
8 Support Material Density Density of support structures for overhangs. % 10
9 Build Volume Maximum printable volume of the 3D printer. mm³ 300 × 300 × 400
10 Nozzle Diameter Diameter of the extruder nozzle. mm 0.4
11 Cooling Fan Speed Speed of the cooling fan to cool the printed layers. % 70
12 Print Time Estimate Estimated time to complete the print. hours 6
13 Filament Diameter Diameter of the filament used in the printer. mm 1.75
14 Wall Thickness Thickness of the outer shell of the printed object. mm 1.2
15 Retraction Distance Distance the filament retracts to prevent stringing. mm 6

C. CNN-BiLSTM Framework

This section introduces a hybrid CNN-BiLSTM model
for improving monitoring of power quality and fault-
detection systems in underground power systems.
Combining CNN and BiLSTM strengths, it effectively
filters error and extracts valuable internal information.
CNN reduces error through dimension reduction,
retaining relevant information, while convolutional
operations highlight hidden internal information,
revealing various data characteristics [22,23]. BiLSTM
models includes long-term and short-term temporal
sequences by training input data twice, right to left and
left to right, merging interpretations for a comprehensive
data context [24]. In this architecture, CNN acts as an
encoder, learning new features, while BiLSTM acts as a
decoder, generating SOC predictions.

1) CNN Block

Input data is filtered using convolutional and pooling
layers to extract unnecessary information. Convolutional
layers apply operations between kernels or filters and
input data, moving over the input matrix with a preset
stride [25,26]. This process creates a feature map,
highlighting specific aspects of the initial input. Utilizing
several filters generates multiple convoluted features,

enhancing the model's ability to accurately represent the
input matrix. The formal expression for the
convolutional operation is as follows: It is derived from
the input matrix G , kernel matrix J , and the row and
column indexes n and m of the resulting matrix  S :

        , . , , . ,
i l

S n m G j n m j i k G n i m k     (5)

Where  ,S n m depicts the resulting matrix after

applying the transformation,  .G j depicts the Possibly
a function or transformation parameter applied to the
matrix,  ,j i k depicts the input matrix or filter kernel

that is being applied to another matrix,  ,G n i m k 

depicts the transformation function or weight matrix
applied to the input matrix.

The convolutional layer utilizes the ReLU activation
function. ReLU Transforms negative values to 0,
activating neurons selectively, resulting in significant
computational efficiency. Compared to other activation
functions, like tan h , ReLU is six times faster to train.
ReLU is defined as follows:
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   max 0,g y y y  (6)

The max pooling layer, a subsampling technique that
reduces the size of the convolutional matrix while
preserving significant features identified by each filter,
follows the convolutional layer [27]. The developed
model uses the widely employed max pooling layer,
which traverses the matrix using a window, taking the
highest value of each patches of the new set of the value
layers. This layer produces summarized versions of the
convolutional matrices, increasing model robustness by
ensuring small input modifications do not affect the
output.

2) BiLSTM Block

The second component of the models is a BiLSTM
blocks composed by a BiLSTM network, a dropout
layers of the system and a given dense layer. Traditional
RNNs suffer from forgetfulness as the number of
neurons increases, making them inefficient for handling
sequence data. LSTMs solve this issue by using memory
cells and three gates (forget, input, and output) to
controlling the flow of information system, enabling the
model to retain vital informations over long sequences

[28]. A sigmoid function le determines which data from
the previous hidden state  1g  and the current input lY
to be retained in the forget gate. The input gate generates
values between 0 and 1 and between -1 and 1,
respectively, by processing the given input and the prior
hidden state using sigmoid and tan h functions [29].
Important information is obtained by multiplying the
tan h output by the sigmoid output lj . The value of the
next hidden state is ultimately determined by the output
gate. A sigmoid function processes data from the
previous hidden state and the current input [30]. The
tan h function filters the new cell state. After point-by-
point multiplication factor of both outputs, the new
hidden stat  lg is obtained. Formally, the following
expressions represent the operations in an LSTM cell:

  1 1. ,e l ee W g y d   (7)

  1tan . ,l a l l AA h W g y d  (8)

 1 1. tan tg z h A (9)

Figure 2. Architecture of BiLSTM Network

where,  represents a sigmoid function, tan h
represents a hyperbolictangent function, ly indicates the
input data in time l , lg specifies he hidden state in time
l , aW and Ad represent a weight matrix and a bias
vector, respectively. Consider exploring BiLSTM
networks following an explanation of LSTM networks.
BiLSTM networks are an extension of LSTM networks,
achieved by adding bidirectional RNNs. A BiLSTM
network consists of both a forward LSTM and a
backward LSTM. The forward LSTM receives input
from − to , while the backward LSTM receives
input from l to l k . The LSTM method is employed to
compute the outputs of the forward  g and backward

 g networks. The BiLSTM layer outputs vector lX
using the equation:

 ,lX g x  (10)

Here, the outputs of individual LSTM networks are
combined using a sigmoid function. BiLSTMs use
dropout to control overfitting, with an important
hyperparameter being the dropout rate. To generate the
prediction output, a fully-connected layer is added at the
end. The Architecture of proposed CNN-BiLSTM model
is shown in Figure 2.

D. Analysis of Optimization Algorithm

Chaotic Fennec Fox Optimization (CFFA) is used to pick
the most relevant features from the dataset obtained
through extraction. Chaotic mapping function is
combined in the traditional Fennec Fox Optimization
algorithm for better convergence efficiency in the
presented CFFA. This blend optimizes global search
capabilities without risking entrapment in local optima.
Moreover, the CFFA is equipped with an adaptive
weighting method, which improves its global
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convergence characteristics even more. The name of this
algorithm is inspired by the Fennec fox, a small-sized
omnivorous species of Vulpes with large ears.

Within the feature space, candidates are randomly
distributed, and the mathematical expression
representing this feature region in the algorithm is given
as:

 ,: ,     1, 2, , ;   1, 2, ,r r s s s sF f B d R B r W s Z      (11)

The candidate in relation to the thr position is allocated
as rF , and the assigned candidates with s varying
dimension is denoted as ,r sf . Followed by, sR and sB ,
are used to notate the maximum and minimum features
of given regions of considered border bounds.

1,1 1, 1,1

,1 , ,

,1 , ,

s Z

u r s r zr

W W s W ZW W Z W Z

f f fF

f f fF F

f f fF
 

  
  
  
   
  
  
     

 
    

 
    

 

(12)

The candidates population's are denoted by
 1 2, , ,r r r rZF f f f  in relation to the given population

size W . The thr candidates with given dimension s is
denoted as ,r sf . The given solution’s dimensions given
by the population in the extracted feature region is shown
asW Z .

Fitness Estimation: The proximity of the solution
assessed by the candidates within the feature region is
determined based on the loss function and is expressed as:

 2

1

1 N

r i i
i

N A A
Ts 

  (13)

where, the factor of fitness is denoted as rN , the total
count of sample is denoted as N , the target values is
depicted as iA and the predicted values is given as iA ,
Ts is the given sampling period duration.

Local Search: In the local search phase, the candidate
relies on hearing to detect prey hidden in the sand. To
utilize the solution nearest to the global optimum, a
radius Y is considered. The successful local search
solution is represented as:

 1
, , ,2. 1X
r s r s r sf f d Y   (14)

, ,
max

1r s r s
tY f
t


 

  
 

(15)

1 1,    
,      otherwise

X X
r r r

r
r

F F N
F

F
  


(16)

The fitness function is denoted by 1X
rF , and the solution

reached by the thr candidate based on the preceding
iteration is denoted by 1X

rF .  stands for the variable
constants with the gvalue 2.0 .The radius is denoted by

,r sY , the given iteration is stated by t , and the maximum
iteration counts is given by maxt .

Randomization: The fennec fox faces predators like
caracals, hyenas, and eagle owls. To evade attacks, the
candidate expands its search in the feature region,
enhancing exploration. A better solution is achieved
through increased randomization, represented as:

 rand rand
, ,: ,     1, 2, , ,   1, 2, ,r r s g sF f f g W r W    (17)

   
 

rand rand
, , ,2

, fennac fox rand
, , ,

. ,    

. ,    else

r s r s r s r rX
r s

r s r s r s

f d f I f N N
f

f d f f

     
 

(18)

2 2,    
,      Otherwise

X X
r r r

r
r

F N N
F

F
  


(19)

The given fitness function is denoted as rN , and I notate
the variable random numbers with a given range of 1,2 .

The location is denoted by rand
,r sf , and the given solution

of candidates in the randomizations is termed as 2
,
X
r sf .

The given chaotic mapping is denoted as:

   1
1 chaotic

cos .cosf Z f 


  (20)

The control varying parameter within ranges of values
 0,1 utilized for the best given candidate and is denoted
as Z , the given solution gained in the present iterations
is termed as 1f  and the solution achieved in th
iterationis definedas f . The CFFA's hybrid position
updation is expressed as follows:

   1 1 1fennac fax chaotic
0.5 0.5f f f      (21)
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(22)

Where 1tf  updated function value at the next time step
1t  , influenced by different factors,  1 chaotic

f  depicts
the chaotic component contributing to the function
update, possibly introducing randomness or non-linearity,
 1 fennac fax
f  depicts the deterministic component related

to a specific function or model, rN depicts the fitness

factors used for evaluation, where rand rN is a randomly
generated or adaptive version, d is a parameter that
adjusts the step size or weight of perturbations in
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function updates, Z is scaling factor affecting the cosine
function.

Termination: The iteration concludes when the
maximum limit is reached, and the global optimal
solution is obtained. Algorithm 1 provides the pseudo-
code for the proposed CFFA.

Algorithm 1: Pseudo-code of the proposed CFFA algorithm

Pseudo-code of the proposed CFFA algorithm
1 Set the population to G and initialize the iteration max count as YY.
2 For max1: 
3 For 1:u G
4 Refine the solution obtained during the local search phase
5 Adjust the solution derived from the randomization phase.
6 End for 1:u G
7 Save the best solution obtained in the current iteration
8 End for max1: 
9 Returning the exact best solution
10 End

Thus, using the solution accomplished by the CFFA, the
optimal best features are selected for predicting the
robotic design.

4. Results and Discussions

The results of this study are analyzed using Python
software, which is powerful tool for data analysis and
visualization. This is because it has large extensive
libraries such as NumPy, Pandas, and Matplotlib that
allow for the effective manipulation of large and
extensive datasets and the generation of detailed
visualizations to support the findings. In this paper,
processing and analysis of the collected data from the

robotic system in terms of fault detection results, power
quality metrics, and performances of different
components are carried out using Python. The Python
environment applies machine learning models to this
investigation, particularly the BiLSTM-CNN optimized
by the CFFA, which gauges the proposed system's
accuracy and effectiveness. These further lead to the
advantages of Python in statistical analysis, meaning the
capability to explain what the results mean, compare
different methods to get a conclusive result, and validate
the proposed approach against conventional systems. The
discussions are drawn from these insights, which give an
all-rounded understanding of performance, reliability,
and weaknesses of the system.

Table 2. Parameters used for analyzing the system capability

Feature/Parameter Description Specifications/Values
Robotic Design Six-wheel drive with dual 40W motors and

soft rubber tires
Slope climbing: Up to 30°, Low center of gravity

Obstacle Crossing Flexibility to navigate narrow or complex
terrains

Adjustable wheel configurations (small/large
wheels, auxiliary)

3D LiDAR High-fidelity underground model generation 3D spatial mapping with detailed object
positioning

Digital HD Camera 2-megapixel camera for visual inspections 10x optical zoom, 360° axial and 220° radial
rotation

Infrared Camera Imaging in low-light or dark environments Accurate imaging for dim underground conditions
Control Platform Remote operation through mobile app/tablet Wired and wireless communication, stable signal

transmission
Data Reporting Automated inspection reports Defect classification, position, severity, and visual

records
BiLSTM Model Deep learning model for fault detection Sequential data input (time-series), multi-layered

architecture
BiLSTM Input
Parameters

Features used for fault detection and power
quality monitoring

Voltage, current, temperature, LiDAR data

CFFA Optimization Enhances BiLSTM-CNN model performance Feature selection and hyperparameter tuning
Optimization Parameters Key parameters tuned for performance Learning rate: 0.001, Batch size: 64, Epochs: 50,

Hidden units: 128
Protection Mechanisms Safety measures against operational issues Overcurrent and overload protection
Portability Ease of carrying the robotic system Total weight: ≤10kg
Report Generation Real-time summary of inspections Detailed defect analysis and video-tagged reports
System Efficiency Improved decision-making and minimized

maintenance downtime
Predictive analytics and enhanced fault detection
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Figure 3. Analysis of climbing efficiency

Figure 3 depicts the relationship between the slope angle
and the climbing efficiency of the robot. As the slope
angle increases from 0° to 30°, the climbing efficiency
decreases from 100% at 0° to 15% at 30°, following a
non-linear decline. The most significant drop is observed
between 15° and 20°, where efficiency falls sharply from
70% to 50%, highlighting the robot's limitations when
handling steeper inclines.

Figure 4. Analysis of signal stability

Figure 4 demonstrates the variation of signal stability as
the distance increases from 0 to 50 meters. At 0 meters,
the signal stability is 100%, but as the distance increases,
stability drops exponentially, reaching 30% at 50 meters.
This behavior emphasizes the challenges of maintaining
reliable communication over long distances in
underground environments.

Figure 5 shows the impact of different lighting
conditions on camera clarity. In bright lighting, the
camera achieves a clarity score of 95%, which decreases
to 85% in dim lighting and further drops to 70% in
dark conditions. These results highlight the need for
robust lighting solutions, such as high-brightness LEDs,
to ensure optimal camera performance in low-light
environments.

Figure 6 presents the effect of LiDAR resolution on the
accuracy of 3D models generated by the robot. With a
LiDAR resolution of 100 DPI, the accuracy is 80%,
which gradually increases to 98% at 500 DPI. This graph
demonstrates that higher LiDAR resolutions significantly
improve the precision of the generated 3D models,
facilitating better analysis of underground structures.

Figure 5. Analysis of camera clarity

Figure 6. Analysis of 3D model accuracy

Figure 7. Analysis of defect detection rate

Figure 8. Analysis of travel time
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Figure 7 visualizes the success rate of defect detection at
various inspection angles using a polar plot. At 0°, the
success rate is 80%, reaching a peak of 95% at 90°, and
then gradually decreasing to 75% at 270°. These findings
suggest that certain inspection angles, particularly around
90°, offer optimal defect detection performance.

Figure 8 shows how travel time varies with cable length.
At a cable length of 10 meters, the travel time is only 2
minutes, while at 50 meters, it increases to 12 minutes,
reflecting a linear trend. This relationship underscores
the importance of minimizing cable length to enhance
operational efficiency.

Figure 9. Analysis of robot weight vs portability

Figure 9 provides a pie chart of robot portability based
on weight categories. Light robots (<5 kg) account for
40%, medium-weight robots (5–10 kg) for 50%, and
heavy robots (>10 kg) for only 10%. This highlights a
clear preference for medium-weight robots, likely due to
their balance of portability and functionality.

Figure 10. Analysis of inspection report types

Figure 10 compares the number of defects detected in
three inspection reports: Structural Integrity Report
(Type A), Corrosion Assessment Report (Type B), and
Comprehensive Defect Analysis Report (Type C). Type
A reports identify 10 cracks, 5 corrosion points, and 2
leaks. Type B reports identify 15 cracks, 10 corrosion
points, and 5 leaks, while Type C reports identify 20
cracks, 15 corrosion points, and 7 leaks. This stacked bar
chart emphasizes that the Comprehensive Defect

Analysis Report (Type C) is the most thorough in defect
detection.

Figure 11. Analysis of obstacle clearance vs Tire combination

Figure 11 is a heat map showing obstacle clearance
success rates for different tire combinations across three
levels of obstacle complexity. For low-complexity
obstacles, the success rates are 80%, 90%, and 85% for
small-small, large-large, and small-large tire
combinations, respectively. For medium-complexity
obstacles, success rates drop to 60%, 70%, and 65%,
while for high-complexity obstacles, they further decline
to 40%, 50%, and 45%. The data suggests that large-
large tire combinations perform best under all conditions.

Figure 12. Analysis of neural network accuracy

Figure 13. Analysis of convergence time
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Figure 12 illustrates the impact of hidden layer size on
neural network accuracy. With 10 nodes, the accuracy is
75%. As the nodes increase to 50, 100, and 200, the
accuracy rises to 85%, 92%, and 93%, respectively. The
improvement becomes marginal beyond 100 nodes.

Figure 13 depicts the convergence time for different
optimizers. Adam converges the fastest, taking 15
seconds. RMSprop follows with a convergence time of
22 seconds, while SGD takes the longest at 35 seconds.
Table 3 depicts the comparison of methods, literature,
Strengths, and Limitations of the Proposed Model.

Table 3. Comparison of Methods, Literature, Strengths, and Limitations of the Proposed Model

Method Used Existing Literature Comparison Strengths Limitations
Robotic Inspection with
3D LiDAR and Infrared
Imaging

Prior studies on underground
monitoring used traditional
cameras, which lacked precision
in low-light conditions.

High-fidelity 3D modeling
and effective operation in
dark environments.

Infrared imaging clarity
reduces with increasing
inspection distance.

BiLSTM-CNN Model for
Fault Detection

Conventional CNN and LSTM
models were used in past studies
but lacked real-time adaptability.

Improved accuracy in defect
classification and predictive
maintenance.

Requires high
computational resources,
increasing energy
consumption.

CFFA-Optimized Neural
Network for Enhanced
Efficiency

Other optimization techniques,
such as Genetic Algorithms,
have been explored but often
suffer from slower convergence.

Faster convergence and
better accuracy in fault
prediction.

Performance
improvement is marginal
beyond 100 neural nodes.

Six-Wheel Drive Robotic
System with Adjustable
Wheel Configurations

Literature on underground
robots mainly focused on four-
wheel systems, limiting
adaptability.

Enhanced mobility over
obstacles and steep inclines.

Struggles with slopes
beyond 30° due to weight
distribution.

Wireless and Wireline
Communication Stability
Analysis

Previous studies reported
significant signal loss in
underground environments
beyond 30m.

Better communication
reliability using hybrid
connectivity options.

Signal stability declines
sharply beyond 50m.

Energy Consumption vs.
Obstacle Complexity

Compared to conventional
underground robots, energy
efficiency is better optimized.

Balances power consumption
with terrain complexity.

High energy demand for
navigating highly
complex obstacles.

Comprehensive Inspection
Report Generation

Past works relied on manual
defect classification.

Automated and detailed
defect analysis improves
decision-making.

Requires fine-tuning for
different underground
conditions.

5. Discussions

Successful integration of the latest 3D robotic technology
with the BiLSTM-CNN model optimized by the Chaotic
Fennec Fox Optimization Algorithm (CFFA) to increase
power quality monitoring and fault detection capabilities
in the underground power transmission network. In terms
of its functionalities, some of the most impressive are
intense climbing and obstacle crossing capabilities, hardy

protection mechanism, and an adaptable design for
various terrains and spatial constraints. Loaded with
cutting-edge equipment like 3D LiDAR, infrared
imaging, and high-definition cameras, the robot can carry
out an in-depth, real-time visual inspection and build
high-fidelity models of underground power systems.
Table 4 depicts the Performance Comparison of CFFA
with Other Optimization Algorithms for BiLSTM-CNN
Model

Table 4. Performance Comparison of CFFA with Other Optimization Algorithms for BiLSTM-CNN Model

Optimization Algorithm Fault Detection
Accuracy (%)

Convergence Time
(seconds)

Stability Improvement
(%)

Particle Swarm Optimization (PSO) 92.5 120 0
Genetic Algorithm (GA) 90.3 135 0
Whale Optimization Algorithm (WOA) 93.7 115 0
Chaotic Fennec Fox Optimization Algorithm (CFFA) 96.8 102 12

This would help the system to locate with extreme
accuracy where the faults are, appraise power quality,
provide actionable insights from the automated
inspection reports. The combination of the BiLSTM-
CNN model and the CFFA optimization algorithm will
bear the burden of interpreting a vast amount of data
collected by the robot system. By the use of ML

techniques, the system can make sense of the combined
data and predict future problem -very critical to
guarantee reliable and safe functionality of the system.
The synergization of real-time data collection and
cutting-edge data analytics also the total operational time
for maintenance and inspiring decision-making processes.
The results obtained do not only in essence improve the
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operational efficiency of underground power
transmission systems but also represent an innovation
that provides a solution to power quality monitoring,
fault detection, and predictive maintenance.

6. Conclusion

A major breakthrough has been realized through the
effective synergy of cutting-edge 3D robotics technology
and BiLSTM-CNN model optimized by the Chaotic
Fennec Fox Optimization model. The system comprises
high-precision defect location as well as real-time
predictive maintenance through a synergy of high-
mechanical performance with next-generation sensors as
well as AI-based data analytics. Maintenance time and
cost are reduced with this, further enhancing operational
performance. The future scope of the work is
enhancement with focus enhancing AI-based decision-
making using reinforcement learning, enhancing real-
time adjustment in harsh underground conditions. Rapid
response and remote monitoring can be facilitated
through cloud-based analysis via the synergy with edge
computing, as well.
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