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Abstract. Safety issues at power marketing electricity
metering sites are related to the personal safety of staff
and the stable operation of the power system. Accurate
identification of dangerous operating actions is
crucial. Traditional CNN recognition is easily affected by
background interference in recognizing dangerous
operation actions at power marketing and energy
metering sites and has a weak ability to express
important features. This paper uses the improved Mask
R-CNN image segmentation model to perform
pixel-level segmentation on dangerous operation actions
at the power marketing and energy metering site, and
accurately locates its boundaries and actions. The study
first uses the GAN model to expand the dangerous
operation action images to ensure data balance, and uses
the ResNeXt module to replace the ResNet in the
traditional Mask R-CNN for feature extraction. Then,
CBAM is embedded in the feature extraction module to
enhance the extraction of spatial and temporal
information of dangerous operation actions and reduce
background interference. Finally, the loss function is
optimized by combining Boundary loss to reduce the
impact of the missing edge of the dangerous operation
mask. This paper conducts experiments based on images
of an actual power work site from June to December
2024. The results show that the improved Mask R-CNN
performs best, with an accuracy of 96.9%, which is 2.6%
higher than Mask R-CNN, and MIoU reaches 95.9%.
The experimental results show that combining the Mask
R-CNN image segmentation model and optimization
module can effectively improve the accuracy and
segmentation accuracy of dangerous operation action
recognition at the power marketing and energy metering
site, and ensure the safety of operators.
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1. Introduction

The development of smart grids has made electricity
marketing and metering crucial in ensuring supply and
demand balance, optimizing resource allocation and
improving user experience [1-3]. In actual power
marketing and electric energy metering sites, workers
often face complex operating environments and high-risk
work tasks, such as dangerous operations such as contact
with high-voltage wires, equipment failure handling, and
high-altitude operations [4]. If dangerous operations on
site are not discovered and corrected in time, serious
safety accidents can occur, threatening the lives of
workers and the stable operation of the power system
[5,6]. At present, the action recognition of models such
as CNN (Convolutional Neural Networks) is difficult to
resist background interference, and the ability to
represent important features is not strong, resulting in
poor action recognition accuracy.

In recent years, researchers have used computer vision
and deep learning techniques to identify operational
actions in fields such as electricity and solved some
challenges. Xin, Helmi and other scholars combined
skeletons and used Transformer, RCNN-BiGRU
(Region-Convolutional Neural Networks-Bidirectional
Gated Recurrent Unit) for action recognition, which
improved the recognition accuracy [7,8]. Yang and other
scholars combined GCN (Graph Convolutional Network)
and CNN to carry out action recognition of operators and
solved the dependency problem between different joints
of the human body [9]. The CNN model, YOLO-v5, has
been widely used in the motion detection of operators on
construction sites. It optimizes the motion recognition
performance, ensures the safety of operators, and
provides a reference for future scholars in other fields
[10,11]. Park et al. applied the YOLO (You Only Look
Once) model to worker detection at construction sites,
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achieving an accuracy of 77.57% [12]. CNN-LSTM
(Convolutional Neural Networks-Long Short-Term
Memory), as a hybrid model, achieved an accuracy of
90.89% in human activity recognition, optimizing overall
recognition performance [13,14]. YOLO performs well
in real-time target detection, but its fine-grained feature
extraction capability is weak in complex backgrounds,
making it difficult to accurately segment the boundaries
of dangerous operations. CNN-based methods have
achieved a certain degree of accuracy improvement in
action recognition, but their ability to suppress
background interference is insufficient, making it
difficult to extract key action features.Scholars used
CNN and other models to identify operators' actions,
which improved the accuracy of action recognition to a
certain extent, but the performance was weak in resisting
background interference, and the ability to express
important features in the action was lacking.

In the power industry, research not only focuses on
operator safety and motion recognition, but also involves
power demand forecasting and electricity price analysis
to optimize the operation of the power system. Shah I
and other scholars compared different modeling methods
to improve the accuracy of power demand and price
forecasting [15]. Iftikhar H and other scholars proposed a
novel homogeneous and heterogeneous integrated
learning method to improve the accuracy of power
consumption forecasting [16]. Gonzales S M and others
used an improved time series integration method to
analyze and predict electricity prices, and achieved good
application results in the Peruvian power market [17]. At
the same time, Iftikhar H and others further studied
power demand forecasting based on time series
integration technology, providing data support for
intelligent dispatching and safety management in the
power industry [18]. These research results are not only
of great value in power dispatching and market analysis,
but also provide new ideas for intelligent monitoring and
safety prevention and control in future power operation
scenarios.

To solve the current problem, more and more studies
have begun to introduce image segmentation models to
improve the recognition accuracy of dangerous operation
actions. Li et al. used Faster R-CNN to detect workers’
construction activities and identify their action states,
with a significant improvement in average accuracy
[19,20]. Mask R-CNN, as an improved CNN, adds
pixel-level segmentation capabilities on the basis of
target detection. It is used in action recognition to
effectively solve the background interference problem
and can accurately locate the action boundary [21,22].
DHIVYA and other scholars applied Mask R-CNN to
target detection in surveillance videos in construction
and other fields, improving the accuracy of target
detection [23]. The Mask R-CNN model has many
applications in action recognition, greatly improving the
fine segmentation of edges and action recognition
performance [24-26]. Scholars applied the Mask R-CNN
model to action recognition, which improved the
anti-interference ability of the background compared to
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CNN, but still failed to solve the problem of expressing
important features. In addition, there are few studies on
the Mask R-CNN model in the recognition of dangerous
operation actions in power marketing and energy
metering, and there are many research gaps.

This study aims to solve the key problem of identifying
dangerous operation actions in power marketing and
energy metering, and how to improve the recognition
accuracy and segmentation effect of traditional methods
under complex backgrounds. This paper adopts the
improved Mask R-CNN (Mask Region-based
Convolutional Neural Network) image segmentation
model, and improves the performance of the model in
feature extraction, background suppression and boundary
accuracy by introducing a series of optimization modules.
The experiment replaced the traditional ResNet
(Residual Network) with the ResNeXt (Residual
Networks with Next) module, and introduced the CBAM
(Convolutional Block Attention Module) module to
further reduce background interference. Finally, the
boundary segmentation accuracy was optimized by
combining the Boundary loss function. In the actual
power site image test, the recognition accuracy and
segmentation precision were 96.9% and 95.9%
respectively, which were significantly improved. This
proves that the experimental method has high application
potential in improving the effect and practicality of
identifying safe operations at power sites.

Contribution of the paper:

(1) This paper replaces the traditional ResNet with the
ResNeXt module, and combines the CBAM module and
the Boundary loss function to significantly improve the
accuracy of feature extraction, background suppression
and boundary segmentation, overcoming the recognition
bottleneck of the traditional CNN model in complex
power field environments.

(2) The experiment uses the GAN (Generative
Adversarial Network) model to expand the dangerous
operation action images to solve the data imbalance
problem, ensure the stability and efficiency of model
training, and enhance the model's generalization ability
for different scenarios.

(3) The study tested the image data of the actual power
marketing power metering site and achieved significant
recognition results, proving the practical application
potential of the improved Mask R-CNN model in
improving the recognition accuracy and segmentation
effect of dangerous operation actions at the power site.

The structure of this paper is as follows:

Chapter 1 is the introduction, which explains the
background and research significance of the topic, the
purpose of the research, the hypothesized questions, and
the contribution and structure of the text.



Chapter 2 is the method part, which discusses the
experimental data and data preprocessing, and introduces
how to use GAN to expand the data set. It explains how
to improve the Mask R-CNN model, the principle of
CBAM, and explains the training and optimization
strategies of the experiment.

Chapter 3 is the results and discussion. This chapter
explains the evaluation indicators and experimental
design, verifies the experimental results from the aspects
of recognition accuracy and image segmentation
accuracy, and discusses the reasons behind the excellent
methods of the article, the impact and significance of the
article, and the discussion of the limitations and future
directions of the article.

Chapter 4 is the conclusion part, which summarizes the
main achievements of the article and points out the future
research direction.

2. Research Methods
A. Experimental Data

The data for the tests in this paper come from images
taken at actual power engineering sites, covering images
of dangerous operations such as failure to wear a safety
helmet, failure to wear insulating gloves, failure to wear
a safety belt, accidental contact with live tools, irregular
operation of exposed wires, and high-voltage operation
without cutting off the power supply. The data collection
time is from June to December 2024, and a total of 5268
images were collected, including normal operations and
dangerous operations. The experiment uses ten-fold cross
validation to divide the data, and finally removes the
mean as the final result. Some experimental images are
shown in Figure 1.

Figure 1. Some experimental images.

The data is very rich in Figure 1, including images of
various dangerous operations in the power marketing and
energy metering site.

B. Data Preprocessing
1)  Denoising and Image Normalization

The image data of the actual power work site has some
background noise. This paper uses Gaussian filtering
technology [27,28] to denoise the image.

In order to facilitate the model processing, this paper
uses the minimum-maximum normalization to normalize
each pixel value to the range of [0, 1].

2) Image Annotation

This paper uses the annotation tool LabelMe to perform
rectangular annotation on dangerous operation areas in
the collected images, and for the image segmentation
task, the experiment uses pixel-level masks for
annotation. Each dangerous operation action area is
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represented by a binary image, where the target area is 1
and the background area is 0.

C. GAN Model Data Expansion

The number of samples of dangerous operation action
images at the power marketing and energy metering site
is relatively small. Directly using the original data set
can cause the model to tend to predict the more common
normal operations and ignore the identification of
dangerous operations. This paper introduces the GAN
model [29-31] to expand the data of dangerous operation
action images.

Reference [29] discussed the application of GAN in text
data enhancement, mainly for natural language
processing, but its data generation strategy is of reference
significance for the expansion of image data. Reference
[30] proposed a GAN-based data enhancement method
for forest mapping, which improves the generalization
ability of the model by balancing the data distribution,
which is similar to the goal of balancing the dangerous
operation data set through GAN in this study. Reference
[31] combined GAN with CNN-LSTM for aerial activity



recognition, proving the ability of GAN to generate
high-quality data in complex backgrounds, which is
consistent with the idea of improving dangerous
operation recognition in this study. Studies have shown
that GAN can effectively expand the data set, improve
the model's recognition ability for minority class samples,
and improve the robustness and generalization ability of
the model.

The generator and the discriminator are trained by
mutual game, and finally the generator can generate
high-quality and real image data.

For data augmentation, first define a random noise vector.
The generator samples from the noise space and inputs it
into the generator network. The generator generates an
image based on the input noise vector. The optimization
goal of the generator network is to maximize the error of
the discriminator, which corresponds to the discriminator
considering the generated image to be a real image. The
loss function of the generator is shown in formula (1).

Loss, = —anqa(a) [logD (G (a))] )]

D represents the discriminator network, E represents
expectation, g, (a) represents the probability

distribution of noise. G(a) represents the output of the

generator.

The task of the discriminator is to classify the input
image and determine whether it comes from the real data
distribution. The loss function of the discriminator is
shown in formula (2).

Loss, =—E, [logD(p)] “E, (0 [ log( l—D( G(Ol))ﬂ 2)

q,(p) represents the real data distribution. D(p)

represents the output value of the discriminator for the
image.

GAN is trained by alternately optimizing the generator
and the discriminator. In each training step, the
parameters of the discriminator are first updated to
distinguish the real image from the generated image as
much as possible. The parameters of the generator can be
updated so that the images it generates are judged as real
images by the discriminator as much as possible. Finally,
multiple iterations of optimization are performed to
enable the generator to generate high-quality, realistic
images of dangerous operation actions.

The comparison of data of each category before and after
expansion is shown in Table 1.

Table 1. Comparison of data of each category before and after expansion

Types Before. Types After . GAN
expansion expansion

Normal and standardized operation 3074 Normal and standardized operation 3074

Failure to wear a safety helmet before live work | 301 Failure to wear a safety helmet before live work | 521

Not wearing insulating gloves 479 Not wearing insulating gloves 503

Not wearing a safety belt 433 Not wearing a safety belt 534

Inadvertent contact with live tools 174 Inadvertent contact with live tools 469

Irregular operation of exposed wires 259 Irregular operation of exposed wires 458

High voltage operation without cutting off the 548 High voltage operation without cutting off the 500

power supply power supply

In Table 1, after the GAN model is expanded, the action
categories of failure to wear a helmet before live work,
accidental contact with live tools, and irregular operation
of exposed wires are most significantly expanded. The
overall ratio of dangerous operations to normal
operations is close to 1, and the types of dangerous
operations are relatively balanced without obvious
differences, ensuring the feasibility of the experiment.

D. Improved Mask R-CNN Image Segmentation
Model

1) ResNeXt Module

This paper uses the ResNeXt module [32,33] to replace
the traditional ResNet module for feature extraction. The
ResNeXt module has significant advantages over the
ResNet network. Without obvious changes in the
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magnitude of parameters, the three-layer convolutional
blocks of the original ResNet network are replaced by
parallel stacking of blocks with the same topology
structure to ensure the accuracy of feature extraction.

ResNeXt replaces a single convolution with a
multi-branch convolution based on ResNet. In this
experiment, the dangerous operation action images input
at the power marketing and energy metering site are sent
to each branch for convolution operations, and the
feature maps output by each branch are spliced and the
extraction results are output.

This paper chooses ResNeXt as the feature extraction
network, mainly based on its balance between
computational efficiency and feature expression ability.
Compared with ResNet-50, ResNeXt adopts a
multi-branch group convolution structure, which is



expected to improve the model's feature extraction and
expression capabilities without significantly increasing
the number of parameters, making it more robust in the
recognition of dangerous operation actions in complex
power marketing and energy metering sites. ResNeXt
has Dbetter parallel computing capabilities than
EfficientNet, and its group convolution structure can
effectively reduce computational redundancy, improve
feature diversity, and is more suitable for pixel-level
segmentation tasks. EfficientNet mainly relies on a
compound scaling strategy for model optimization,
which is feasible for image classification tasks, but not
for target detection and segmentation tasks. This paper
uses ResNeXt as a feature extraction network to ensure
that the model's recognition ability for dangerous
operation actions is guaranteed while the computational
cost is controllable.

In ResNeXt, the convolution operation adopts the form
of group convolution, and the convolution operation of
each branch is performed on different feature subsets.
The convolution operation in the ResNeXt module is
expressed as shown in formula (3).

fi=Conv(Z,U,)+ S (3)
Z, represents the input image.

ResNeXt introduces the Carlson and group convolution
mechanisms to decompose each convolution into several
small convolution operations.

The convolution operation performed in each group is
expressed as shown in formula (4).

f,=Conv,(Z,U, )+ (4)
y represents the number of groups.

In the ResNeXt module, each convolution layer performs
a single convolution operation, while multiple
convolution units with the same structure work in
parallel. Each convolution block includes multiple
parallel branches, and the input image is convolved
through each branch. The output feature map can be
spliced along the channel dimension, and the final
feature map is expressed as shown in formula (5).

F :[ﬁ’fza'”’ny (5)

Jf, represents the convolution output of the branch.
2) CBAM Module

In the image recognition task of dangerous operation
actions in the power marketing and energy metering field,
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the image background often interferes with the
recognition of the target, especially in complex scenes,
the features of dangerous operation actions are often very
small and easily affected by noise. This paper introduces
the CBAM module [34,35] in the improved Mask
R-CNN framework. By guiding the attention mechanism
in the spatial and channel dimensions, the feature
expression ability of dangerous operation actions in
space and channels is enhanced. In the CBAM module
[36], it consists of two parts: the Channel Attention
Mechanism (CAM) and the Spatial Attention Mechanism
(SAM).

(1) CAM

CAM enhances the feature expression of the target area
by assigning different attention weights to each position
of the input feature map. The experiment uses two
operations, Global Average Pooling (GAP) and Global
Max Pooling (GMP), to generate channel-level attention
weights.

For the input feature map, this paper first performs
global pooling on each channel to generate two channel
descriptors, namely GAP and GMP. The calculation
formulas of GAP and GMP are shown in formulas (6)
and (7).

1
HxW

YIS F (i) (6)

M, (F)=

Mmax (F) = “::";‘F (i’j’:) (7)

F
represents the calculation result of GAP, and M, (F)

represents the calculation result of GMP.

represents the input feature map. M, (F )

After obtaining the descriptors of the two channels, the
experiment passes them into a shared fully connected
layer and transforms them using the ReLU activation
function. The calculation formulas for the transformation
are shown in formula (8) and formula (9) respectively.

avg

Que (F)=ReLU(W,,-M,_, (F)+3,,) (8)

max

Gax (F) =ReLU (W, M, (F )+ 6, ) 9)

w.

avg

and W

max

represent the weights of the fully

connected layer, J,, and &, are bias terms.

The experiment combines the two transformed features
and uses a Sigmoid activation function to generate the
channel attention (CA) weight. The expression of CA
weight is shown in formula (10).



B.(F)=0(8ug (F)+ & (F)) (10)
B, (F ) represents the attention weight of each channel.

For the input feature map, it is weighted according to the
channel, as shown in the formula (11).

F'=FxB,(F) (11)

F' represents the weighted feature map.

(2) SAM

This paper first sums the feature map weighted by CA
along the channel dimension to generate two different
spatial descriptors, namely average pooling and
maximum pooling. The calculation formulas of average
pooling and maximum pooling are shown in formulas
(12) and (13).

1 c
M;Vg(F')=EzCF'(i,j,c) (12)

M =

max

(F')y=""F'(i,j.,c) (13)

MS
MS

max

(F') represents the result of average pooling, and

(F') represents the result of maximum pooling.

and M:

max

The two descriptors M, (F')

avg

(F7)

are

ture extraction network

— —> >

input into a shared convolutional layer, and the spatial
attention (SA) weight map is generated through the
Sigmoid activation function. After the two spatial
descriptors are output through the shared convolutional
layer, the calculation is shown in formulas (14) and (15).

Zae (F') =Conv (MS

avg

(F') W5, ) (14)

Zoax (F') = Conv (M;;ax

(F')W2 ) (15)

s
W

and W;  represent convolution kernels.

The two descriptors g, (F') and g, (F') are

combined by sum operation and input into the Sigmoid
activation function to generate SA weights. The
expression of SA weights is shown in formula (16).

B, (F)=0 (g, (F')+ g0 (F')) (16)
B, (F') represents the generated SA weight.

Now apply the SA weight to the weighted feature map
and output the spatially weighted feature map. The
calculation is shown in formula (17).

F"=F'xB,(F') (17)
F”

represents the feature map after SAM weighting.

The improved Mask R-CNN model is shown in Figure 2.

(20.58.138,205)

Not wearing insulating
loves

Type

Figure 2. Improved Mask R-CNN model diagram.

In Figure 2, the improved Mask R-CNN model
introduces the CBAM module and replaces the ResNet
network with the ResNeXt module.After the image in

122

Figure 2 is processed by the Mask R-CNN model, it can
output dangerous operation actions and bounding box
regression results well, and the effect of construction



personnel segmentation is obvious.

3) Boundary Loss Function

This paper introduces the Boundary loss function to
optimize the segmentation mask loss. The Boundary loss
function uses the boundary matching degree to supervise
the loss function of the network. The pixels that match
the boundary between the image and the real border are
marked as 0, and the loss function is evaluated based on
the distance from the border for the pixels that do not
match the boundary.

The boundary loss is calculated by integrating the
boundary. The boundary loss function is expressed as
shown in formulas (18) and (19).

. (OR,00) =

2([nalp

R represents the area of the real box, and O
represents the predicted area to be segmented. OR
represents the boundary of the true box, and 00
represents the boundary of the predicted area.

p) dp —IUR( p)

{ p d;; (18)

Loss —‘[nR )0, (p)dp (19)

o, ( p) represents the probability output of the network.
1z (p) represents the boundary level set.

An example of image visualization after the introduction
of the Boundary loss function is shown in Figure 3.

Figure 3. Image visualization example after introducing the boundary loss function.

In Figure 3, the first picture is the original image, and the
second picture is the segmentation result without the
boundary loss. It can be observed that there is an obvious
lack of boundaries, and the edges of some dangerous
operation areas are blurred; the third picture is the
segmentation result after the boundary loss is introduced.
Compared with the second picture, its boundaries are
clearer and the contours are complete, and it can match
the real area more accurately. This shows that the
boundary loss function can significantly reduce the
discontinuity of the mask boundary, improve the
segmentation accuracy, and optimize the recognition
effect of dangerous operation actions by strengthening
the boundary matching degree.

4) Training and Optimization of the Improved Mask
R-CNN Model

The loss function of the Mask R-CNN model, the total
loss function is expressed as shown in formula (20).

Loss =Loss, +Loss, + Loss,, (20)

Loss, represents classification loss, Loss, represents

bounding box regression loss, and Loss, represents

segmentation mask loss.

The classification loss is expressed as shown in formula
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210).
Loss, ——Z A log( ) 21

The bounding box regression loss as shown in formula
(22).

Loss, = " smooth LI (@, - @,) (22)

The segmentation loss is expressed as shown in formula
(23).

Loss,, = _Zi,j 4 ;log (/f” )+ (1 -4, )log (1 - /1:/ ) (23)

This study uses the Adam optimization algorithm [37-39]
to adaptively adjust the learning rate, and it is shown in
formula (24).

Z
P =P Tl
9 +e

24

€ represents a tiny constant to prevent division by zero.

The hyperparameter settings of the improved Mask
R-CNN model are shown in Table 2.



Table 2. Hyperparameters of the improved Mask R-CNN model

Parameters Value Parameters Value

Learning rate 0.0001 Momentum factor 0.9

Number of iterations 300 Anchor frame (16,32,64,128,256)
Confidence 0.7 Batch size 50

Optimizer Adam -

In Table 2, the learning rate is 0.0001, the anchor box is
(16, 32, 64, 128, 256). The batch size is 50, and the
optimizer uses Adam.

3. Results and Discussion
A. Evaluation Indicators

mAP (Mean Average Precision):
1 «r
mAP = ;ZV:IAPV (25)

v represents the number of categories.

MIoU (Mean Intersection over Union):
1
MIoU = ;ZL]IOUV (26)

Accuracy :

TP+T,
Accuracy = N 27

TP+TN+FP+FN

TP (True Positive) represents a true positive example,
TN (True Negative) represents a true negative example.
FP (False Positive) represents a false positive example,
and FN (False Negative) represents a false negative
example.

Precision :
TP
Precision = ———— (28)
TP+ FP
Recall :
TP
Recall =—— (29)
TP+ FN
F1:
Fleos Precision * Recall (30)

Precision + Recall

B. Experimental Design

The experiment is divided into two aspects: action
recognition performance verification and detection and
segmentation performance. This paper sets up an
experimental group and a control group. In the action
recognition performance verification, the control models
include DenseNet (Dense Convolutional Network), VGG
16 (Visual Geometry Group 16), Faster R-CNN (Faster
Region-based Convolutional Neural Networks), and
Mask R-CNN. In the detection and segmentation
performance, the control models include SSD (Single
Shot MultiBox Detector), YOLO v4, YOLO v8, and
Mask R-CNN.

The study set up an ablation experiment to explore the
impact of CBAM, ResNeXt module, and Boundary loss
function on the performance of the Mask R-CNN model.

C. Dangerous Action

Performance

Operation Recognition

1) Dangerous Operation Action Recognition Result
Display

The outcome of the identification of the hazardous
operation actions is shown in Figure 4.

Figure 4. Dangerous operation action identification results.

In Figure 4, all kinds of dangerous operations at the
power marketing and energy metering site can be well
identified. The first picture was accurately identified as a
dangerous operation without wearing insulating gloves,
and the second picture was accurately identified as a
high-voltage operation without cutting off the power
supply. The third picture was accurately identified as an
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irregular operation with exposed wires, and the fourth
picture was accurately identified as an operation without
wearing a safety helmet before live work.

2)  Confusion Matrix

In the test set of this paper, there are 307 samples of

normal and standardized operation, 52 samples of failure
to wear a helmet before live work, and 50 samples of not
wearing insulating gloves. There are 53 samples of not
wearing a safety belt, and 47 samples of accidental
contact with live tools. There are 46 samples of irregular
operation of exposed wires, and 59 samples of
high-voltage operation without cutting off the power
supply. The confusion matrix is illustrated in Figure 5.

300
Normal and standardized operation 0 0 0 1 2 0
Failure to wear a safety helmet before live work = 3 49 0 0 0 0 0
o) Failure to wear insulating gloves —} 0 1 48 0 1 0 0 200
Q.
>
Rl
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=]
R
[T]
< Inadvertent contact with live tools — 1 0 0 0 45 0 1
- 4 100
Irregular operation of exposed wires —} 0 [0] 0 2. 0 44 0
High voltage operation without cutting off the power supply — 1 0 0 0 1 0 57
I I I I I I I 0
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& +° o \© © & &
&£ < > 5 S > 2
o 2> \(\q & N oqz @e}
& N < 52 e
S o &> X < A
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&
e

Forecast type

Figure 5. Confusion Matrix.

In Figure 5, 49 samples were correctly predicted to be
the action of not wearing a helmet before live work, and
3 samples were incorrectly predicted as normal and
standardized operation types. There were 304 samples of
normal and standardized operation correctly predicted,
48 samples of operation without wearing insulating
gloves correctly predicted, and 50 samples of operation
without wearing safety belt correctly predicted. There
were 45 samples of accidental touch of live tools
correctly predicted, and 44 samples of improper
operation of exposed wires correctly predicted. For
high-voltage operation without cutting off the power
supply, 57 samples were correctly predicted. Overall, the
improved Mask R-CNN in this paper achieves good
performance in identifying dangerous operations at the
power marketing energy metering site.

3) Dangerous  Operation Action

Performance Under Different Models

Recognition

The dangerous operation action recognition performance
under different models is shown in Figure 6.
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Figure 6. Dangerous operation action recognition performance
under different models.

In Figure 6, the improved Mask R-CNN performs best,
with an accuracy of 96.9% and an F1 value of 96.6%,



significantly higher than other models. Compared with
Mask R-CNN, they have increased by 2.6% and 3.2%
respectively. DenseNet has an accuracy of 89.2% and an
F1 value of 89.7%. VGG 16 has a lower accuracy and F1
value of only 83.2% and 82.9%. Faster R-CNN has an
accuracy of 92.1% and an F1 value of 91.9%.

and a recall of 91.3%. The improved Mask R-CNN
introduces stronger feature extraction and enhancement
modules to improve the accurate recognition of small
targets and boundaries, effectively improving the
recognition performance.

4)  Detection and Segmentation Performance
The improved Mask R-CNN leads all models with a
1]1 Y 0 1 . . .
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Figure 7. Detection and segmentation performance. Figure 7 (a) mAP and MloU performance; Figure 7 (b) Frame rate and
convergence speed performance.

In Figure 7 (a), the improved Mask R-CNN achieves
93.2% mAP and 95.9% MlIoU, which is the most
outstanding. Mask R-CNN has an mAP of 89.5% and an
MIoU of 91.4%. YOLO v8 has mAP and MloU of 87.4%
and 88.6% respectively, while YOLO v4 and SSD
perform relatively poorly.

In Figure 7(b), for frame rate, YOLO v8 performs best at
48 frames/second, while YOLO v4 reaches 45
frames/second. Mask R-CNN and Improved Mask
R-CNN have lower frame rates of 8 frames/second.
Mask R-CNN and its improved versions have a large

segmentation, need to process more image areas and
details, and have a low frame rate, while the YOLO
series and SSD focus on target detection and have
relatively small computational workloads.

In terms of convergence speed, the convergence speed of
the improved Mask R-CNN is 45 epochs, while Mask
R-CNN only needs 43 epochs to converge.

5) Ablation Experiment

The outcome of the ablation test is illustrated in Table 3.

amount of computation when performing image O
In Table 3, * indicates Mask R-CNN.
Table 3. Ablation experiment results (%)
Model Accuracy Precision Recall F1
* (ResNet) 94.3 92.4 94.5 93.4
Improved * (ResNeXt) 94.9 93 95 94.0
Improved * (Boundary) 94.6 92.9 95.0 93.9
Improved * (CBAM) 955 94 95.8 94.9
Improved * (ResNeXt+CBAM) 96.1 94.7 96.2 95.4
Improved *(ResNeXt+CBAM+Boundary) 96.9 95.7 97.5 96.6

In Table 3, the improved masked R-CNN
(ResNeXt+CBAM+Boundary) performs the best among
all the metrics with 96.9% accuracy and 96.6% F1 value.
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Removing the boundary module decreases the accuracy
to 96.1% and the F1 value to 95.4%. When the ResNeXt
module is further removed, the accuracy decreases to




95.5% and the F1 value decreases to 94.9%. After
removing all modules, Mask R-CNN (ResNet) has the
weakest showing an accuracy of 94.3% and an F1 value
0f 93.4%.

D. Experimental Discussion

By introducing modules such as ResNeXt, CBAM and
Boundary, the improved Mask R-CNN model has
significantly enhanced its capabilities in feature
extraction, attention mechanism and precise positioning
of target boundaries. The ResNeXt module improves the
recognition ability of the model through more efficient
feature learning. The CBAM module effectively focuses
on important areas in the image and enhances the
performance of the model in complex backgrounds. The
Boundary loss function ensures higher segmentation
accuracy by improving boundary detection accuracy. The
improved Mask R-CNN has a slow frame rate and
convergence speed, mainly due to the complex model
architecture and fine-grained image segmentation tasks
that lead to large computational workload.

In real-time applications, improving accuracy and
reducing frame rate require a trade-off between
computational complexity and detection accuracy. The
improved Mask R-CNN improves recognition accuracy
through modules such as ResNeXt, CBAM, and
Boundary loss, but the additional computational
overhead leads to a low frame rate, which makes it
difficult to meet high real-time requirements. To balance
the two, the following optimization strategies will be
adopted:

(1) Combine model pruning, quantization, and
distillation  techniques to reduce computational
redundancy and speed up inference;

(2) Use more efficient inference frameworks, such as
TensorRT or ONNX Runtime, to accelerate model
inference;

(3) Adjust the model for different application scenarios.
Under high real-time requirements, lightweight networks
such as MobileNet or YOLO series can be used for fast
detection, while improved Mask R-CNN can be used for
fine recognition in scenarios with high precision
requirements.

The experimental outcomes of this study offer new ideas
for safety monitoring in the field of hazardous operation
action recognition, especially in the power industry. The
study improves the robustness and accuracy of the
system in practical applications and also provides a
reference model optimisation path for intelligent
monitoring systems in other fields. This study verified
the advantages of modular design in deep learning
models and found that the improvement of model
performance does not only rely on a single network
structure, but on the coordinated optimization of multiple
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modules. The method has good promotion value,
especially in the fields of industrial safety, medical
diagnosis and intelligent monitoring.

The dataset in this paper has certain limitations. In order
to improve the versatility of the model, more diverse data
enhancement strategies will be adopted in the future,
such as random cropping, rotation, color jitter, and
lighting changes, to simulate power operation scenes
under different environmental conditions and improve
the generalization ability of the model. Introduce more
real-world data, covering different weather, lighting,
shooting angles, and equipment types, to reduce the
model's dependence on specific scenes. Transfer learning
is also an effective method. Models pre-trained on larger
general datasets such as industrial action recognition
datasets can be used and fine-tuned on power operation
data to enhance adaptability to new scenarios.

This study has made significant progress, but there are
still some limitations:

(1) The dataset used in this study is mainly concentrated
in the power sector, and the data scale is relatively small,
lacking effective  verification of the model's
generalization ability. In the future, the universality of
the model can be further verified through diversified
datasets, including other industries and more types of
dangerous operations.

(2) The improved Mask R-CNN performs well in
recognition accuracy, but its frame rate is low, which
limits its performance in real-time applications. In the
future, we will further use model quantization FP16 and
pruning technology to reduce inference latency, and use
multi-threading or GPU parallel computing to optimize
the inference process, while combining efficient
inference engines such as TensorRT or ONNX Runtime
to accelerate computing. Finally, we will use distillation
learning to train smaller but more efficient models, while
ensuring accuracy and improving frame rate.

(3) There are many types of dangerous operations in
power marketing and energy metering. This paper only
discusses some of them. In the future, more dangerous
operations can be collected to enrich the data set.

4. Conclusions

This paper adopts an improved Mask R-CNN image
segmentation model for the recognition of dangerous
operation actions at the power marketing and energy
metering site. The study introduces the GAN model for
data expansion, uses the ResNeXt module to replace the
traditional ResNet for feature extraction, embeds the
CBAM module to reduce background interference, and
combines the Boundary loss function to optimize the
boundary accuracy, significantly improving the
recognition accuracy and segmentation accuracy. The
outcomes show that the enhanced mask R-CNN performs



significantly superior to the traditional CNN model in
real power operation site images, and is able to
effectively identify and accurately segment dangerous
operation behaviours to ensure the safety of the
operators.

This paper has made some achievements, but there are
also some shortcomings. The data scale is relatively
small, and the generalization ability of the model is not
effectively verified. In addition, the types of dangerous
operations at the power marketing and energy metering
site are not considered comprehensively, and the
calculation efficiency is not particularly ideal. In the
future, more types of dangerous operations will be
collected to expand the data set, and the model will be
quantized using FP16 and pruning technology to
optimize the network structure to improve convergence
performance and calculation efficiency.
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