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Abstract. In the fault prediction of new energy vehicle
power systems, the limitations of traditional methods in
capturing complex nonlinear relationships have led to
low accuracy of fault prediction. Especially when
dealing with changes in data distribution caused by
changeable working conditions, it is difficult for
traditional fixed parameter models to maintain high
accuracy. In this paper, a fault prediction method based
on the adaptive (DGP) model is constructed. In the data
preprocessing stage, the cell voltage and temperature
thresholds are set to eliminate abnormal data effectively.
The K-nearest neighbor (KNN) algorithm is used to fill
the missing values of missing data in the state of charge
(SOC) to ensure the completeness and accuracy of the
data. A DGP model is constructed, and its unique
multi-layer structure is used to deeply refine different
abstract features of the input data layer by layer. By
combining random variational inference technology, the
model parameters are further optimized, reducing the
computational complexity and improving the efficiency
of processing large-scale fault data. The adaptive
gradient descent (AGD) algorithm is applied and
integrated with the DGP model to construct the
AGD-DGP vehicle fault prediction model. This model
can dynamically adjust the learning rate of each layer of
model parameters, accelerate the convergence speed, and
avoid unreasonable parameter updates. The experimental
results show that in 50 experiments, the error rate of the
AGD-DGP model continues to be below 2.15%, and the
average error rate is 1.32%. The average accuracy rate of
the AGD-DGP model for extracting six kinds of fault
predictions such as temperature difference failure,
battery high temperature failure, insulation failure, and
motor failure is 96.25%. The AGD-DGP vehicle fault
prediction model constructed in this paper effectively
solves the limitations of traditional methods in complex
power system fault prediction and achieves
high-precision and high-stability fault prediction.
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1. Introduction

As global environmental awareness improves, the new
energy vehicle industry has developed rapidly [1,2]. With
its environmental protection and high efficiency, it has
gradually become a new trend in the vehicle industry.
However, the complexity of its system has also brought
many challenges, especially in fault prediction and
diagnosis. Accurately predicting faults is important for
preventing safety accidents and improving vehicle safety.
Although traditional fault prediction methods have
certain effects, their precision and response speed must
be improved. Faced with the complex and ever-changing
operating environment and the interactions within the
power system, traditional methods have limitations. DGP
combines the advantages of deep learning and Gaussian
process (GP) has powerful nonlinear modeling and
uncertainty — quantification capabilities, which has
achieved remarkable results in many fields [3-5]. DGP
constructs nonlinear mapping through multiple hidden
layers, captures complex nonlinear relationships, and
automatically adjusts the model complexity. DGP
performs well when dealing with high-dimensional
inputs and small datasets and modeling complex
relationships. Applying it to fault prediction of new
energy vehicle power systems can precisely model the
complex relationships within the power system. Useful
features can also be extracted from massive vehicle data
to achieve an accurate prediction of faults through DGP.

Vehicle system fault prediction [6-8] refers to the use of
monitoring technology and data analysis methods to
monitor and analyze the real-time operating status of the
vehicle system before problems occur in the vehicle
system so as to estimate the possible types and locations
of faults. As global efforts to reduce greenhouse gas
emissions intensify, Hossain Md Sazzad studied the
application of artificial intelligence in predicting and
optimizing fault management of new energy vehicles [9].
The vehicle industry is facing new challenges and
increasingly fierce competition. Gan Naifeng proposed a
double-layer overcharge fault diagnosis strategy for
lithium-ion batteries of electric vehicles based on
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machine learning, which detected overcharge by
comparing the battery voltage and cut-off voltage [10].
Chen Jinzhou proposed an adaptive energy management
strategy to improve the economy and reliability of fuel
cell vehicles and constructed a variable horizon speed
fault prediction method based on principal component
analysis and K-means clustering [11]. As wvehicle
applications become more autonomous, automated fault
diagnosis and health monitoring algorithms become
necessary. Biddle Liam proposed a novel multi-sensor
system for fault detection of multiple faults, which had
an efficient computational burden for real-time
implementation [12]. Battery fault diagnosis is crucial to
ensure the safe and reliable operation of electric vehicles.
Li Da proposed a battery fault diagnosis method based
on the combination of long short-term memory (LSTM)
and recurrent neural networks. By adopting an improved
adaptive enhancement method, the accuracy of the fault
diagnosis model was improved, and the computing time
was reduced, improving the diagnostic reliability [13].

Fault prediction using an adaptive DGP model is a
cutting-edge prediction method. This method combines
the essence of deep learning and GP. By creating a DGP
model with adaptive characteristics, it can flexibly

respond to the complexity of various fault modes [14-16].

Wei Zhiyuan proposed a two-phase battery life early
prediction method that combined neural network and GP
regression to improve the prediction precision of the
remaining service life of lithium-ion batteries [17].
Srivastava Adhishree proposed a method to collect the
root mean squared values of three-phase voltage and
current data during a fault. The collected data was
considered as the input of the fault locator module,
providing assistance for fault location prediction using
DGP and fault identification using a support vector
machine (SVM) [18]. Ma Zhipeng proposed an improved
DGP analysis method to detect weak faults of rotating
machinery through encoder signals. At the same time, a
Gaussian mixture model was used to model the spectral
density to improve the robustness of GP regression under
weak fault conditions [19]. Deep learning methods have
been applied in data-driven bearing fault diagnosis.
Liang Mingxuan developed a probabilistic fault
diagnosis framework that used GP classifiers as a
backbone and combined spatial vibration measurement
sensors to further improve the performance of fault
diagnosis [20]. Traditional Al-based fault detection

methods require large amounts of data for model learning.

Chen Jianjun proposed a new DGP-based minority
learning method for motor fault detection. This method
used a deep residual network to extract the features of
the raw data and fed the encoded latent feature vector
into a GP with kernel transfer capability so that motor
faults can be detected and classified [21]. Mansouri
Majdi proposed a new random forest technique based on
GP regression for fault detection and diagnosis of wind
energy conversion systems. A radio frequency classifier
was also developed to classify wind energy conversion
faults and improve diagnostic capabilities [22].
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This paper studies the DGP model by integrating deep
learning and GP. This model combines the advantages of
deep learning in  processing large-scale and
high-dimensional data and the advantages of GP in
predictive uncertainty assessment and nonlinear
modeling. With the help of the DGP model, it is helpful
to discover the complex nonlinear correlations within the
power system of new energy vehicles. This paper applies
the AGD algorithm and constructs the AGD-DGP vehicle
fault prediction model. It can flexibly adjust learning
strategies and parameters according to real-time data
feedback and better adapt to the changes of new energy
vehicle power systems under various working conditions
and fault modes. This can not only help improve the
prediction accuracy of the model but also greatly
enhance the generalization ability of the fault prediction
model.

The first chapter expounds the research background and
significance of new energy vehicle power system failure
prediction; the second chapter introduces the model
construction and implementation details in detail. The
data comes from the national monitoring platform for
new energy vehicles. After processing, it is used to build
a DGP model. The DGP model introduces a
multi-hierarchical  structure, combines  stochastic
variational reasoning technology to optimize parameters,
and merges with the adaptive gradient descent algorithm
(AGD) to form an AGD-DGP fault prediction model.
The third chapter shows the experimental design and
result analysis.

2. Construction of New Energy Vehicle Fault
Prediction Model

A. Data Collection

The data basis for this study comes from the real-time
operation data of new energy vehicles provided by the
National Monitoring and Management Platform for
NEVS. On the basis of covering the 19 common fault
types specified by the national standard, the original data
messages of 400 electric vehicles are randomly selected
from April 2023 as analysis objects. These data are
strictly divided into two categories: vehicle static
information and dynamic operation data according to
national standards. The static information part mainly
includes core data such as vehicle identification code and
detailed parameters of energy storage devices. The
dynamic operation data covers 60 key features.
According to national standards, when a fault occurs, the
corresponding item is marked as “1”, and in the normal
state it is marked as “0”. After an in-depth analysis of the
data of 400 electric vehicles throughout their life cycle, it
is found that the types of faults that occur during the
operation of different vehicles and their frequency of
occurrence are significantly different. Table 1 lists some
collected data.



Table 1. Statistics on the frequency of faults of new energy vehicles

Number | Fault name Number of occurrences | Number | Fault name Number of occurrences
Temperature -
1 difference fault 12561 8 Transmission system fault 8671
2 Battery . high 24156 9 Brake system failure 1168
temperature failure
3 Too_ high SOC 10456 10 In_cons1stent battery cell 16934
leading to fault failure
4 Insulation failure | 33621 1 High voltage interlocking | )34
failure
5 Motor failure 23068 12 Too low SOC leading to | 544,
fault
6 Inverter fault 16742 13 Voltage instability fault 4263
Transmission :
7 system fault 16781 14 Charging system fault 9634
In Table 1, there are significant differences in the types ensure data integrity. However, for feature items with a

and frequencies of faults that occur during driving.
Battery high temperature failures occur 24,156 times.
Insulation failures reach 33,621 times. These data
provide support for understanding and analyzing the fault
modes of new energy vehicles.

B. Data Preprocessing

In the real world, data often has problems for various
reasons. The actual collected data often encounters
missing, erroneous, or noisy situations. These problems
are difficult to avoid, so it is crucial to properly
preprocess the data before data analysis.

D

Outlier Processing

There are various strategies for processing abnormal
battery data. A simple method is to set a threshold for
data cleaning [23,24]. In the data cleaning process of this
paper, the single cell voltage is limited to between 2V
and 5V, and the temperature is in the range of 0 degrees
Celsius to 60 degrees Celsius. Abnormal values such as 0
and 65 that appear in the single cell voltage data usually
come from errors in the data transmission or reception
process. Such data can be deleted directly. When the
battery is fully charged and the SOC reaches 100%, if the
vehicle remains stationary after a period of standing, the
lowest voltage of the single cell may drop, while the
highest voltage at the corresponding moment remains
unchanged. Such voltage data is regarded as a duplicate
value. This paper chooses not to deal with this problem
because subsequent studies find that whether to retain
this part of the data has no significant impact on the
accuracy of the model.

2)  Missing Value Processing

There are multiple links in the data transmission and
reception process. Due to various reasons, some data
may not be recorded, resulting in missing data [25,26].
For feature items with only a small number of missing
items, these missing rows can be directly deleted to
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large number of missing items, they need to be filled
with the help of algorithm models. Taking the key feature
SOC of the battery system as an example, due to its
importance and frequent missing, this paper chooses to
use the KNN algorithm to fill it. KNN is a filling method
based on the similarity between samples. It first
calculates the distance between the missing sample and
other samples to find the K neighbors that are most
similar to the missing sample [27-29]. The flowchart of
the KNN algorithm is shown in Figure 1.
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Figure 1. Flow chart of the KNN algorithm.

This paper measures the similarity between samples by
calculating the Euclidean distance and other methods.
The K samples with the smallest distance are selected,
and the mean of their SOC values is taken to fill the
missing values.

A 1 ««
SOCmiss = EZ/ SOC] (1)



The filled SOC value is represented by SOCniss , and
SOC; is the mean of the SOC values taken from the K
nearest neighbor samples. Using KNN to fill in the
missing values of SOC can not only ensure the integrity
of the data but also minimize the deviation during the
filling process, thereby providing an accurate data basis
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for the fault prediction model's subsequent training.
Long-term complete data is selected from the data as
samples to conduct the experiment. The dynamic feature
column is used as input, and the SOC column is used as
output. In the experiment, two methods, KNN and
regression imputation (RI), are used, and the true value
and the predicted value are compared. Figure 2 presents
the results.
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Figure 2. Comparison of missing value filling effects of different methods.

In Figure 2, the red line represents the true value of SOC,
and the blue line represents the model’s predicted value
of SOC. Figures 1A and 1B are the KNN effect diagram
and RI effect diagram, respectively. By comparing the
results, it can be found that the RI model has a poor
prediction effect in local areas, and there is a significant

difference between the true value and the predicted value.
In contrast, the KNN model has an excellent prediction
effect in local areas, and its predicted value is very close
to the true value. The specific treated values are shown in
Table 2.

Table 2. Comparison of voltage and temperature data before and after KNN algorithm processing

Vehicle ID Timestamp Voltage Temperature
Initial data
V001 2023-04-01 00:00 3.75 25
V001 2023-04-01 01:00 3.70 NaN
V001 2023-04-01 02:00 NaN 26
Processed data
V001 2023-04-01 00:00 3.75 25
V001 2023-04-01 01:00 3.70 25.5
V001 2023-04-01 02:00 3.72 26
3) Data Conversion making  algorithm  optimization smoother. The

In the fault prediction of new energy vehicle power
systems, data conversion mainly refers to data
standardization, that is, converting raw data into a format
suitable for model analysis. In this paper, the focus of
data standardization is to adjust the sample data so that it
falls in a unified interval, usually from 0 to 1.
Standardization is to eliminate the dimension and scale
differences between different attributes and prevent
certain large-scale features from having too much impact
on model training. Minimum-maximum normalization is
used for standardization in this study. The data is mapped
to the interval of [0,1], reducing data fluctuations and
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standardized data can avoid algorithm deviations caused
by feature magnitude differences and help the adaptive
DGP model converge faster, thus improving fault
prediction precision.

4) Data Integration

In the data processing process of vehicle fault prediction,
data integration is an important part of preprocessing.
The raw data is decoded and cleaned to generate a data
matrix containing multiple features. During decoding,
the data format of some attributes changes. When a
vector [n,1] originally represents a general fault, it may



become a data matrix [n,19] after decoding, with each
column corresponding to a different type of fault.
According to research and prediction needs, these
decoded data attributes are filtered to remove features
that are not related to fault prediction. The filtered data is
reorganized and combined to form a structured data
matrix to provide effective input for subsequent fault
prediction models.

The original data matrix is Y.

raw

so the decoding process
can be expressed as:

Y,

decoded

=h(Y,,) @

After decoding, data is screened according to the
requirements of fault prediction to select feature items
that are closely related to the fault.

Yﬁ M*chcodcd (3)

ltered —

Among them, M is the selection matrix, and Y., 1S

the sorted data matrix. This processed data matrix, as the
input of the adaptive DGP model, can significantly
improve the model's prediction precision and
generalization ability. The setting of the matrix M is
based on the results of feature selection, by setting a
threshold to determine which features are retained. This
screening process ensures that the model can focus more
on key features when processing complex data, thus
improving prediction performance.

C. Deep Gaussian Process Model Construction

preprocessing

l

Feature extraction

Data collection and l

Remove the old sampled data

i )

Iteratively update the mean and
variance of the current window

Mark the fault status

l Calculate the posterior
probability
Build a DGP model ‘
l v
‘ Fault prediction
DGP model for training |

|
‘ v

Output prediction result

Figure 3. Structure of the fault prediction model for new energy
vehicles based on DGP.

In recent years, the problem of fault prediction of new
energy vehicle power system has attracted much
attention. Traditional prediction methods mostly rely on
experience and shallow models. Although they are
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effective in some simple situations, their prediction
precision and stability need to be improved when dealing
with complex power systems and changing environments.
Deep learning performs well in processing large-scale
and high-dimensional data. It has become a key
technology for intelligent prediction. GP has significant
advantages in small sample learning and regression tasks
because it can provide prediction uncertainty assessment
and excellent nonlinear modeling capabilities [30-32].
Therefore, integrating the advantages of deep learning
and GP to construct an adaptive DGP model can
significantly improve the precision and reliability of new
energy vehicle fault prediction. Figure 3 shows the
structure of the new energy vehicle fault prediction
model built based on DGP.

GP is an important type of random process, also known
as a normal random process. A random process is a
collection of random variables. These variables are not
completely independent but have some correlation.
Together, they constitute a random system that changes

over time. A real-valued random process {X,,reT} is

a GP if all its finite-dimensional distributions follow a
multivariate normal distribution. In other words, for each
different value ¢,---t, €T chosen, the random vector X

is the mean vector u=FEX .

When the covariance matrix is non-singular, the
Gaussian probability density function expression of the
random vector X can be explicitly given.

/a(x)=<2n)*"“<det2>’”*exp(*%(w)'?%xfﬂ)] @

The mean function and covariance function of the GP are
two key factors that determine its characteristics:

h(x)~ N(m (x).k (x,x')) 5)

h(x) is the random variable when inputting x. m(x)

is the mean function. k(x,x') represents the covariance

function.

GP is a non-parametric Bayesian model. Its feature is
that it performs regression analysis by defining the
covariance relationship between input variables. Its core
advantage is that it can handle complex nonlinear
relationships in data and provide good uncertainty
estimates. However, when dealing with complex data
such as new energy vehicle power systems, the
traditional GP model cannot fully capture the multi-layer
and multi-dimensional features of the data with its single
kernel function. To solve this problem, the DGP model
comes into being [33-35]. DGP superimposes multiple
GP through a multi-layer structure so that each layer can
learn different abstract features of the input data.



Compared with traditional generalized linear models,
DGP has a more powerful modeling capability.
Especially when dealing with complex high-dimensional
data, it can effectively break through the limitations of
single-layer models. In fault prediction of new energy
vehicle power systems, DGP can capture the complex
nonlinear relationship between input features and faults
more precisely, improving the accuracy of predictions. In
a supervised learning scenario, the standard DGP model

training dataset contains observed input 4 €U"*° and

observed output BeUY™ | where the number of
samples and the dimensions of the input and output
vectors are defined. The core objective of the model is to
learn a mapping relationship from the input space to the
output space. In fault prediction, it means that the
possible fault type and severity can be predicted by
analyzing the vehicle operation data. The DGP model has
a multi-layer structure, and its latent variable set follows
a specific recursive relationship. DGP uses a sparse
induced input set and an induced variable set. These
designs enable the model to maintain efficient computing
power when processing large-scale data. In this way,
DGP can handle complex nonlinear relationships and
maintain efficient operation in a big data environment,
providing a powerful tool for fault prediction of new
energy vehicle power systems. Figure 4 is a schematic
diagram of DGP modeling.

v

Select a learning sample Train the DGP a priori model to
- - Study sample
optimize the hyperparameters
Y
Filter out suitable test Y
samples Obtain the optimal
hyperparameter
v
Choose the appropriate
kernel function !
DGP posterior model
Y
Set the initial value of the
hyperparameter Y
Output the predicted mean and
variance corresponding to the Test sample

Y
Determine the DGP a priori
model

prediction point

Figure 4. DGP modeling schematic

The recursive relation of the set of latent variables of
DGP is:

H,=h(H,_.X,)+6, for k=12,--.K (6)

h, is the latent variable of the k -th layer. X, is the

induced input. 6, is the noise term.
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In each layer, the covariance function of GP measures the
similarity of data. The formula for calculating the
covariance matrix is:

K(4,4")=0’ exp(_%((A—A')Tv—l (A—A’))) @)

A and A are the input data points, and o’ is the

variance. The V™' is a matrix, which usually represents
the covariance matrix of the input data.

In the setting of regression model, the likelihood
distribution of the model is usually assumed to be
Gaussian:

q(A|H)=N(H,. Y K+ 4) (8)

>4

A .The q(A|H ‘ ) represents the probability distribution

is the variance of the observed output sample

of the output H, given A .H, is the predicted value
of the model, and ZK is the covariance matrix of the

model.

Due to the deep structure and complex correlation of the
DGP model, direct inference of its posterior distribution
is insufficient at the computational level. GP uses kernel
functions to model the similarity between input data,
thereby capturing the nonlinear relationship and
uncertainty of the data. However, in the face of
multi-layered deep structures, inference not only needs to
calculate the posterior distribution of each GP layer but
also needs to consider the complex dependencies
between layers, further increasing the difficulty of
inference. Therefore, approximate inference technology
must be used to improve computational efficiency. This
paper uses stochastic variational inference (SVI) to solve
the problem. SVI uses variational distribution to
approximate the true posterior distribution, thereby
converting complex inference problems into manageable
optimization problems [36,37]. In the DGP model, this
method approaches the posterior distribution by raising a
lower bound, thereby significantly reducing the
computational complexity while maintaining the model
performance so that the DGP model can more efficiently
cope with large-scale datasets. In vehicle fault prediction,
given the high dimensionality and complexity of the data,
the model must capture the potential nonlinear
relationships and multi-layer dynamic characteristics of
the system. The multi-layer structure of DGP can refine
features layer by layer and reveal deep patterns in the
data. SVI can effectively reduce computational pressure,
enabling DGP to process large-scale datasets easily. It
plays a key role in the prediction of diversified and
complex faults in new energy vehicle power systems.

In the DGP model, the core of SVI is to optimize the
model parameters by maximizing a specific lower bound.



This lower bound involves the balance between the
model’s fit to the data and the complexity of the
variational distribution. The expression is:

L(0)=E,, [logq(D,0)]-E,,[logp(0)] 9

6 is the parameter of the model. D is the training data.
p (9) is the variational distribution.

For a model with a special hierarchical structure such as
DGP, it is necessary to approximate the posterior
distribution of each layer. If the output of the £ -th layer
of the model is ak , then the variational inference
objective of this layer is to minimize a specific objective
function.

L = Epk(ak) [logq (ak, Ok ):'_Epk (ak)[logpk (ak )] (10)

Ok is the parameter of the & -th layer. ¢(ak,0k) is
the likelihood function of the layer. pk(ak)

variational distribution of the layer.

is the

D. Adaptive Mechanism Application
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Figure 5. Framework diagram of the vehicle fault prediction
model based on AGD-DGP
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Faced with massive amounts of data and
high-dimensional features, traditional fault prediction
methods cannot effectively cope with the complexity and
variability of data. As a powerful tool, DGP can establish
complex connections between input features and faults
on different layers. However, the fixed hyperparameters
and lack of adaptability of the DGP model limit its
application under variable working conditions. To solve
this problem, this paper applies an adaptive mechanism
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and uses the AGD algorithm to adjust the model
parameters in real-time to improve the precision of fault
prediction. An AGD-DGP fault prediction model is
constructed. The AGD algorithm can intelligently adjust
the learning speed of each layer of model parameters,
accelerate convergence during training, and avoid
unreasonable parameter updates [38-40]. Compared with
the traditional gradient descent method, AGD adjusts the
learning rate according to the dynamic changes of the
gradient, making the parameter update more precise,
thereby improving the model's training effect and
prediction accuracy. Figure 5 is a framework diagram of
the vehicle fault prediction model based on AGD-DGP.

Given the dynamics and complexity of the operating
state of the vehicle system, the parameters of the
AGD-DGP fault prediction model need to be
continuously adjusted to adapt to the changing working
conditions. Gradient calculation plays a key role in this,
revealing the gap between the model output and the
actual results and guiding the parameter adjustment to
reduce the error. In DGP research, gradient calculation
can help the model move towards the optimal solution.
For the AGD-DGP model, gradient calculation not only
involves the correlation between input and output but
also focuses on the interaction of latent variables in each
layer. By evaluating the impact of latent variables in each
layer on the error, relevant parameters can be precisely
adjusted to achieve efficient optimization. The gradient
calculation formula is as follows:

1 M B A
Vgﬁ(é’):Mzizlﬁ(ﬁ(xi,xi(e))) (11)
L is the loss function. € is the model parameter.
%(6) is the predicted value of the model. x, is the

actual observed value. M is the number of samples.
AGD responds to different gradient changes by flexibly
adjusting the learning rate, making training more
efficient and stable. When the gradient changes
significantly, AGD increases the learning rate to speed up
model convergence. When the gradient changes tend to
be flat, AGD reduces the learning rate to allow for more
precise parameter fine-tuning. When the gradient is large,
the learning rate decreases. This is because the larger
gradient indicates that the current parameter position is
still far from the optimal solution, and a smaller learning
rate is required to avoid oscillation or divergence caused
by excessive parameter updates. The gradient is small,
and the learning rate is relatively high. A smaller gradient
indicates approaching the optimal solution. The larger
learning rate can be used for finer parameter adjustments,
thereby speeding up the convergence speed. The adaptive
learning rate formula is as follows:

_ lluo ~ (12)
LBy VL)

H,

4, 1s the learning rate of the #-th step. 4, is the initial



learning rate. 8 isa constant. VL(6,) is the gradient
of the i -th step.

By adopting AGD, DGP can flexibly adjust learning
strategies when facing different input data so as to better
adapt to various operating conditions, working
conditions, and fault modes. In the power system of new
energy vehicles, components such as batteries, motors,
and control systems exhibit various fault modes under
different working conditions. Traditional static models

make it difficult to capture such changes. In contrast, the
AGD algorithm can adjust model parameters based on
real-time data feedback to ensure high prediction
precision under various fault modes.

3. Experimental Analysis of Vehicle Fault Model
Effect Evaluation

Key parameters of the AGD-DGP model are shown in
Table 3.

Table 3. Key parameters

Serial number Parameter name Parameter setting
1 Number of network layers 3
2 Initial learning rate 0.01
3 Learning rate adjustment strategy Adaptive
4 Number of hidden layer units [64,32,16]
5 Batch size 32
6 Number of training rounds 100
Changes in the hyperparameters significantly affect the generalization ability of different models. The

experimental results. In the AGD-DGP model, adjusting
the initial learning rate from 0.01 to 0.001 finds that the
model convergence is slower, but the final accuracy
improves.

In fault prediction tasks, it is important to evaluate the

AGD-DGP model is compared with other latest research
models, namely, SVM, deep belief network (DBN), DGP,
least squares support vector regression (LSSVR),
autoregressive integrated moving average (ARIMA), and
LSTM, to prove the performance of the AGD-DGP
model in predicting faults in the power system of new
energy vehicles. Table 4 lists the specific results.

Table 4. Performance comparison of different vehicle fault prediction models

Algorithm model Accuracy (%) Recall (%) F1 value (%) Training time (seconds)
SVM 85.64 83.31 84.16 63

DBN 83.73 80.49 82.97 88

DGP 84.26 79.53 81.48 55

LSSVR 89.59 85.69 88.06 120

ARIMA 85.55 81.42 83.38 106

LSTM 88.28 86.69 87.34 154

AGD-DGP 94.13 92.88 93.26 94

In Table 4, the performance of each model is adjusting the learning rate of each layer, the AGD

comprehensively evaluated from four aspects: accuracy,
recall, Fl-score, and training time. SVM and DBN
perform generally in the fault prediction of new energy
vehicles, with accuracy rates of less than 86% and low
recall and Fl-scores, showing their limitations in
processing complex fault data. Although the DGP model
has a short training time of only 55 seconds, its recall is
only 79.53%, and its Fl-score is only 81.48%. The
accuracy of LSSVR and LSTM reaches 89.59% and
88.28%, respectively, indicating that they perform well
in fault identification and prediction, but they are still not
as good as the model studied in this paper. LSTM has
powerful sequence modeling capabilities, but its training
time is long, requiring 154 seconds, which limits its
value in real-time fault prediction applications. The
accuracy of AGD-DGP is 94.13%, and the recall and
Fl-score are 92.88% and 93.26%, respectively, which are
far higher than those of other models. By dynamically
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algorithm can more effectively capture complex
nonlinear relationships in the data and maintain high
computational efficiency when processing large-scale
data. Due to the use of a fixed learning rate, the
traditional DPG model may not be able to adjust the
parameters in time to achieve the best state in the face of
complex and changeable data distribution, resulting in its
accuracy and convergence speed are not as good as the
AGD-DGP model. This shows that AGD-DGP can more
effectively capture the nonlinear features of data and
improve prediction precision with good generalization
ability. Although its training time is 94 seconds, it is still
acceptable considering its significant performance
improvement. In general, AGD-DGP has significant
advantages in fault prediction of new energy vehicles,
providing support for enhancing the safety and reliability
of vehicles.



The loss trend of different algorithms processing the
same dataset is simulated to evaluate their convergence
speed and stability so as to verify the convergence effect
of the AGD-DGP model and to compare the training
efficiency of the model with other methods. Figure 6
shows the details.

Loss value

50
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Number of iterations

Figure 6. Convergence
algorithms

speed comparison of different

In Figure 6, the AGD-DGP algorithm has excellent
performance in terms of the speed and stability of the
loss value during the training process, reflecting the
model's excellent convergence performance. At the
beginning of the iteration, AGD-DGP shows a clear
downward trend. The loss value decreases rapidly and
remains stable in subsequent iterations. This fast
convergence feature is due to the fact that the AGD-DGP
model successfully integrates the advantages of DGP and
AGD, enabling it to dynamically adjust the learning
speed of model parameters according to actual conditions
effectively avoiding the risk of gradient vanishing or
gradient explosion that may occur in traditional
optimization techniques. The convergence speed of SVM
and DBN is insufficient, and the loss value fluctuates
greatly during iterations. The convergence of SVM is
greatly affected by its kernel function selection and
hyperparameter adjustment. Especially when processing
complex high-dimensional nonlinear data, it may be
difficult to capture the deep laws in the data, resulting in
a slow and unstable reduction of the loss value. In
summary, the convergence performance of AGD-DGP
during training is significantly better than other
algorithms due to its unique model design and
optimization strategy.

This paper uses the AGD-DGP model to improve the
precision of fault prediction of new energy vehicle power
systems, predicts the collected data, and obtains the
predicted value. By comparing it with the true value, the
error rate can be obtained. The lower the error rate, the
better the precision. Multiple experiments are conducted
to make the experiment more reasonable, and the
experimental results are compared with other methods.
Figure 7 presents the specific comparison results.
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Figure 7. Comparison of vehicle fault prediction error rates
using different algorithms

In Figure 7, compared with other methods, the
AGD-DGP model performs well in terms of prediction
precision. In 50 experiments, the error rate of AGD-DGP
is below 2.15%, showing a high level of stability. The
error rates of the DGP, LSSVR, ARIMA, and LSTM
algorithm models are above 5.41%, above 2.16%, above
3.38%, and above 4.42%, respectively. After 50
experiments, the average error rate of the AGD-DGP
model is 1.32%, which is 5.93%, 2.72%, 3.74%, and
4.28% lower than the average error rates of the DGP,
LSSVR, ARIMA, and LSTM algorithm models,
respectively. This advantage is due to the unique
adaptive deep structure of AGD-DGP and the excellent
modeling ability of GP, which together achieve
high-precision prediction. From the overall trend, the
error rate of AGD-DGP does not rise rapidly with the
increase in the number of experiments, reflecting that the
model has excellent generalization performance and
stability. The error rates of DGP and ARIMA fluctuate
greatly in some experiments, indicating that they have
limitations in processing complex nonlinear data.
Through multiple experimental comparisons, the high
precision and stability of AGD-DGP in fault prediction
of new energy vehicles are fully confirmed. This result is
of great significance to the safe operation and fault
prediction research of new energy vehicles.
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Figure 8. Comparison of vehicle fault prediction precision of
different algorithms



Table 1 records the data of different faults, and these
faults are numbered in Table 1. This paper selects faults
numbered 1-6 for research. By using these data to predict
these faults, the prediction precision can be obtained. The
experimental results obtained are compared with other
methods. Figure 8 presents the specific results.

In Figure 8, for the fault prediction numbered 1,
AGD-DGP shows an extremely high prediction precision
of 97.24%, which significantly surpasses algorithms such
as DGP, LSSVR, ARIMA, and LSTM, indicating the
excellent ability of AGD-DGP in processing complex
and nonlinear fault data. This paper extracts 6 types of
vehicle faults for prediction precision research. The
average prediction precision of the AGD-DGP model is
96.25%, which is 11.4%, 6.48%, 9.65%, and 7.07%
higher than the average prediction precision of the DGP,
LSSVR, ARIMA, and LSTM algorithm models,

respectively. The high prediction precision of AGD-DGP
is due to its ability to flexibly adjust parameters through
an adaptive mechanism to adapt to different fault modes.
DGP and ARIMA have limitations in processing
complex faults due to their linear assumptions or fixed
parameters. Although LSSVR and LSTM have certain
nonlinear modeling capabilities, they face problems such
as high computational complexity or overfitting, and it is
difficult to maintain high precision and stability in all
types of faults. Therefore, AGD-DGP not only performs
well in single fault prediction but also demonstrates
excellent generalization ability in multi-class fault
prediction.

The time required for different models to detect and
analyze different amounts of fault data is different. Table
5 lists the specific research results.

Table 5. Comparison of vehicle fault prediction analysis time of different algorithms (unit: seconds)

Data volume DGP LSSVR ARIMA LSTM AGD-DGP
100 2.5 2 1.8 1.6 1.2
200 48 3.5 3.3 2.8 1.8
300 7.2 56 45 4 2.4
500 12.2 8.5 7.5 6.5 3.5
1000 245 17 15.5 12.6 5.5
1500 36 25.5 225 18.1 7.5
2000 43.8 344 30 244 9.2
3000 72.3 51.8 45.6 36.5 12

In Table 5, as the amount of fault data increases, the
detection time of all models shows an increasing trend,
but when different models process the same amount of
data, the detection time is significantly different. When
processing 100 data, AGD-DGP only takes 1.2 seconds,
which is better than DGP’s 2.5 seconds, LSSVR’s 2
seconds, ARIMA’s 1.8 seconds, and LSTM’s 1.6 seconds.
When the amount of data increases to 2,000, the
detection time of DGP, LSSVR, and ARIMA increases to
48.8 seconds, 34.4 seconds, and 30 seconds. AGD-DGP
only takes 9.2 seconds, showing its apparent advantage
in big data processing. Due to the complexity of the
algorithms of DGP and LSSVR, the detection time
increases dramatically when the amount of data increases,
which is not conducive to scenarios with high real-time
performance requirements. Although LSTM has strong
modeling capabilities in theory, its actual detection time
is still not as good as AGD-DGP. Especially when the
amount of data is large, the time consumption is higher.
In the fault prediction of new energy vehicles,
AGD-DGP demonstrates excellent computing efficiency.
When processing data of different scales, its detection
time is significantly shorter than other models, indicating
that AGD-DGP can efficiently process big data while
maintaining prediction precision.

4. Conclusion

The purpose of this paper is to improve the accuracy of
fault prediction of new energy vehicle power system
through the AGD-DGP model.By using the DGP model
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to accurately simulate the complex associations within
the power system, combined with the ability of the AGD
algorithm to dynamically adjust the learning strategy and
parameters, it effectively overcomes the limitations of
traditional methods in processing complex data and can
flexibly adjust the learning strategy and parameters based
on actual data feedback to better adapt to the changes of
new energy vehicle power systems under various
conditions and failure modes. The AGD-DGP model
breaks the limitations of traditional methods, provides a
new perspective and technical support for related
research, and helps to identify potential problems in a
timely manner and take preventive measures to improve
the safety and reliability of new energy vehicles.
Although the AGD-DGP model performs well in the
experiment, its actual application effect still needs to be
verified. Secondly, the failure prediction of new energy
vehicle power system involves many factors. This
research is mainly discussed from the perspective of data
modeling. In the future, it is necessary to combine more
field knowledge for in-depth research. In general, the
AGD-DGP model provides a new and effective tool for
fault prediction of new energy vehicle power systems,
which helps to detect potential problems in a timely
manner and take preventive measures to improve vehicle
safety and reliability.
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