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Abstract. The load of power grids in high load density
areas fluctuates violently, and traditional prediction
models are difficult to capture dynamic changes,
resulting in insufficient prediction accuracy and
scheduling efficiency. This paper constructs a joint
optimization model that integrates the improved
bidirectional long short-term memory network (BiLSTM)
and deep reinforcement learning (DRL), taking
advantage of bidirectional learning and dynamic
optimization to improve load forecasting accuracy and
dynamic  scheduling  capabilities. =~ Multi-source
heterogeneous load data is integrated through data
cleaning and standardization and normalization
technology to enhance the consistency of input data. For
the BILSTM model, the optimized network structurethe
and attention mechanism is introduced to improve the
ability to capture key features of historical loads, and
multi-layer perceptrons are combind to enhance
nonlinear feature extraction. The dynamic feedback
mechanism of DRL is further used to adjust the load
scheduling strategy in real-time to achieve collaborative
iteration of prediction and optimization. The
experimental results show that the improved model has
superior performance in short-term to long-term load
forecasting, with a mean absolute error (MAE) of
0.05-0.12, a mean square error (MSE) of 0.005-0.025,

and a determination coefficient ( R*) of 0.97-0.99, which
is more accurate than the traditional model. In the 100%
high load scenario, the scheduling time is reduced by 6
minutes after joint training, and the energy loss rate is
reduced by 1.4%, significantly optimizing the operation
efficiency of the power grid. This study provides a
high-precision, low-latency solution for the intelligent
scheduling of power grids in high-load density areas.

Key words. Distribution network, Load forecasting,
High load density area, Bidirectional long short-term
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1. Introduction

Grid loads in high-load density areas are highly volatile,
and demand is irregular and unpredictable. These areas
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are accompanied by dense urban activities and
diversified electricity demand, and load changes are
frequent and rapid [1,2]. Power dispatching requires
high-precision load  forecasting and  real-time
optimization of grid load distribution to cope with
changing demand patterns, which brings great challenges
to grid dispatching [3,4]. Combined with the new
methods of deep learning and reinforcement learning, the
potential mode in the historical load data can be fully
explored, and the load dispatching scheme can be
optimized in real-time to enhance the power grid's
operation efficiency and stability.

The power system in high-load density areas faces many
challenges, and traditional load forecasting models
cannot effectively cope with the demand volatility in
such areas. Previous methods are capable of short-term
load forecasting, but for highly volatile regional power
grids, the accuracy and stability of the forecast results are
still insufficient [5,6]. These models rely too much on
historical load data for prediction and are unable to
capture complex dynamic changes [7,8]. Under the
influence of sudden demand fluctuations and local events
during peak hours, the models cannot adapt to these
changes in real-time. The nonlinear characteristics of the
high load density region and the interweaving of many
factors bring great challenges to the existing algorithms
[9,10]. Statistical analysis models based on time series
[11,12] and simple neural network models [13,14] can
provide a certain reference for load forecasting, but they
are not good enough in the face of the nonlinear
characteristics unique to high load density areas. These
old methods fail to fully utilize the complex feature
extraction capabilities of deep learning and have obvious
bottlenecks in the accuracy and efficiency of processing
large-scale, multi-dimensional historical load data
[15,16]. These methods are also relatively weak in their
ability to respond to emergencies and real-time
adjustments and are unable to make timely optimization
adjustments when grid load demand changes rapidly.

Regarding load optimization, some models attempt to
cope with demand fluctuations through scheduling
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optimization, but the optimization algorithms generally
have problems such as slow convergence speed and high
computational ~ complexity [17,18].  Traditional
optimization methods lack the ability to adapt to
dynamic changes in the power grid and cannot make
effective scheduling decisions in a short period of time,
which affects the operating efficiency and safety of the
power grid [19,20]. Previous load forecasting and
optimization methods are also difficult to provide
accurate solutions in high load density areas, and more
advanced algorithms are needed to improve their
accuracy.

This paper studies and constructs a new method for load
forecasting and optimization of high-load density
regional power grids that integrates improved BiLSTM
and DRL to address the shortcomings of existing models
in dynamic scheduling and accurate prediction. The
study combines the time series prediction capability of
BiLSTM with the adaptive scheduling capability of
reinforcement learning, uses reinforcement learning
algorithms to optimize load forecasting results in
real-time, simulates the feedback mechanism in power
grid operation, and optimizes load distribution and
scheduling strategies. The fusion method focuses on
improving the accuracy of load forecasting and how to
adjust the grid load in a real-time and dynamic
environment, so that the forecast results can quickly
adapt to complex changes in power demand. In terms of
model improvement and innovation, the BiLSTM
structure is improved, and the optimized network
structure and the attention mechanism is added to more
effectively obtain important information in historical
load data and improve the modeling ability of nonlinear
load changes. The experimental results prove that the
improved model has superior performance in short-term
to long-term load forecasting. In high load scenarios,
after 6 minutes of joint training scheduling time, the
energy loss rate increases by 1.4%, improving the
accuracy of load forecasting and solving key problems in
complex scheduling and real-time optimization of power
grids in high load density areas. This provides a new
solution for intelligent scheduling and optimization of
power systems.

2. Related Work

On the problem of load prediction optimization, some
studies have used the LSTM (Long Short-Term Memory)
[21,22] model to predict power load and achieved good
results [23,24]. Liu T proposed a short-term photovoltaic
power prediction method that combined genetic
algorithm (GA) and LSTM, which optimized data
through wavelet denoising and GA's LSTM network
optimization. This method reduced about 98.43% and
98.97% in MAE and Root Mean Square Error (RMSE),
respectively, significantly improving the prediction
accuracy [25]. Rui H proposed a short-term power load
parallel forecasting method that combined variational
mode decomposition (VMD) and LSTM. VMD was used
to decompose load data, and LSTM was used to predict
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each component. The forecast result was then corrected
by combining external factors. This method effectively
reduced the daily load forecast error by 2.18% [26].
LSTM can better handle the long-term dependency
problem in time series data, but it still has certain
limitations when facing nonlinear and diversified load
fluctuations. Some  studies  have  introduced
reinforcement learning algorithms [27,28] and tried to
apply them to power grid load optimization [29,30].
Zhang Y proposed a model-free optimization algorithm
for power distribution systems using multi-agent DRL,
which transformed the problems in the distribution
network into an intelligent deep Q network framework,
avoiding the need to solve the optimization model under
time-varying operating conditions. This method
performed well in voltage regulation and power loss
reduction [31]. These studies have made some progress,
but their models are relatively complex and have poor
adaptability to real-time scheduling. Current research has
not yet been able to simultaneously address the dual
challenges of load forecasting accuracy and optimized
scheduling, which has not been effectively studied in
high-load density areas.

On the problem of power load prediction accuracy and
scheduling optimization, some scholars have used the
BiLSTM algorithm to optimize the power grid load
forecasting accuracy, successfully improving the load
forecasting performance and the stability of the power
grid to a certain extent [32,33]. Li F proposed a
multi-energy load prediction method based on BiLSTM
and parallel feature extraction network. The residual
network, convolutional block attention module, and
BiLSTM were combined to obtain spatial and temporal
features, and linear superposition was used to obtain
accurate prediction results. The prediction error of this
method was reduced by more than 20% [34]. Some
scholars have combined BiLSTM with DRL, trying to
use bidirectional learning and dynamic optimization to
improve the prediction effects, and have achieved good
optimization results. Liu P proposed a multi-type data
fusion framework based on DRL, combined with
BiLSTM extraction of stock data, technical indicators,
and K-chart features, excellent performance in Chinese
stock market and S & P 500 index data, achieving higher
profit and Sharpe ratio [35]. These methods have
improved the prediction effect to some extent, but few
studies have applied it to the research of power grid load
prediction. These studies are only optimized for specific
problems and are not suitable for the actual needs of high
load density areas, and the adaptability and versatility of
the model are limited. Therefore, combining BiLSTM
and DRL and performing joint optimization in multiple
scenarios organically are still an urgent problem to be
solved. In this paper, a new method for regional load
forecasting combining BiLSTM and DRL is studied and
constructed, which improves the structure of BiLSTM,
optimizes the network structure, and adds attention
mechanism to more effectively obtain important
information from historical load data. The reward
mechanism in the DRL algorithm is dynamically
adjusted, and the optimal scheduling scheme is learned.



Table 1. Methods comparison.

Method Category Advantages Applicable Scenarios

Basic LSTM dC;p;tures long-term dependencies; suitable for sequential Mid-/short-term load forecasting
Combines prediction with global optimization; enhances | Simple multi-objective

LSTM+GA . - I .
scheduling stability. optimization scenarios
Decomposes non-stationary signals; improves modeling of | Non-stationary, noisy load

VMD-LSTM . . .
high-frequency fluctuations. forecasting

BiLSTM Bidirectional learning High-variability load forecasting

DRL Optimization Models Dynamlcally adjusts s.chedullng strategies; adapts to | Real-time scheduling and demand
real-time demand fluctuations. response

fmproved BILSTM+DRL Co_m_bme_s b1d1rect10na_1 l_earmng, attention, and DRL; joint ngh-load-densn_y areas  with
training improves prediction-scheduling synergy. complex fluctuations

3. Method type is power load data. Noise and outliers are removed,

Figure 1 shows the load forecasting and optimization
process for power grids in high-load density areas. Load
data is collected from multiple power systems; data
cleaning is performed; noise and outliers are removed,
and data is processed using standardization and
normalization techniques. Data from different sources
can be input into subsequent models at a unified scale.
An improved BIiLSTM model is constructed, with an
added attention mechanism and optimized network
structure to enhance the model’s memory capacity and
nonlinear feature extraction capabilities. A reinforcement
learning model is used for dynamic optimization to
adjust grid load scheduling based on prediction results.
The BiLSTM and DRL models are jointly trained;
different optimization strategies are compared, and the
optimal strategy is selected to improve the load
forecasting accuracy and optimization stability, so as to
achieve accurate prediction and dispatch optimization of
power grid load. This process simply shows the training
and optimization process of the entire model, which
helps to understand how the various modules work

together.
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Figure 1. Load forecasting and optimization process for power
grids in high-load density areas

A. Load Data Collection and Preprocessing

This paper collects the historical load data of multiple
power systems (real-time load, peak, valley value,
seasonal change, etc.) in high load density area. The data

54

and data standardization and normalization techniques
are used to transform historical load data into a
consistent scale for subsequent training and validation of
the model. BiLSTM is implemented through the
following steps. 1) Structural optimization: the hidden
layer is increased to 3 layers, and the number of units is
expanded (128); the ReLU activation function is used to
alleviate the disappearance of the gradient and improve
the long-term dependency processing capability. 2)
Attention mechanism: the formula for calculating the
weight at each moment is introduced to dynamically
focus on the key period and enhance the sensitivity to
load  fluctuations. 3) Feature enhancement:
one-dimensional convolution is combined to extract local
remporal features and strengthen the multilayer
perceptron (MLP). The attention mechanism optimizes
memory ability by weighting historical information, and
convolution and MLP cooperate to improve the
extraction effect of complex features.

1) Data Collection and Cleaning

Electric load data in high load density areas is very
important for studying load forecasting and optimization
algorithms. Data collection focuses on representative
data sources covering multiple time periods to make the
data comprehensive and high-quality. The selected data
covers but is not limited to daily load, weekly load,
seasonal load fluctuations, etc. These data represent the
load changes of the power grid at different time scales.
During the data collection phase, cross-seasonal and
cross-regional data is obtained from different power
systems, covering peak load, valley load, and load
fluctuation. The data comes from the power supply
bureau, recorded by the monitoring system or smart
meter inside the power system, and exported through the
data interface. Multiple power systems have differences
in time granularity and load density. These data can
reflect the performance of the power grid under various
environmental conditions and provide sufficient
information for subsequent model training. Table 2
shows the power load data collection. Power system A
collects 13,357 daily load data, and each record
corresponds to a day's load statistics. Power system B
collects 5,217 weekly load fluctuation data, and each
record corresponds to the weekly load statistics. Power



system C collects 2,119 seasonal load difference data,

and each record corresponds to a quarterly load statistics.

Table 2. Power load data collection.

Data Source Time Granularity Data Type Feature Description Data Volume
Power System A | Daily Load Real-time Load Peak, Valley, Average 13,357 entries
Power System B Weekly Load Real-time Load Weekly Load Fluctuation 5,217 entries
Power System C Quarterly Load Seasonal Variation Winter/Summer Load Difference 2,119 entries

The data collected in the actual power system is
susceptible to noise and outlier influence, and the data
quality is not high, which affects the accuracy of load
forecasting. Data cleaning is an essential step in this case.
The detection of outliers can effectively identify data
points that deviate from the normal distribution. The
mean and standard deviation of the data are calculated.
Each data point is considered an outlier if it meets the
following conditions:

|xl. —,u| >30 (1)

If the deviation of the absolute value of a data point X,

from the mean xu  exceeds 3 times the standard

deviation o , it is determined as an outlier. Outliers are
data points that are sudden changes or deviate too much
from the rest of the data. Removing these data points can
reduce their impact on the model and improve the
accuracy of the data set. The remaining data is further
eliminated using IQR (Interquartile Range). The IQR

method calculates the upper and lower quartiles O, and

Q, of the data and defines the normal range of the data

IQR and O,

represent the third and first quartiles. Data outside this
range is considered extreme outliers and needs to be
removed. The cleaning operation of these data ensures
the quality and consistency of the data set, which helps to
train the subsequent model efficiently; the statistics of
load data cleaning are shown in Table 2.

is the interquartile distance, and O,

In the case of noise in the data, simply removing data
points is not enough. The moving average method is
used to smooth the data and reduce the impact of
short-term fluctuations. The data at each moment is
averaged using the data in its adjacent window. The
window size is w , and the calculation method is:

. N
For each data point x, , the average of its — neighbors
2

is taken as the smoothed value y,. The moving average

method can average adjacent data, effectively reduce
short-term random fluctuations, make the data more

as:
stable, and facilitate subsequent model training and load
forecasting. Removing noise also reduces the risk of
O —1.5xIQR to O +1.5xIQR  (2) overfitting and improves the adaptability of the model.
Table 3 is the statistics of load data cleaning.
Table 3. Statistics of load data cleaning.
Time Outlier . . Extreme Value PN
Granularity Proportion (%) Outlier Distribution Features Proportion (%) Cleaned Data Proportion (%)
Daily Load 59 Outhers_ durmg_ peak_ loa_d, significant 1.9 929
fluctuations during nighttime
Weekly Load | 2.1 System errors during low load periods | 0.7 97.2
Quarterly Outliers due to seasonal changes,
4.5 iy 3 92.5
Load extreme weather conditions

Table 3 shows the data cleaning statistics and outlier
distribution characteristics at different time granularities.
The time granularity is divided into daily, weekly, and
quarterly load data, reflecting the load fluctuation
characteristics at different time scales. The outlier ratio
refers to the proportion of outliers in the original data.
The daily load anomaly reaches 5.2%, indicating that
abnormal fluctuations are prone to occur during peak
hours due to sudden demand or measurement errors; the
quarterly load anomaly (4.5%) is mostly caused by
extreme weather or seasonal differences. The extreme
value ratio further distinguishes the proportion of
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extreme outliers. The cleaned data ratio shows the
proportion of valid data retained after cleaning,
indicating that after removing noise and outliers,
high-quality data is still retained for model training. The
outlier distribution characteristics of different time
granularities are significantly different: daily load
anomalies are concentrated in peak hours, while
quarterly load anomalies are strongly correlated with
seasonal changes. The data cleaning method combines
the 30 rule, IQR , and moving average method to
remove short-term random noise and retain long-term
trend information.



2)  Data Standardization and Normalization

The power load data in high load density areas comes
from different power systems. There are large differences
in data magnitude and range. Directly inputting it into
the model can lead to poor training results. Z-score is
used; the mean of each feature is transformed to O; the
standard deviation is adjusted to 1. This process gives all
data the same dimension and the influence between
different features. The Z-score normalization formula is
as follows:

xX—

’

)
O

x represents the original load data; x is the mean of

the feature; o is the standard deviation of the feature,
and x' is the standardized data. The standardized data
has a similar value range at the same scale to avoid
training deviations caused by differences in data
magnitude. The standardized data facilitates effective
learning using models such as neural networks,
improving stability and training efficiency.

Considering that the model has high requirements for the
distribution of input data, the Min-Max normalization
method is used to further process the data. The
normalization method compresses the data into a fixed
interval and eliminates the numerical differences
between features. The normalization formula is:

&)

min

x,, and x__ are the minimum and maximum values

of the feature, respectively, and x' is the normalized
data. This method can scale the load data to a uniform
range, reduce the dimensional differences between the
load data, and avoid the situation where large numerical
features dominate the model learning process. In many
deep learning-based optimization algorithms, normalized
data can accelerate the convergence process and improve
training efficiency.

Standardization and normalization eliminate the scale
differences between features and retain the trend
information in the time series data of load data.
Standardization and normalization effectively reduce the
deviation between different features, so that each feature
has a certain balance in model training. Normalized data
is more conducive to the training of models such as
neural networks, avoiding the influence of some feature
values on the learning effect of the model due to being
too large or too small.

B. Improved BiLSTM Model

Adding attention mechanism and optimizing network
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structure to the traditional BILSTM model improves the
model's ability to remember historical load data and
extract nonlinear features. The improvement helps to
accurately obtain complex time series patterns in load
data. The study improves BiLSTM through the following
steps. 1) Structural optimization: the hidden layer are
added, and the number of units is expanded; the
Rectified Linear Unit (ReLU) activation function is used
to alleviate the gradient vanishing and improve long-term
dependency processing capabilities. 2) Attention
mechanism: a  formula for calculating the weight at
each moment is introduced to dynamically focus on key
periods and enhance the sensitivity to load fluctuations. 3)
Feature enhancement: one-dimensional convolution is
combined to extract local remporal features and
superimposing the MLP layers. The attention mechanism
optimizes memory capacity by weighting historical
information, and convolution and MLP work together to
improve the extraction of complex features.

1) Network Structure Optimization and Memory
Improvement

On the basis of the conventional BiLSTM structure,
multiple key structure optimizations are added to
improve the memory of historical load data and the
ability to extract complex time series patterns. The
network structure is hierarchically adjusted to increase
the number and units of hidden layers and enhance the
model's memory when dealing with long-term
dependencies. The single hidden layer of the traditional
BiLSTM model is difficult to obtain complex patterns in
high-dimensional data. After adding more hidden units
and hierarchical structures, it can more effectively learn
the long-term temporal dependencies in the data. The
input is the preprocessed standardized time series data,
and the output is the load predicted value. The model
employs an activation function to prevent the gradient
from vanishing, and the Adam optimizer accelerates the
convergence. The number of hidden units in each layer is
h , and the output of each layer in the network can be
expressed as:

ho=f (W, [h_.x]+b,) (6)

W, is the weight matrix of the current layer; b, is the
bias term; 4, is the hidden layer state at the previous
’ fis the

activation function. The addition of multiple hidden
layers effectively improves the model's ability to process
deep information of time series data, allowing the
potential long-term dependencies in historical load data
to be more fully utilized.

moment; x, is the current input data;

By adding the convolution operation of the LSTM unit,
the data at each moment can be transmitted in time series
through the recurrent neural network, and local
convolution can be used to extract features. This
improvement enhances the ability to extract the load data.



The introduction of the convolution operation improves
the performance of the original BiLSTM structure in

processing  high-frequency fluctuations, short-term
mutations, and other features. The output is:
K

2= Lai=oWk Xk (7

w, is the weight of the convolution kernel, and x, , is

the data of the current time step and the previous time
steps. This processing method allows the network to
extract time series features, retain local changes in the
time series, and reduce the risk of losing key
information.

2) Attention Mechanism and Enhanced Nonlinear
Feature Extraction Capabilities

The study deliberately adds an attention mechanism to
improve the ability to extract complex nonlinear features,
allowing the model to automatically focus on important
moments and data areas that affect load changes. When
processing long time series, the traditional BiLSTM
model averages or weights all input time series
information, ignoring the potential key moments and
important patterns. The addition of the attention
mechanism allows the model to assign different weights
to the input at each moment during the training process,
highlighting the key periods of load change. This is
achieved by calculating the importance weight of the
input at each moment at each time step and weighting it
using the following formula:

L. ) B

Y oexp(e)

=

features and hidden layer state; 7 is the total length of
the time series data; ¢, is the attention weight of the

is the weight score calculated based on the input

data at that moment. The weighted input data can be used
to calculate the network output at the next moment,
allowing the model to focus on the most influential load
fluctuation period and improve the model's ability to
obtain time series patterns.

Combined with the MLP module, the output of each time
step is further nonlinearly mapped to improve the
expressive ability when processing complex time series
data. The multilayer perceptron adds a nonlinear
activation function to enable the model to learn more
complex feature patterns. The output of the network is
¥, , which can be calculated using the following formula:

y, = (W, -ReLU(W,-h,+b,)+b,) (9)

W, and W, and b, are bias

terms; the ReLU (Rectified Linear Unit) activation
function is used to improve the nonlinear mapping ability
of the network. This structure enables the network to
better adapt to the complex nonlinear characteristics
presented in the power load data, and uses back
propagation to optimize the feature extraction process,
making the load prediction results more accurate.

are weight matrices; b

0

Table 4. Comparison of improved BiLSTM structure configuration.

Confieuration Traditional Improved BiLSTM Description
£ BiLSTM Model | Model P

Number of Layers 2 layers 3 layers The improved model adds layers to capture more
complex temporal features.

Units per Layer 64 units 128 units Increaspd unllt.s improve model capacity and feature
extraction ability.

Activation Function Tanh ReLU ReLU prevents Vamshnjng_ gradients and enhances
non-linear mapping capability.

Optlmlzatlon SGD Adam Ada.m optimizer improves training efficiency and

Algorithm stability.

Attention Attention mechanism focuses on important moments,

. None Yes . . ..

Mechanism improving prediction accuracy.

Convol_utlon None 1D Convolution 1D convolution helps extract !ocal features, improving

Operation response to short-term fluctuations.

Time Step Input Fixed time steps Dynamic time steps Elﬂréz;rélga;djustment of time steps adapts to variations

Table 4 shows the comparison of the improved BiLSTM
structure  configuration. The traditional BiLSTM
parameters listed in the table are typical default
configurations of BiLSTM models in the deep learning
domain and are commonly found in earlier studies or
standard implementations. The traditional BILSTM uses
fewer layers and units, 2 layers and 64 units, which is
suitable for simpler time series data processing; the
activation function is Tanh, which is prone to gradient
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disappearance problems in long sequence training. The
optimization algorithm uses SGD (Stochastic Gradient
Descent), which has a slow update speed and results in
low convergence efficiency. The structure does not
introduce an attention mechanism and is unable to focus
on important information when processing long time
series data, which limits the prediction accuracy. The
improved BiLSTM adds a third hidden layer and 128
units to the traditional model to improve the ability to



process complex time series data. The ReLU activation
function solves the gradient vanishing problem, enabling
the network to better learn nonlinear relationships. The
optimization algorithm uses Adam, which greatly
improves training efficiency and convergence stability;
the introduced attention mechanism helps the model
dynamically focus on the input at critical moments and
improves sensitivity to timing changes. The added
one-dimensional convolution layer extracts local timing
features, improves the ability to respond to short-term
fluctuations, and further improves the accuracy of load
forecasting.

Improvements in nonlinear feature extraction have
enhanced the network's ability to learn short-term
mutations and long-term trends. They have also greatly
enhanced the network's ability to mine potential complex
patterns in multi-dimensional load data, allowing the
power load forecasting model to have a certain degree of
accuracy and stability in high load density areas. The
added attention mechanism and nonlinear feature
extraction method can more effectively identify the key
factors affecting grid load fluctuations, provide more
accurate prediction results, and provide a theoretical
basis for grid scheduling and optimization. Figure 2
shows the structure of the improved BiLSTM model,
covering the bidirectional LSTM layer, the attention
mechanism layer, and the multi-layer perceptron layer.
The processed historical load data of the high-load
density area is input into the bidirectional LSTM layer,
which consists of forward and reverse LSTMs to extract
features from past and future time series information and
obtain the global dependencies of the load data. The
attention mechanism dynamically adjusts the importance
of the input data according to the weights of different
time steps, effectively highlighting the key moments of
load changes. The adjusted data enters the multi-layer
perceptron layer, uses nonlinear activation functions to
extract deeper features, and outputs load forecasting
results based on the processed information. The
optimization of the entire structure aims to improve the
model's ability to identify complex load fluctuations, and
to more accurately predict power grid loads in high load
density areas.
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Figure 2. Improved BiLSTM model structure

58

C. Dynamic Reinforcement Learning Optimization

The DRL algorithm is introduced to dynamically
optimize the load forecast results, simulate the feedback
signals in the environment, adjust the grid load
scheduling plan in real-time, and solve the demand
fluctuation problem of the grid in high load density
areas.

1) Dynamic Optimization Process and Real-Time
Feedback Mechanism

In the load forecasting of power systems, a dynamic
optimization mechanism of DRL is introduced to solve
the problem of demand fluctuation in high load density
areas. The DRL mechanism can adjust the power grid
load dispatching plan in real-time according to the load
forecasting results, effectively coping with the
fluctuation of power demand. DRL constructs a
state-action space, making the load dispatch of the power
grid an optimization process. Each dispatch adjustment
can affect the future state of the power grid and be
corrected according to the real-time feedback signal.

The state space of power grid dispatch is composed of
multiple factors, covering the current load demand of the
power grid, available energy, system load distribution,
etc. According to these states, a dispatch strategy is
selected, that is, a set of appropriate control actions is
selected to achieve the optimal distribution of load. Each
dispatch adjustment of the power grid can return a
reward signal as an evaluation indicator of the
adjustment. The reward signal needs to consider the
accuracy of the prediction and the feasibility of the
scheduling scheme, and the reward calculation is:

r,=yr_ +Reward(q,,s,) (10)

r, represents the reward at the current moment; y is

the discount factor; 7_,
Reward (a,,s, )

2"t

is the reward at the previous

moment; is the immediate reward

calculated based on the current action and state. By
continuously optimizing the reward function, the model
can continuously improve the dispatching strategy and
gradually achieve the stable operation of the power grid
load and the effective control of demand fluctuations.

The intelligent agent uses the optimization method of the
QO -learning algorithm to learn the state-action value.

Each time the agent selects an action, it adjusts its
strategy based on the current state and action feedback,
gradually approaching the optimal load scheduling
solution. The core formula for updating the O value is:

O(s,.a)= Q(s,,a,)+a[r,+y n}axq s .d) —d st,a)} (11)



O(s,.a,) represents the state-action value of selecting

action «a, under state s,,and « is the learning rate.

y is the discount factor; 7 is the reward at the current

t
moment; a’ is all possible actions at the next moment.
By continuously updating the Q value, the agent can

gradually learn the strategy that makes the power grid
load scheduling plan optimal.

2)  Dynamic Adjustment and Long-Term Optimization

Goals

The load forecasting and optimization of power grids in
high load density areas not only face the problem of
short-term demand fluctuations, but also the requirement
of long-term stability. The dynamic reinforcement
learning algorithm simulates the feedback signal of the
long-term system and adjusts the load dispatching
strategy of the power grid, which can not only solve
short-term fluctuations but also maintain long-term
stability and efficiency. The study adopts a strategy of
maximizing long-term rewards, so that the model can
ensure real-time adjustment and consider the long-term
optimization of power grid operation.

The model adopts a reward mechanism based on
long-term discounts. Each decision not only plays a role
in the short-term system load balance, but also has a
positive impact on future load demand fluctuations. In
actual operation, an iterative update strategy is used to
maximize the long-term expected rewards of all
state-action pairs, which is expressed using the following
optimization objectives:

J(m)=B[ Xl (12)

J (n) represents the long-term reward expectation of

the optimization strategy m , and y is the discount

factor. By repeatedly optimizing this objective function,
the model can gradually form a load scheduling strategy
that is both adaptable to short-term load changes and has
long-term stability.

Dynamic reinforcement learning also enables dynamic
tuning at different time scales. In the face of sudden load
fluctuations, the algorithm can quickly adjust the load
scheduling strategy to respond to changes in
instantaneous demand with minimal energy loss and
system fluctuations. By introducing a reinforcement
learning algorithm with environmental adaptation
function, the system can adjust the dispatching plan in
real-time and predict future load demand under different
load demands and environmental conditions, effectively
solving the problem of demand fluctuations in high load
density areas.

Power grid load dispatching not only relies on demand
forecasting at the current moment, but also combines the
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time series mode of historical data to ensure the
rationality and efficiency of power grid load dispatching
plans. The introduction of dynamic reinforcement
learning can dynamically adjust strategies based on
feedback signals. By using long-term strategy
optimization, the power grid can cope with sudden
demand fluctuations and maintain efficient and stable
operation.

D. Joint Model Training and Optimization Strategy

BiLSTM and DRL are jointly trained, and by comparing
different optimization strategies, the optimal strategy is
selected to achieve the coordinated improvement of load
forecasting and optimization. The model is updated
through multiple rounds of iterations to improve the
accuracy of load forecasting and the stability of
optimization.

1) Joint Training Strategy and Collaborative

Optimization Process

The prediction and optimization of high load density
areas need to combine the advantages of dual models and
combine the two core modules. The training is designed
to be multiple rounds of iterations, and the accuracy of
load forecasting and scheduling schemes are alternately
optimized in each round of training. The goal of training
is to minimize the load forecast error and ensure that the
forecast results can be optimized during the scheduling
process to achieve the synergistic improvement of load
forecasting and optimization strategies.

The joint training strategy requires the mutual influence
and adjustment of the two sub-models during the
optimization process. In the training of the load
forecasting model, the current predicted load results are
used as input to adjust the grid dispatching and achieve
the synchronous update of load forecasting and
optimization objectives. A joint loss function is used to
evaluate the performance of the two models. The loss
function is the traditional load forecasting error term,
taking into account the system operation cost and energy
loss caused by dispatch optimization. The optimization
objective is:

Ltotal = ﬁ'lLforecast + jQLuptimize ( 1 3)

L
L

‘optimize

is the loss function of load forecasting, and

forecast

is the loss function of scheduling optimization,

reflecting the energy loss and time delay in scheduling.
A and A, are weight coefficients used to balance the

impact of forecast error and optimization cost. By
iteratively adjusting these parameters, load forecasting
and optimization strategies can be synergistically
improved to achieve accurate prediction and stable
optimization of power grid load.

Each round of iteration uses the back propagation



algorithm to update the model parameters. The load
forecasting part can affect the scheduling optimization
strategy, and the feedback signal of scheduling
optimization can reversely affect the learning process of
the load forecasting model. This two-way information
flow allows the two to complement each other, gradually
improving the accuracy of power grid load forecasting
and the effectiveness of scheduling, and achieving the
synergistic effect of load forecasting and scheduling
optimization.

2)  Multi-Round Iterative Update and Optimization
Stability

The iterative update mechanism of the joint training
model in multiple training rounds improves the stability
of prediction performance and scheduling optimization.
Each round of iteration can not only optimize the
prediction performance, but also dynamically adjust the
power grid load dispatching strategy according to the
current prediction error. The high matching degree
between the prediction results and the actual power grid
demand is required, so as to avoid the problem of
overfitting or poor adaptability caused by a single model.

A gradual optimization strategy is used in multiple
iterations, with the weight of the loss function
dynamically adjusted in each round of update. When the
load forecasting model has a large prediction error, the
weight of its loss function is increased to force more
accurate prediction training; when the prediction
accuracy is close to the target, the weight of the
scheduling optimization is appropriately increased to
improve the accuracy of the optimization solution. The
strategy can be implemented using the following
formula:

}L«|(t+1) — 21(1) . (1 T Mtorecast )

14
AZ(HI) :ﬁ'z(t) .(1—770ptimize) "

A9 and A\ represent the weight coefficients in the
¢ iteration, and 7. ANd 70, are adjustment

coefficients, controlling the balance between prediction
accuracy and scheduling optimization. The model
gradually adjusts these coefficients in multiple rounds of
training to strengthen the interaction between load
prediction accuracy and scheduling strategy.

With the increase in training rounds, the joint model can
gradually converge to a stable state. In this state, the load
forecasting accuracy and optimization stability reach the
best balance point, that is, the forecast results can reflect
the actual load fluctuations of the power grid, and the
dispatching strategy can efficiently allocate power grid
resources according to the forecast results to reduce
energy waste and load overload. The comparison and
selection of multiple optimization strategies can quickly
adapt to different load demand changes and power grid
load fluctuations in actual applications.

The multi-round iterative update mechanism makes the
entire model highly adaptable in complex power grid
environments. Each update can gradually improve the
prediction error and dispatch decision through the
feedback of historical data. The trained model finally
shows a higher prediction accuracy and optimization
effect in dealing with power demand fluctuations in
high-load density areas, improving the overall
performance of power grid load prediction and
optimization.

4. Method Effect Evaluation
A. Prediction Accuracy Evaluation

The study uses three indicators: MSE, MAE, and

determination coefficient R*. MSE is used to measure
the sum of squares of the differences between predicted
values and actual values, reflecting the overall magnitude
of the error; MAE calculates the mean absolute value of
the difference between predicted values and actual values,
reflecting the average level of error and more intuitively

showing the deviation of the model. The R*> value is
the ability to explain the variability of data. The
BiLSTM+DRL model in this paper and the traditional
BiLSTM, LSTM+GA (Genetic Algorithm), and
VMD-LSTM (Variational Mode Decomposition-Long
Short-Term Memory) models all use the same historical
load data set for training and prediction. The error of the
results can be quantified using the above indicators to
compare the performance of different models in terms of
prediction accuracy and verify the advantages of the
model in complex time series load forecasting tasks.
Table 5 configures the parameters of each model. LSTM
and BiLSTM themselves do not contain attentional
mechanisms, and the model presented here uses BILSTM
in combination with attentional mechanisms.

Table 5. Model parameter configuration.

Model Layers | Units per Layer Activation Function Optimizer Learning Rate Range
BILSTM 2 64 Tanh SGD 0.01~0.02
LSTM+GA 64 Tanh GA + Adam 0.003~0.008
VMD+LSTM 2 64 Tanh Adam 0.004~0.006
BiLSTM+DRL (Proposed) 3 128 ReLU Adam 0.0005~0.002
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Table 5 shows the core configuration parameters of the
four load forecasting models, including the number of
layers, the number of units per layer, the activation
function, the optimizer, and the learning rate range. The
typical configurations of BiLSTM, LSTM+GA, and
VMD-+LSTM all adopt a two-layer structure; the number
of units is 64; the activation function uses Tanh; the
optimizers are SGD, GA+Adam, and Adam, respectively.
The proposed BiLSTM+DRL adopts a three-layer
BiLSTM structure; the number of units is increased to
128; the ReLU activation function is introduced. The
optimizer is Adam, which has stronger feature extraction
capabilities. It is worth noting that LSTM and BiLSTM
themselves do not contain an attention mechanism. The
model proposed in this paper uses BiLSTM combined
with an attention mechanism. The data intuitively
reflects the structural characteristics of different models
and provides a basis for model comparison and
optimization.

Figure 3 shows the comparison of MAE and MSE of
different load forecasting models in different time
intervals. It can be seen that the BILSTM+DRL model
proposed in this paper shows better prediction accuracy
than other models in all time intervals. In short-term and
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long-term predictions, the MAE range is 0.05-0.12, and
the MSE range is 0.005-0.025. Both MAE and MSE are
low, indicating that the model can more accurately obtain
short-term and long-term fluctuations in load data. As the
prediction time increases, the errors of all models
converge slightly, and the BILSTM+DRL model
maintains good performance, showing its strong
generalization ability and adaptability. The traditional
BiLSTM model has a higher MAE when the prediction
time increases, which shows that it has limited ability to
obtain long-term time series patterns. The prediction
accuracy of the LSTM+GA model and the VMD-LSTM
model is also lower than that of the BiLSTM+DRL
model, and their performance in long-term prediction is
also insufficient. The data results show that in high load
density areas, load changes have a strong time series
correlation. The improved BiLSTM model introduces a
dynamic optimization mechanism of reinforcement
learning, which can more effectively adjust the grid load
dispatch and improve the overall prediction accuracy.
The advantage of BILSTM+DRL is that it combines the
two-way learning ability of historical data and the
real-time feedback adjustment ability of load demand
fluctuations, adapting to complex grid load fluctuation
patterns.

(b) MSE Comparison

0.04

0.02

0.01

5 10 15
Time(hours)

25

Figure 3. Comparison of load forecasting errors
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Figure 4 shows the comparison of the determination
coefficient values of different models in load forecasting

over time. BILSTM+DRL shows the highest R*> value
in all time periods, which is stable between 0.97 and 0.99.
This shows that the model has excellent fitting ability in
load forecasting and can accurately obtain the time series

relationship in load data. The R® value of the BILSTM
model is between 0.95 and 0.97. Although it can fit the
data well, it performs slightly worse in the prediction of

longer time intervals. The R*> value of LSTM+GA is
slightly lower and fluctuates more, mainly because the
model fails to effectively handle complex load time
series patterns, and the prediction accuracy is affected to
a certain extent. The overall performance of the
VMD-LSTM model is between BiLSTM and
BiLSTM+DRL. It has better time series learning ability,
but it still has certain shortcomings in complex load



fluctuations. These data reflect the differences in
adaptability and accuracy of different models in load
forecasting. The advantages of BiLSTM+DRL are
particularly obvious. It can provide more accurate and
stable forecasting results in the changing power load
demand, which is of great significance to the optimal
dispatch of the power system.

B. Optimization Effect

Figure 5 shows the load forecasting and optimization
scheduling effect. In the reward change diagram, the
reward signal shows a fluctuating trend, which reflects
the environmental feedback adjustment in the dynamic
optimization process. The cumulative value of the reward
is constantly changing, indicating that the system is
constantly adjusting its strategy based on real-time
feedback to achieve the optimization goal. This
fluctuation reflects that at different time points, the
optimization degree of load dispatch strategy is different,
adapting to the needs of grid demand fluctuation and
environmental changes. The load dispatch and actual
demand comparison chart shows the difference between
predicted load and actual demand. The actual demand
curve shows periodic fluctuations. Affected by seasonal
changes, weather conditions, and other factors, the
predicted load shows a relatively stable trend. The
difference between the two is mainly due to the fact that
the forecast model fails to fully capture the short-term
fluctuations in demand. In the case of high load or
sudden demand, the actual demand exceeds the predicted
value, which requires the load dispatch system to make
appropriate adjustments in actual applications. However,
overall, the forecast model can be very close to the actual
demand, reflecting the optimization effect. The energy
loss comparison chart reflects the difference in energy

loss between the dispatch strategies before and after
optimization. The optimized energy loss curve is
significantly lower than the actual dispatch curve. Under
the action of the optimization algorithm, the grid
dispatch plan has been improved, and energy waste has
been reduced. The system dynamically adjusts the
dispatching strategy according to load demand and
energy supply, successfully reducing unnecessary energy
losses and improving the overall operation efficiency of
the power grid. These data changes show that the
introduced DRL optimization algorithm can effectively
alleviate the energy loss problem in the power grid in
high-load density areas and improve the dispatching
efficiency of the power grid.
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Figure 5. Load forecasting and optimization scheduling effect
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Figure 6. Comparison of scheduling time and energy loss rate

Figure 6 compares the dispatch time and power loss rate
of different load levels before and after the joint training
of the proposed model. Joint training significantly
improves scheduling time and energy loss rate. In the
comparison of dispatch time, as the load level increases,
the dispatch time shows an upward trend in both cases,
and the dispatch time after joint training is greatly
reduced at each load level. Joint training enables the
power grid system to respond to load fluctuations more
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quickly, optimizes dispatch decisions, and reduces
unnecessary time consumption. The dispatch time for
20% low load is reduced by 3 minutes, and the dispatch
time for 100% high load is reduced by 6 minutes,
showing that the dispatch efficiency of joint training in
handling high load has been significantly improved. The
comparison of energy loss rate shows that the energy loss
rate after joint training has been reduced at all load levels,
and the performance is more prominent in the high load



area. The energy loss rate under 100% high load
decreases by 1.4%, which shows that the load forecasting
and scheduling strategy optimized by joint training can
allocate resources more accurately under high load
conditions, avoiding over-scheduling and energy waste.
Joint training improves scheduling accuracy and
decision-making efficiency, reduces scheduling time, and
effectively reduces energy loss, thereby improving the
operating efficiency and energy utilization rate of the
power grid system.

C. Computational Efficiency Evaluation

The prediction time of each model can be compared to
evaluate the computational efficiency of the improved
model when processing load data of different scales. This
indicator helps to determine the feasibility of the model
in practical applications.

The bar chart in Figure 7 shows the prediction time of
each model under different data volumes. When the data
volume increases from 1,000 to 5,000, the prediction
time of all models increases. The prediction time of the
BiLSTM+DRL model is always lower than that of other
traditional models. As the data scale increases, the
computing resources and processing time required by the
model also increase. When processing large-scale data,
traditional models have efficiency bottlenecks. The
optimized structure and joint training strategy of the
BiLSTM+DRL model enable it to effectively improve
computing efficiency and reduce prediction time when
processing complex time series data. In addition, DRL
uses dynamic optimization and strategy iteration to
enable load forecasting to gradually converge during the
training process, further reducing computing time. When
the amount of data increases, the prediction time of
LSTM+GA and VMD-LSTM increases significantly,
reflecting that these two traditional methods have the
problem of excessive computational overhead when
processing large amounts of data. Although BiLSTM
performs well, its computational efficiency is still not as
good as the BILSTM+DRL model.
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Figure 7. Comparison of prediction time under different data
volumes
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5. Conclusions

This study constructs a load forecasting optimization
model for high-load density regional distribution
networks based on improved BiLSTM and DRL, and
improves load forecasting accuracy and grid dispatching
efficiency through joint training. Regarding load
forecasting, the improved BiLSTM model introduces an
attention mechanism and optimizes the network structure,
which improves the ability to remember historical load
data and extract nonlinear features, and can more
accurately obtain complex time series patterns in load
data. Regarding dispatch optimization, the DRL
algorithm uses a real-time feedback mechanism to
dynamically optimize the forecast results, effectively
solving the demand fluctuation problem of high-load
density regional power grids and improving the stability
and real-time performance of grid load dispatching. The
experimental results show that compared with the
traditional BiLSTM, LSTM+GA, and VMD-LSTM
models, the proposed BiLSTM+DRL model has a mean
absolute error (MAE) of 0.05-0.12, a mean square error
(MSE) of 0.005-0.025, and a determination coefficient

(R*) of 0.97-0.99. In the 100% high load scenario, the
scheduling time is reduced by 6 minutes after joint
training, and the energy loss rate is reduced by 1.4%,
showing obvious advantages in load forecasting accuracy
and scheduling optimization effect. The prediction time
is significantly lower than other models under large data
volume. After joint training, the power loss rate is
effectively reduced, and the scheduling time is also
greatly shortened. The improved model improves the
prediction accuracy, optimizes the power grid scheduling
efficiency and power utilization, and has strong practical
application value. Future research can further optimize
the feedback mechanism of the DRL algorithm, explore
more efficient multi-objective optimization methods, and
further improve the performance of power grid load
forecasting and optimization.
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