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Abstract. The current ground fault detection method in feature fusion, Anomaly detection, Quantum computing
power distribution networks is limited by the
high-dimensional feature redundancy and model
generalization ability, which leads to the expansion of
feature dimension and the increase of noise interference.

1. Introduction

Based on the parallelism and strong feature expression Precise detection of ground faults in power distribution
ability of quantum computing, this paper proposes an networks is crucial to the safe and stable operation of
efficient multi-dimensional fault feature fusion method power systems [1]. However, due to the complex power
to improve the accuracy, generalization ability, and distribution network environment and diverse fault
computational efficiency of anomaly detection, thereby patterns, traditional detection methods have limitations in

feature  extraction, data fusion, and anomaly

enhancing the real-time performance and reliability of . : ) b
identification [2-4]. Existing methods mostly rely on

ground fault diagnosis in power distribution networks.

Through quantum state coding and feature mapping signal processing or machine le.arning techniques for
technology, efficient fusion of multi-dimensional fault feature analysis. However, in the process of
features is achieved. An anomaly detection mechanism is multi-dimensional  fault feature fusion, information
constructed by combining quantum latent variable redundancy — and insufficient feature  expression
learning and quantum entanglement characteristics, and capz.il?lhtles affect the d1agno§t1c accuracy [5,6]. In
the detection precision and robustness are improved by addition, traditional deep learning methods have high
combining Kullback-Leibler (KL) divergence and computational overhead when  processing
Mabhalanobis distance. The model complexity is reduced hlgh-dlmen31ppal nonhnear. data, and it is dlfﬁcu!t to
by adopting quantum parallel computing and balance precision and real—tlrpe performance. Especially
quantum-classical collaborative optimization strategies. in  complex power environments, the model’s

generalization ability is insufficient, which may lead to a
decrease in the ability to identify unknown fault patterns
[7]. Therefore, improving the quality of fault feature

Experimental results show that the quantum variational
autoencoder (Q-VAE) outperforms other models in
multi-dimensional feature fusion and anomaly detection.

The fault pattern distribution is compact, and the fusion, enhancing the accuracy of anomaly detection and
category separation is clear. The accuracy and recall generalization ability, and optimizing computational
reach 95.4% and 93.7%, respectively, which is efficiency }}ave. become kpy issues in the current ground
significantly better than control models. Q-VAE also fault detection in power distribution networks [8-10].
performs well in identifying different types of faults,

demonstrating its superior performance in feature fusion, To address these challenges, this paper proposes an
anomaly detection precision, generalization capability, optimization method based on Q-VAE to enhance the
and computational efficiency, providing an efficient and multi-dimensional feature fusion and anomaly detection
precise solution for ground fault detection in power capabilities of ground faults in power distribution
distribution networks. networks. Q-VAE, combining the parallelism of quantum

computing with strong feature expression capabilities,
can efficiently capture complex fault features and

Key words. Quantum variational autoencoder, Ground ) ; e 1 : ‘ ‘
achieve precise multi-dimensional information fusion,

faults in power distribution networks, Multi-dimensional
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thereby improving the robustness of anomaly detection.
Quantum computing has low computational complexity
when processing high-dimensional data. Compared with
traditional deep learning methods, it can effectively
reduce computational costs and improve the real-time
performance of fault detection. This paper constructs a
Q-VAE model that combines multi-dimensional feature
fusion and anomaly detection and verifies its superiority
in fault detection precision, generalization ability, and
computational efficiency in experiments, providing a
new optimization strategy for intelligent fault diagnosis
of power distribution networks.

The main contributions of this paper are as follows:

(1) The quality of multi-dimensional fault feature fusion
is improved by combining Q-VAE;

(2) The precision and generalization ability of anomaly
detection are improved;

(3) The computational cost is optimized through the
efficiency of quantum computing, improving the
real-time performance of fault diagnosis.

2. Related Work

The detection method of ground fault in power
distribution networks has evolved from traditional signal
processing technology to machine learning and deep
learning methods [11-13]. Early methods mainly relied
on time-frequency analysis, wavelet transform, and
Fourier transform. Although they performed well under
specific working conditions, they were easily disturbed
by noise when faced with complex faults, making it
difficult to accurately extract key features [14-16]. With
the application of machine learning, methods such as
support vector machine (SVM) and random forest (RF)
have improved the ability to identify fault patterns, but
they rely on manual feature extraction and fail to fully
explore the deep information of the data [17,18]. In

recent years, deep learning methods, such as
convolutional neural networks (CNN) and long
short-term  memory  (LSTM)  networks, have

demonstrated superior feature extraction capabilities.
However, deep models face the problems of high
computational costs and insufficient generalization
capabilities, making it difficult to adapt to complex
power environments [19,20]. Existing methods still have
limitations in feature fusion and anomaly detection
precision, which affects the reliability of the detection
system.

In view of the complexity of ground faults in power
distribution networks, multi-dimensional feature fusion
technology has been widely studied [21,22]. Traditional
dimensionality reduction methods, such as principal
component analysis (PCA), can remove redundant
information and improve feature expression capabilities,
but their effects are limited when faced with nonlinear
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data [23]. Deep learning methods, such as CNN and
LSTM, can improve detection performance in specific
applications, but they usually rely on large-scale data
training and have poor adaptability to unknown
environments [24,25]. Maintaining feature integrity
while considering computational efficiency and
generalization ability remains a research challenge.

The progress of quantum computing and quantum
machine learning technologies has provided new
opportunities for intelligent detection of complex
systems [26,27]. Quantum computing has advantages in
high-dimensional data modeling by taking advantage of
parallel computing and exponential acceleration. Q-VAE,
as a method that combines quantum computing with
deep generative models, can effectively perform data
distribution modeling and feature learning [28]. Through
quantum circuit variational optimization, Q-VAE
enhances data representation capabilities at low
computational cost and effectively learns complex data
structures in low-dimensional latent space. Therefore,
applying Q-VAE to feature fusion and anomaly detection
of ground faults in power distribution networks not only
improves the fault feature extraction capability but also
optimizes the computational efficiency, providing a new
research idea for intelligent fault diagnosis.

3. Implementation of Multi-dimensional Feature
Fusion and Anomaly Detection Method for Ground
Faults in Power Distribution Networks Based on
Q-VAE

A.  Overview of Q-VAE

1)  Basic Principles of VAE

VAE is a deep learning model based on probability
generation, which aims to learn the latent representation
of data and model the data distribution by maximizing
the evidence lower bound (ELBO) [29]. The core
architecture of VAE consists of two parts: encoder and
decoder [30,31]. The encoder maps the input data x to
a low-dimensional latent space and learns its latent

variable distribution g, (z|x) . The decoder generates

reconstructed data p, (x |z) based on this distribution.

The optimization objective of VAE is to maximize the
logarithmic marginal likelihood log p, (x) of the data.
However, it is difficult to optimize this directly, so VAE

uses the ELBO through variational inference for
optimization. ELBO can be expressed as:

logpg(x)ZE%(Z‘X)[logp@(ﬂZ)J—Q(L(q¢( 4 x)" A %) (1)

Among them, the first term represents the reconstruction
error, that is, generating data based on latent variable z
and calculating its likelihood. The second term is the KL



divergence, which is used to constrain the distribution
q, (z|x) of latent variables to be close to a predefined

prior distribution p(z) , which is usually set to a

standard normal distribution ~ A(0,1) . The KL

divergence is defined as follows:

Da 1 W 0)) = o e e 2 o

p(2)

By minimizing the KL divergence, VAE forces the
distribution of latent variables to be consistent with the
prior distribution, enhancing the continuity and
interpretability of the latent space and further improving
the quality and stability of the generated data. However,
VAE has the problems of high computational complexity
and easily falling into local optimality when processing
high-dimensional complex data, and it is difficult to
effectively capture the high-dimensional nonlinear
relationship of the data. Therefore, relying only on
classical VAE cannot precisely model the features of
ground faults in power distribution networks. It is
necessary to combine quantum computing technology to
optimize latent variable modeling and improve the
precision and robustness of anomaly detection.

2) Structure of Q-VAE

Q-VAE enhances the feature expression capability of
traditional VAE through quantum computing, especially
in modeling high-dimensional complex data. Its core
structure includes a quantum encoder, a quantum latent
space, and a quantum decoder [32], as shown in Figure
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Figure 1. Structure of Q-VAE.

The quantum encoder maps the input data into quantum
states through parameterized quantum circuits (PQC). It
uses the superposition and entanglement characteristics
of quantum bits to efficiently capture the complex
relationship between data. Unlike the deep neural
network of the classical VAE, quantum circuits can
process multiple features in parallel, improving coding
efficiency and reducing computational complexity. The
quantum latent space is extended to high-dimensional
Hilbert space, with stronger nonlinear modeling
capabilities and precise capture of complex patterns. The
entanglement of quantum bits enhances the correlation
between features and improves the flexibility and
precision of high-dimensional data modeling. The
quantum decoder maps quantum states back to classical
data through quantum measurements, improving
decoding efficiency and reducing computational resource
consumption. Its performance depends on the
optimization of quantum circuit parameters.

3) Advantages of Quantum Computing

Quantum computing has significant advantages in
ground fault detection in power distribution networks.
The superposition of quantum bits increases the
dimensionality and complexity of feature expression.
Q-VAE efficiently integrates high-dimensional features
such as current, voltage, and temperature through the
parallel processing capability of quantum states, thus
enhancing the prediction effect. Quantum entanglement
and superposition enhance the -correlation between
features, making Q-VAE more flexible and precise in
data modeling. It can effectively capture subtle
differences, improve the accuracy of anomaly detection,
and reduce false positives and negatives. The parallelism
of quantum computing accelerates the training and
inference process and improves computational efficiency,
especially for scenarios with large-scale data processing
and high real-time performance requirements.

B. Multi-dimensional Feature Fusion Strategy
1) Quantum State Encoding and Feature Mapping

In this study, quantum state encoding and feature
mapping are implemented through PQC, mapping
multi-dimensional fault features into quantum state space.
First, each classical feature is encoded through a
Hadamard gate and converted into a superposition state
of a quantum bit so that multiple features can be
represented in parallel in different states of the quantum
bit. The function of the Hadamard gate is to convert the

quantum bit from the ground state |0> or |1> to the

superposition state. Its mathematical expression is:

#p0) = (o)) )= (P)-1)) @

The superposition and quantum entanglement



characteristics significantly enhance the expressiveness
of features. Especially when processing
high-dimensional data, it can more effectively capture
complex nonlinear relationships.  Through the
entanglement operation between quantum bits, the
interactive information between different features is
enhanced, thereby capturing the complex dependencies
between fault features such as current, voltage, and
temperature more precisely.

After encoding is completed, this study optimizes the
quantum circuit parameters through the variational
quantum eigensolver (VQE) to ensure that the quantum
state can accurately reflect the underlying structure of the
input data. The core of the VQE algorithm is to minimize

the expected value of the quantum state E(6):
E(0)=(w (0)|t ] (0)) @

Among them, y(0) is the quantum state. H is the

Hamiltonian. 6  is the optimized parameter. By
optimizing the quantum circuit parameters, the final
quantum state is converted into classical data through
quantum measurement for use in subsequent feature
fusion and detection tasks.

2)  Quantum Latent Variable Learning

Quantum latent variable learning uses the superposition

state of quantum bits to represent different fault patterns.
The mapping of each fault pattern can be represented by
the superposition state of quantum bits in the following
form:

v)=alo)+5p1) &)

and S

representing the probability amplitude of different states
in the superposition state. In quantum circuits, quantum
entanglement is realized through CNOT
(Controlled-NOT) gates, facilitating the deep connection
between quantum latent variables. The mathematical
expression of quantum entanglement is:

Among them, « are complex coefficients,

|entangled)) = %Qoo) i) ©

Quantum entanglement helps the model understand the
subtle differences between different fault patterns and
improves the ability to distinguish between fault types.

3)  Quantum-Classical Hybrid Feature Fusion

This study adopts a quantum-classical hybrid feature
fusion strategy, combining the classical feature extraction
method with the feature learning ability of Q-VAE to
achieve effective feature fusion. Figure 2 presents the
framework of this process:

PCA
Dimensionality Reduction

Input To

CNN
Spatial Feature Extraction

Classical Features

Input Te

LSTM
Temporal Pattern Capture

Quantum VAE
Quantum Feature Encoding

Classical Features

Quantum Features

Fused Features
Classical Quantum

7
Dynamically Adjust Feature Weighs

Optimize Fusion Effect
A

Adjustable Feature Weight Mechanism

Figure 2. Process of quantum-classical hybrid feature fusion.

In the feature fusion process, PCA is first used to reduce
the dimension of the power distribution network fault
data and extract the main components of the data. Then,
CNN extracts local information from the spatial features.
LSTM is used to capture the temporal pattern in the time
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series data. Through this step, the classical method can
effectively process traditional features and provide
support for subsequent quantum feature fusion.

The encoding of quantum features is performed through



a Q-VAE. The loss function of VAE is expressed as:
Loap = —E%(z‘x) [log Do (x|z)] +Dy, [% (z|x)|| po(z)J (7

Among them, E is the expected value, and D, is the

KL divergence, measuring the difference between two
probability distributions.

By fusing classical features with quantum features
extracted by Q-VAE, the advantages of classical methods
in extracting spatiotemporal information can be retained
while improving the nonlinear processing capabilities of
quantum features. To further optimize the fusion effect,

this study applies an adjustable feature weight
mechanism to dynamically adjust the contribution of
each feature according to task requirements, making the
model more robust in the face of a changing power
distribution network environment.

C. Anomaly Detection Mechanism of Q-VAE
1)  Quantum Latent Variable Anomaly Detection

In this study, Q-VAE performs anomaly detection by
learning the data distribution of normal states. Figure 3
shows the detection process:
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Quantum Bit Encoding
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Figure 3. Quantum latent variable anomaly detection process.

First, Q-VAE captures the structure of its latent space by
training normal data and maps it into quantum states. In
this process, the latent representation of the data is
encoded through the superposition and entanglement of
quantum bits, thereby capturing the complex nonlinear
features of the data. The quantum latent variable space
can compress the high-dimensional information of the
data into a lower-dimensional latent space while
maintaining its most important features, thereby better
adapting to subsequent anomaly detection tasks.

In the anomaly detection process, anomalies are
identified by comparing the difference between the input
data and the latent representation of the normal state. To
quantify this difference, this study uses KL divergence to
measure the difference between two probability
distributions. The KL divergence formula is as follows:
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log—)dx

jp (x)

Dy, (p (x)”q (3)

Among them,

p(x)
distribution of normal data, and ¢(x) represents the
latent distribution generated by Q-VAE. When the KL

divergence value of the input data exceeds the preset
threshold, the data is considered abnormal.

represents the probability

2) Combining Traditional Detection

Methods

Anomaly

This study combines the classical Mahalanobis distance
with quantum latent variable detection results to improve
the robustness of anomaly detection. Mahalanobis



distance measures the relative distance between samples
and the data mean and considers the covariance structure
of the data. It is suitable for high-dimensional data
anomaly detection. Unlike the Euclidean distance, it
eliminates the scale differences and correlations between
features and provides a more accurate anomaly
assessment. Its calculation formula is:

Dy (x)=r=p) ' (r-p) ©

Among them, x isthe sample to be detected. g is the

mean vector. ), is the covariance matrix. When the
Mahalanobis distance of a sample exceeds the set
threshold, the sample is regarded as an outlier.

3) Distinguishing Between Quantum Entanglement

and Abnormal Patterns

Quantum entanglement strengthens the correlation of
various features in the quantum latent variable space by
establishing non-local dependencies between quantum
bits, making the distribution of abnormal patterns more
obvious and improving the precision of anomaly
detection. Entanglement deepens the collaboration
between bits, expands the difference between abnormal
and normal patterns, and improves detection sensitivity
and accuracy. This study dynamically adjusts the
detection threshold through variational quantum
algorithms (VQA) to enhance flexibility. VQA optimizes
quantum circuit parameters to adapt to different fault
types and automatically adjusts thresholds to ensure
detection accuracy and robustness. The formula is:

ﬁVQA = Z,-(yi _.)’>i )2 (10)

Among them, y, represents the true label, and

represents the label predicted by the quantum model.

D. Computation Optimization Strategy and Real-time
Performance Improvement

D

Quantum Parallel Computing to Accelerate
Training

This study uses variational quantum circuits (VQC) to
accelerate the training of deep neural networks. Quantum
parallel computing wuses the superposition and
entanglement characteristics of quantum bits to achieve
multi-task parallel execution and significantly reduce
computational resource consumption. By replacing some
neural network layers with quantum circuits, quantum
gates operate on multiple inputs in parallel, eliminating
the bottleneck of traditional step-by-step computations.
This parallel processing capability significantly improves
training efficiency, especially when processing
high-dimensional data and large models, significantly
reducing computing time.
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2)  Quantum Computing to Reduce Model Complexity

This study effectively reduces the complexity of the
model through quantum computing, using quantum state
representation and parallel processing capabilities.
Unlike traditional deep learning methods that rely on a
large number of parameters for high-dimensional
modeling, Q-VAE represents data through quantum
states, reducing the number of parameters while
enhancing the model’s expressiveness.

Quantum state representation uses quantum bits to
encode data, mapping high-dimensional data to lower
dimensions and retaining key feature information. Unlike
traditional methods that assign independent parameters
to each feature, quantum computing uses superposition
and entanglement characteristics to achieve more
efficient feature representation in low-dimensional space,
avoiding computational bottlenecks in high-dimensional
modeling, which can reduce the computational burden.

3) End-to-end Quantum-classical  Collaborative

Optimization

This study combines the advantages of quantum
computing and classical computing to study an
end-to-end quantum-classical collaborative optimization
strategy. Figure 4 presents the optimization process of

this strategy:

Quantum Computation
Accelerated

l

Data Processed
Feature Extraction
(Quantum)

Classical Gradient Update

Feature Extraction
(Classical)

Model Training
(Quantum & Classical)

Final Inference

Figure 4. End-to-end quantum-classical
optimization process.

collaborative

This strategy is comprehensively optimized in various
links such as data preprocessing, feature extraction,
training, and inference. In the data preprocessing stage,
quantum computing accelerates the data processing
process through its parallel computing capabilities,
saving a lot of time for subsequent feature extraction and



model training. In the feature extraction and model
training stages, quantum computing enhances the
processing capabilities of high-dimensional data, and
classical computing is responsible for traditional
optimization tasks such as gradient updates. Through this
quantum-classical collaborative approach, while ensuring
model performance, the consumption of computational
resources is significantly reduced. Ultimately, the hybrid
quantum-classical optimization not only improves the
accuracy of the model but also effectively improves the
system's real-time performance, especially in real-time
detection and inference tasks, showing higher efficiency
than traditional methods.

4. Method Evaluation
A. Experimental Design
1)  Experimental Environment and Dataset

The ground fault dataset of power distribution networks
used in this study comes from an actual monitoring
system provided by a power company. It contains about
10,000 samples, covering electrical features (such as
current, voltage, phase angle, and frequency) under
normal operation and fault conditions. The data spans
three months, and the sampling period is 30 minutes to
ensure the timeliness and integrity of the fault

information. The data labels indicate different fault types.

After cleaning and missing value processing, they are
standardized before use to eliminate the impact of feature
scale differences on model training.

The experimental hardware environment includes a
traditional computing architecture (Inter Core i5-10400
processor, with integrated graphics card Intel UHD
Graphics 730, and 16GB memory) for large-scale data
processing and training. The quantum computing part is
based on the IBM Qiskit framework and is verified on a
small scale through IBM Quantum's quantum hardware
platform ibmgq_athens. ibmq_athens supports up to 5
quantum bits. Quantum circuit simulation is also
performed on qasm_simulator to evaluate the application
effect of quantum algorithms in distribution network
fault detection.

2)  Model Training and Parameter Setting

The Q-VAE model training in this study is based on the
variational inference framework, aiming to model the
latent space of the input data through the Q-VAE to
achieve efficient anomaly detection. During the training
process, the ELBO method is used for parameter
optimization. The Adam optimizer (with a learning rate
a =0.001 and momentum parameters S, =0.9 and

£, =0.999) is used to improve the model's stability and

convergence speed. The loss function includes the
reconstruction error term and the KL divergence term,
which respectively measures the reconstruction error of
the input data and the constraints of the latent
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distribution.

The quantum circuit is optimized using the quantum
gradient descent method, optimizing latent feature
capture by adjusting quantum gate parameters. The
quantum circuit design is based on PQC, and the number
of quantum bits is set to 4 to 5, which is suitable for
small-scale experimental tasks. The training efficiency
and convergence are improved by combining the
gradient descent method with the quantum algorithm
optimization strategy.

For comparative experiments, traditional deep learning
models such as ordinary VAE, LSTM, and CNN are also
used for benchmarking. These methods represent
standard methods without quantum enhancement. They
are compared with the performance of Q-VAE. Ordinary
VAE uses a similar loss function, but its feature
extraction part is based on classical neural networks
rather than quantum circuits. LSTM networks are used to
process time series data, and their parameters are
optimized using gradient descent. CNN is used for
spatial feature extraction and extracts local patterns in
the data through convolution operations. All traditional
models are trained using the Adam optimizer, and
experiments are performed using the same
hyperparameter settings. To ensure fairness, all models
are trained on the same hardware environment and
dataset for the same number of iterations.

3)

Experimental Process

In this experiment, all models are evaluated within a
unified experimental framework. The experiment first
uses 10,000 samples from the ground fault dataset of
power distribution networks, covering the electrical
characteristics under normal conditions and different
fault patterns. Each sample contains multiple electrical
parameters, such as current, voltage, phase angle, and
frequency, which can reflect the changes in the electrical
characteristics of power distribution networks when a
fault occurs.

Several key performance indicators are recorded in the
experiment. The first is the multi-dimensional feature
fusion effect, which is mainly used to evaluate the
quality of features extracted by Q-VAE. Through
quantitative analysis, the model's feature extraction
ability in the multi-dimensional feature space is
evaluated, especially whether the quantum model can
effectively fuse features from different sources and
extract the most discriminative features when dealing
with high-dimensional and complex data. In this process,
the model's feature fusion effect is deeply evaluated
through visualization and feature importance analysis.
Secondly, the anomaly detection effect is evaluated,
using accuracy and recall to measure the precision and
recall capability of each model in detecting power
distribution network faults. In addition, each model's
computational efficiency and resource consumption are
recorded, including training time and inference time. The



CPU/GPU (Central Processing Unit/Graphics Processing
Unit) usage, memory, and other computational resource
consumption are monitored. Multiple tests are conducted
under different fault patterns to evaluate the model’s
generalization ability. The performance stability of each
model under new fault patterns is recorded, and the
adaptability of the model in different environments is
analyzed by comparing multiple experimental results.

Quantum VAE Feature Fusion

B. Experimental Results and Analysis

1)  Evaluation of Multi-Dimensional Feature Fusion

Effect

This study performs PCA dimensionality reduction on
the features after the fusion of each method to evaluate
the advantages of Q-VAE in multi-dimensional feature
fusion. Figure 5 shows the results:
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Figure 5. PCA analysis.

Figure 5 displays the effects of different models in the
feature fusion task. Each sub-figure shows the feature
space after PCA dimensionality reduction. The color of
the point means the fault pattern to which the sample
belongs. Q-VAE performs outstandingly in feature fusion.
In the feature space after dimensionality reduction, the
sample points of different fault patterns are compactly
distributed, and the categories are clearly separated,
indicating that it has a strong feature expression ability in
capturing and distinguishing fault patterns. In contrast,
the feature points of ordinary VAE are more scattered,
and the boundaries of fault patterns are not clear, which
may be due to the failure to effectively mine the
nonlinear relationship of the data. CNN performs better
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than VAE in feature fusion, and its feature points are
more concentrated. However, its fault pattern separation
is still inferior to Q-VAE, and its local feature extraction
capability is limited, which cannot be compared with
Q-VAE. The performance of LSTM is rather scattered
and fails to effectively distinguish different fault patterns
because it is mainly good at processing time series data
but has a weak ability to express static features.

2) Anomaly Detection Effect Evaluation

The accuracy and recall of anomaly detection of each
model are shown in Figure 6:
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Figure 6. Anomaly detection accuracy and recall of each model.

In Figure 6, Q-VAE shows the best performance in the
anomaly detection task, with an accuracy of 95.4% and a
recall of 93.7%. This shows that Q-VAE can maintain
high classification performance while identifying
abnormal samples. It also demonstrates a strong ability in
recall rate and can effectively capture most abnormal
samples.

In contrast, the accuracy and recall of ordinary VAE are
lower than those of Q-VAE, at 89.2% and 85.6%,
respectively. This shows that ordinary VAE has certain
limitations in anomaly detection tasks, especially in
recall, which fails to effectively identify all abnormal
samples, probably because of its insufficient ability to
model nonlinear relationships when processing
high-dimensional complex data.

CNN and LSTM achieve 91.5% and 87.8% accuracy and
88.0% and 82.3% recall, respectively. Although both
have advantages in local feature extraction and time
series data processing, they are still not comparable to
Q-VAE in terms of overall anomaly detection. In
particular, CNN has a limited ability to capture global
abnormal patterns. Although LSTM is suitable for
processing time series data, it is weak in the fusion of
static features, resulting in its overall effect in anomaly
detection being inferior to Q-VAE.

3) Computational  Efficiency @ and  Resource

Consumption Evaluation

Table 1 shows the training time, inference time,
CPU/GPU usage, and memory usage of each model
during the experiment:

Table 1. Computational efficiency and resource consumption records of each model.

Model (Tl:j‘l‘l‘;‘s‘)‘g time g‘efcezﬁ‘;zf me | Cpy usage (%) | GPU usage (%) ?éeB“)“"y usage
Q-VAE 11.5 03 45 50 42
VAE 14.7 0.6 55 60 5.0
CNN 10.3 0.4 65 80 6.3
LSTM 13.0 0.5 60 70 5.6

The data in Table 1 shows that Q-VAE outperforms the
other three methods in comprehensive performance,
showing significant advantages in computational
efficiency and resource management. Its training time is
at a medium level, slightly higher than CNN, but
significantly shorter than ordinary VAE and LSTM,
indicating that it has good time efficiency in the training
stage. More notably, Q-VAE's inference time is only 0.3
seconds, the best performance among all models, which
means that in practical applications, it can detect faults
on new data faster, which is crucial for distribution
network fault diagnosis scenarios that require real-time
or near-real-time response.

From the perspective of resource consumption, Q-VAE's
CPU, GPU usage, and memory occupancy are all
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maintained at a low level, 45%, 50%, and 4.2GB,
respectively. Compared with traditional deep learning
models, such as CNN and LSTM, its resource utilization
is more efficient. To obtain better performance, CNN and
LSTM often consume a lot of computing and memory
resources. Q-VAE, with the unique advantages of
quantum computing, effectively reduces resource
requirements while ensuring performance, which is of
great significance for deploying fault detection systems
in resource-constrained environments or large-scale
distribution networks.

4)  Generalization Ability Evaluation

Table 2 shows the fault identification accuracy and recall
of each model among different fault types:



Table 2. Fault identification accuracy and recall among different fault types.

Fault type Model Accuracy (%) Recall (%)
Q-VAE 95.6 94.2
Ground fault VAE 89.3 87.1
CNN 91.0 88.7
LSTM 88.1 84.6
Q-VAE 94.8 92.5
.. VAE 86.9 83.0
Short circuit fault CNN 902 375
LSTM 85.6 82.1
Q-VAE 96.0 95.1
.. VAE 88.5 84.8
Open circuit fault CNN 03 304
LSTM 87.2 84.0

The data in Table 2 shows that Q-VAE leads in accuracy
and recall in detecting different fault types. This is
mainly due to its quantum feature fusion mechanism.
Through quantum state encoding and feature mapping,
Q-VAE maps multi-dimensional fault features to
quantum state space and uses the superposition and
entanglement characteristics of quantum bits to
efficiently capture the complex nonlinear relationship
between features. For example, in grounding faults, its
accuracy and recall rates are 95.6% and 94.2%,
respectively, far exceeding other models, indicating that
it can accurately identify fault features.

At the same time, Q-VAE performs stably under different
fault types and has strong generalization ability. The
parallelism and feature representation capabilities of
quantum computing enable it to explore multiple fault
mode features simultaneously during training and can
effectively identify new fault types based on learned
feature patterns. In contrast, CNN and LSTM have
limitations in feature fusion and nonlinear relationship
capture, resulting in performance fluctuations.

In summary, Q-VAE achieves accurate and stable fault
identification by relying on the advantages of quantum
characteristics in feature expression, fusion, and learning,
showing strong generalization ability and practicality.

5. Discussion

A. Noise Robustness
Algorithms

Analysis  of Quantum

In the detection of ground faults in distribution networks,
the noise and stability limitations of quantum hardware
may indeed have an impact on the practical application
of quantum algorithms. To evaluate the robustness of
Q-VAE in complex engineering scenarios, additional
experiments are conducted to introduce controllable
noise to simulate the noise conditions in actual power
grids. The  experiments were run on a
lower-configuration traditional computing architecture,
including an Intel Core i5-10400 processor, an Intel
UHD Graphics 730 integrated graphics card, and 16GB
of memory. The quantum computing part continues to
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use the IBM Qiskit framework and is simulated on
gasm_simulator. The results show that Q-VAE performs
well under low-noise conditions and can effectively fuse
multi-dimensional features and detect anomalies. As the
noise intensity increases, the performance decreases, but
it still shows stronger robustness and adaptability than
traditional methods. This shows that Q-VAE can still
maintain good detection accuracy and stability under a
certain degree of noise interference and has strong
potential for engineering applications.

B. Analysis of the Influence of Data Sampling
Frequency and Sample Data Length on Algorithm
Performance

In the study of ground fault detection in distribution
networks, data sampling frequency and sample data
length are key factors affecting the algorithm's detection
performance. To explore their influence, this study
conducts an extended analysis based on the existing
experiments. The experimental results show that when
the data sampling frequency changes within a reasonable
range, the Q-VAE algorithm can still effectively extract
fault features, and the accuracy and recall rates fluctuate
slightly, showing good adaptability. This is mainly
attributed to Q-VAE's powerful feature expression ability
and ability to capture data details, enabling it to better
fuse multidimensional features and detect anomalies at
different sampling frequencies. At the same time, the
change in sample data length also has a certain impact on
the performance of the algorithm. In this study, when the
sample data length is shortened within a certain range,
the accuracy of Q-VAE decreases slightly, but the recall
rate is relatively stable. This shows that Q-VAE can still
identify most fault samples when the amount of data is
limited. This may be because the quantum feature fusion
mechanism of Q-VAE can extract key features in shorter
data fragments, thereby ensuring its basic detection
performance. However, it should be noted that when the
data sampling frequency is too low or the sample data
length is too short, some fault feature information may
be lost, thus affecting the algorithm's detection accuracy.
Therefore, in practical applications, the data sampling
frequency and sample data length should be reasonably
selected according to the specific conditions and fault
characteristics of the distribution network to give full



play to the advantages of the Q-VAE algorithm and
ensure its efficiency and reliability in ground fault
detection in distribution networks.

6. Conclusion

This study uses Q-VAE to effectively optimize the
multi-dimensional feature fusion and anomaly detection
process of ground faults in power distribution networks.
Q-VAE uses its unique quantum computing advantages
to significantly improve the feature expression ability of
data when processing high-dimensional data and can
more precisely capture complex nonlinear features in
anomaly detection tasks, thereby improving the real-time
performance and accuracy of fault detection. In addition,
quantum computing has also made positive contributions
in accelerating the computing process and reducing
computational resource consumption. Especially when
facing large-scale data, quantum computing has shown
efficiency superior to traditional computing methods.

However, quantum computing still faces certain
challenges in practical applications. Firstly, the
limitations and noise problems of quantum hardware
affect the stability and precision of quantum algorithms
to a certain extent, which makes the actual deployment
of quantum computing still difficult. Secondly, the
adaptability of Q-VAE in large-scale data scenarios also
needs to be solved wurgently. Especially in
high-dimensional datasets, there is still room for
improvement. Therefore, although quantum computing
brings many advantages to fault detection, its
implementation in engineering applications still needs to
overcome many technical difficulties.

Future work can be devoted to further optimizing the
Q-VAE structure and enhancing its adaptability to
complex power distribution network fault patterns.
Combining with other quantum machine learning
algorithms, such as quantum support vector machines
and quantum Boltzmann machines, it is expected to
further improve the performance of the model. To
promote the practical application of quantum computing
in fault detection in power distribution networks, it is
necessary to carry out large-scale experimental
verification in a real power distribution network
environment in the future, continuously improve and
optimize quantum computing solutions, and promote
their widespread application in engineering practice.
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