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Abstract. Traditional collaborative exploration methods
for mineral resources and renewable energy often rely on
manual experience and simplified models, resulting in
low efficiency and precision in mineral resource and
renewable energy exploration, as well as apparent
deficiencies in multi-source data fusion and
environmental impact assessment. In response to this
situation, this paper combines the intelligent processing
technologies of remote sensing data, such as
convolutional neural networks (CNNs) and long
short-term memory (LSTM) networks, to improve the
spatial recognition and time series analysis capabilities of
mineral resources and renewable energy exploration,
realize the precise identification of resources,
spatiotemporal change monitoring, and collaborative
development, and optimize resource allocation and
environmental impact assessment. During the research
process, this study first uses multi-source fusion
technology of remote sensing data to preprocess optical
images, radar data, and geological data to ensure the
comprehensiveness and diversity of the data. Then, CNN
is used to extract spatial features. LSTM is used to
analyze temporal information to construct a multimodal
deep learning framework for the collaborative
exploration of mineral resources and renewable energy.
Subsequently, the effectiveness of the proposed method
is verified through experimental design. The
experimental results indicate that the joint model
constructed in this paper performs well in exploration
precision, computational efficiency, resource
consumption, and model robustness. When exploring
1,000 remote sensing images, the proposed model has an
accuracy of 85.6% and a recall of 82.3%, demonstrating
high exploration precision. When processing data sets of
different sizes, the processing efficiency of the model in
this paper is 2.19 images/second, 2.15 images/second,
and 2.09 images/second, respectively, which performs
better than most control groups. Comprehensive analysis
shows that the model constructed in this paper exhibits
excellent performance in many aspects and can provide
adequate support for the practical application of remote
sensing images.
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1. Introduction

As global energy transformation and environmental
protection become the focus of international attention,
the coordinated exploration of mineral resources and
renewable energy has gradually become an important
way to cope with the energy crisis, reduce carbon
emissions, and achieve sustainable development [1-3].
Due to the growing demand for renewable energy in
various countries and the necessity of continuous mining
of mineral resources, the efficient joint exploration and
development of mineral resources and renewable energy
has become an important research topic in the current
energy field [4,5]. The exploration research of mineral
resources and renewable energy should become an
important part of the research on spatial distribution,
temporal changes and environmental impact assessment
[6-8]. Traditional exploration methods mainly rely on
manual experience, simplified models and single data
sources [9,10]. Their exploration efficiency and accuracy
are low, especially in multi-source data fusion and
environmental impact assessment. Specifically,
traditional methods cannot effectively integrate
multi-source information such as optical images, radar
data and geological data, resulting in insufficient
accuracy of resource identification and timeliness of
spatiotemporal change monitoring. In addition,
traditional methods lack systematicity in environmental
impact assessment and cannot fully predict the long-term
impact of resource development on the ecological
environment, thus affecting the balance between resource
development and environmental protection.

To overcome these challenges, this paper proposes an
improved method based on remote sensing data
intelligent processing technology, which combines
convolutional neural networks (CNN) and long
short-term memory networks (LSTM) to achieve
accurate identification and spatiotemporal change
monitoring of mineral resources and renewable energy
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collaborative exploration. Compared with traditional
methods, this method has made significant improvements
in multi-source data fusion and environmental impact
assessment. First, in terms of multi-source data fusion,
CNN can extract high-precision spatial features from
remote sensing images, while LSTM can capture
dynamic change information in time series data, thereby
achieving a comprehensive interpretation and dynamic
monitoring of resource distribution. This combination
not only improves the recognition accuracy of the
spatiotemporal distribution characteristics of mineral
resources and renewable energy, but also enhances the
adaptability to complex terrain and climatic conditions.
Secondly, in terms of environmental impact assessment,
this method can analyze the dynamic trend of resource
development through the time series modeling capability
of LSTM, while the spatial feature extraction capability
of CNN can monitor the spatial changes of mining areas
and renewable energy areas in real time. This
spatiotemporal analysis capability provides a more
comprehensive basis for environmental impact
assessment, helps to reduce the negative environmental
impacts in collaborative exploration, and ensures a
balance between resource development and
environmental protection.

In addition, this study also aims to optimize resource
allocation and improve the accuracy of environmental
impact assessment, especially to reduce the negative
environmental impact in collaborative exploration and
ensure the balance between resource development and
environmental protection. These research results provide
a new intelligent method for the exploration of mineral
resources and renewable energy, and a new technical
path for promoting global energy transformation and
achieving sustainable development goals, thus providing
all-round support for the effective development of
mineral resources and the joint utilization of renewable
energy.

Main contributions: (1) An effective remote sensing
image exploration model is established. From the
experimental results, the model has high exploration
precision and short processing time on data sets of
different scales, which improves the effectiveness of
remote sensing image exploration. (2) The model’s
resource consumption and computational efficiency are
evaluated. To promote the application of the model in
large-scale remote sensing image analysis, this paper
rigorously evaluates the model’s computational
efficiency and resource consumption at different data
scales. (3) The robustness of the model is tested. Noise
interference experiments verify that the proposed model
still maintains high exploration precision and recall in a
high-noise environment, showing good robustness.

2. Literature Review

As an important exploration method, remote sensing
technology has been widely applied to the fields of
mineral resources, renewable energy, etc. [11,12]. As the

remote sensing platform technology advances
continuously, the types of remote sensing data and spatial
resolution have been continuously improved, and
significant results have been achieved in resource
distribution analysis, identification, exploration, and
monitoring [13-15]. By integrating multi-source remote
sensing information represented by high-resolution
images, optical images, and radar data, it is possible to
more accurately interpret the spatial distribution
characteristics of mineral resources, analyze resource
evolution, and conduct dynamic monitoring. In
renewable energy, remote sensing data plays an
indispensable role in resource potential assessment of
solar energy, wind energy, and other resources,
environmental monitoring, and other aspects, providing
reliable data support for sustainable development [16].
However, although remote sensing technology has
realized remarkable results in resource exploration, it
still faces challenges in multi-source data fusion,
spatiotemporal feature extraction, and environmental
impact assessment [17-19]. In recent years, intelligent
processing technology, especially deep learning
technology, has had great development potential in the
intelligent analysis of remote sensing data. CNN
performs well in image feature extraction and can
efficiently extract spatial features in remote sensing
images and improve the precision of resource
identification [20]. LSTM has unique advantages in time
series data analysis and can capture dynamic information
about data changes over time. It is particularly suitable
for temporal and spatial trend analysis of mineral
resources and renewable energy [21]. Although some
progress has been made in the application of deep
learning technology in remote sensing data processing, it
still faces many challenges in large-scale data processing,
algorithm optimization, and model generalization
[22-24]. In addition, the combination of deep learning
and traditional remote sensing technology remains a hot
and difficult research topic on improving its applicability
in complex environments. The collaborative exploration
of mineral resources and renewable energy has been a
research direction that has received much attention
recently, which can help promote energy transformation
and realize sustainable development [25,26]. Traditional
mineral resource exploration methods are mainly based
on manual experience and simplified models, and their
results are often inefficient and lack systematicity in
environmental impact assessment and resource allocation
[27,28]. With the rapid development of intelligent
technologies, collaborative exploration methods based on
deep learning and remote sensing data have gradually
emerged in recent years and become a new trend [29].
Dong L and Wei J T both pointed out in their 2023 study
that most existing research focuses on the exploration
and development of a single resource, and there is little
systematic discussion on the coordinated development of
mineral resources and renewable energy [30,31].
Therefore, using remote sensing data and intelligent
processing technology to improve the efficiency and
precision of the collaborative exploration of mineral
resources and renewable energy is the future
development direction. This study aims to fill the gap in
this area and optimize and apply the collaborative
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exploration method of mineral resources and renewable
energy using remote sensing data intelligent processing
technology based on CNN and LSTM.

3. Implementation of Collaborative Exploration
Method for Mineral Resources and Renewable
Energy Based on CNN and LSTM

In this paper, CNN and LSTM are selected as the main
models because CNN is good at extracting spatial
features from remote sensing images, while LSTM can
effectively capture dynamic changes in time series data.
This combination not only meets the dual needs of
spatial identification and temporal analysis in the
coordinated exploration of mineral resources and
renewable energy, but also improves the accuracy of
resource identification and the timeliness of
spatiotemporal change monitoring through multi-source
data fusion.

A. Remote Sensing Data Acquisition and
Preprocessing

1) Data Collection

Figure 1. Some examples of remote sensing images.

The data collection work for this study provides key
support for the collaborative exploration of mineral
resources and renewable energy. The remote sensing data
comes from multiple satellite platforms and aerial remote
sensing systems, covering specific geographical areas,
including mountainous areas rich in mineral resources
and coastal areas with great potential for renewable
energy. The optical image data mainly comes from the
Landsat 8 satellite of NASA (National Aeronautics and
Space Administration) in the United States, covering
remote sensing images from 2018 to 2024. The data
resolution is 30 meters, which is suitable for surface
resource identification and spatial distribution analysis,
especially for monitoring mineral resources in plateaus
and mountainous areas. The radar data comes from the
Sentinel-1 satellite of the European Union’s Copernicus
program, which acquires synthetic aperture radar (SAR)
data from 2019 to 2022. It has a high temporal and
spatial resolution and can penetrate clouds and

atmospheric interference, which is suitable for resource
detection in complex terrain and climatic conditions and
is mainly used for resource detection in mountainous
areas and coastal wetlands. Figure 1 presents some
images.

High-resolution drone image data is acquired by the
research team in specific mineral exploration areas in
2023. The data resolution is 10cm, which is suitable for
high-precision local exploration and is mainly used for
local resource exploration in urban areas and mining
areas.

In addition, ground observation data also provides
supplementary support for remote sensing data.
Meteorological data, such as temperature, humidity, and
wind speed, and information, such as soil type and
vegetation cover, are collected in the selected mining
area and renewable energy potential assessment area,
covering an area of about 5,000 square kilometers. The
amount of remote sensing image data accumulates to
more than 3,000 pieces, covering various time periods,
climate conditions, and geographical areas, providing
rich data support for subsequent analysis and model
training.

2) Data Preprocessing

The remote sensing image data collected in this study are
thoroughly preprocessed to ensure that the data quality
meets the needs of further analysis. First, geometric
correction is performed to address the geometric
distortion in the remote sensing image. The image is
precisely aligned with the geographic coordinate system
by matching with the ground control points. This process
solves the spatial inconsistency problem caused by
sensor bias, shooting angle changes, or terrain factors,
ensuring the effective fusion of multi-temporal and
multi-source data, which is especially important when
conducting temporal and spatial comparative analysis. In
the geometric correction process, the following formulas
are used to adjust the geometric distortion of the image:

1 2 3x a x a y a    (1)

4 5 6y a x a y a    (2)

Among them, x and y represent the coordinates
after correction. x and y represent the coordinates in
the original image. 1a , 2a , 3a , 4a , 5a , and 6a are
the transformation parameters obtained by least squares
fitting.

Considering that different data sources have significant
differences in spatial resolution, spectral response
characteristics, observation angles, and sensor
configurations, this paper introduces a series of
multi-source data standardization and differential
processing strategies in the data preprocessing stage to
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improve the quality of remote sensing data fusion and the
consistency of modeling foundation.

First, in the spatial dimension, in order to address the
problem of inconsistent resolution, a method based on
bicubic interpolation is used to resample all images to a
uniform spatial resolution (set to 10m in this paper) to
ensure a consistent spatial scale for subsequent feature
extraction. For geometric distortion, the remote sensing
data of each phase are aligned to a unified geographic
coordinate frame through an orthogonal geometric
correction method based on control point matching, and
the registration error is controlled within 0.5 pixels.

Second, in the spectral dimension, in order to address the
differences in band settings between different sensors,
this paper handles spectral differences through the
strategies of band matching and feature mapping.
Specifically, for the C-band radar data of Sentinel-1 and
the optical band data of Landsat, principal component
analysis (PCA) is used to reduce the dimensionality of
the spectral information and construct a unified feature
space. On this basis, the spectral correlation between
different data sources is quantified by mutual
information to screen out fusion bands with
complementary information. For example, Band 5 of
Landsat and the VV polarization intensity of Sentinel-1
show a strong correlation in vegetation monitoring, and
are used as joint features for subsequent modeling.

In the time dimension, linear interpolation and Gaussian
weighted smoothing are used to fill and denoise the time
series to reduce modeling errors caused by inconsistent
observation intervals or outliers.

Based on the above preprocessing, radiation
normalization and atmospheric correction are further
performed on the image data. In order to reduce the
deviation caused by changes in meteorological
conditions, sensor response differences or changes in
illumination, this paper uses the 6S (Second Simulation
of Satellite Signal in the Solar Spectrum) radiation
transfer model based on the physical model for
atmospheric correction. This model can accurately
simulate the propagation process of solar radiation in the
atmosphere, taking into account parameters such as
atmospheric thickness, aerosol type, water vapor content
and ozone concentration, and can better reflect the real
physical process than statistical regression or PCA
methods. The corrected surface reflectivity \ rho  is
expressed by the following formula:

 sat path

sun coss v

L L

T T E






 


   (3)

Among them, satL is the radiation brightness received
by the satellite, pathL is the path radiation (i.e.,
atmospheric scattering contribution), sT and vT are
the atmospheric transmittances from the sun to the
surface and from the surface to the sensor, respectively,

sunE is the solar irradiance, and  is the solar zenith
angle. Compared with the atmospheric correction
methods based on PCA and statistical regression, the
radiation transfer model can more accurately simulate the
influence of the atmosphere on spectral information,
thereby more accurately restoring the surface radiation
value. The PCA-based method mainly focuses on the
principal component analysis of the data, which may not
fully consider the physical characteristics of the
atmosphere. The statistical regression-based method
requires a large amount of training data and may be
limited by model assumptions. The radiation transfer
model can more accurately describe the influence of the
atmosphere on spectral information through physical
modeling, and is suitable for complex atmospheric
environments and scenes with high precision
requirements.

In response to noise interference in the image, this study
uses Gaussian filtering technology to remove sensor
noise and environmental noise in the data. The denoising
process is as follows:

   denoised
1, ,k k

j ki k
I x y I x i y j

N 
    (4)

 denoised ,I x y represents the pixel value of the denoised

image.  ,I x y represents the pixel value of the original
image. k represents the size of the filter window. N
represents the number of pixels in the window.
Compared with other denoising methods, such as median
filtering and wavelet denoising, Gaussian filtering can
better retain image details while removing noise. Median
filtering is effective in removing salt and pepper noise,
but may lose image details when processing Gaussian
noise. Wavelet denoising can better retain image details,
but the computational complexity is high and it is
sensitive to parameter selection. Gaussian filtering can
better retain the main features of the image while
removing noise through smoothing, and is suitable for
preprocessing of remote sensing images.

B. CNN for Spatial Feature Extraction

1) Overview of CNN Model

CNN is a popular deep learning model used to solve
computer vision problems, especially feature extraction
and image classification. Figure 2 presents its structure:
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Figure 2. CNN structure.

The basic architecture of CNN consists of several layers,
namely convolutional layers, pooling layers, and fully
connected layers. Each layer has a different purpose by
gradually extracting and modifying the features of the
input data, allowing the model to automatically obtain
valuable information from the image. The key
component of CNN is the convolutional layer, which
extracts local area features by sliding the convolution
kernel on the image. Formula (5) can be used to
represent the convolution operation:

       , , ,nm
I K i j I i m j n K m n     (5)

Low-level features in images can be identified through
the convolution method, such as edges, textures, and
shapes. By stacking multiple convolutional layers, it is
able to capture abstract features at a higher level.
Through the downsampling process, the pooling layer
reduces the dimension of the feature map retrieved by the
convolutional layer, thereby minimizing the amount of
computation while improving feature elasticity. Max
pooling and average pooling are common pooling
operations. The following is the expression of the max
pooling operation:

 
 

 
,

, max ,
m n R

P i j I i m j n


   (6)

Among them,  ,P i j is the output after pooling, and
R is the area of the pooling window. Pooling can
effectively remove irrelevant noise while retaining the

essential information of the features. After passing
through multiple convolutional layers and pooling layers,
the feature map is transmitted to the fully connected
layer at the end of the network. The fully connected layer
couples the output layer with high-level abstract features
to complete image classification or regression operations.
The fully connected layer helps the model make final
predictions by transferring the spatial features extracted
by the convolutional layer to the final output category or
value [32].

2) Spatial Feature Extraction

In remote sensing image analysis, spatial feature
extraction is the core link to understanding the
distribution of geographical areas and target objects.
CNN can effectively identify complex terrain, mineral
resource distribution, and renewable energy potential
areas by extracting spatial features from images layer by
layer. The convolutional layer of CNN first focuses on
the extraction of low-level features, such as edges, corner
points, textures, and basic shapes. These features are the
most direct spatial information in the image, especially in
remote sensing images of mineral resource distribution.
For example, the boundaries of mining areas usually
appear as strong grayscale or color changes. The
convolution operation can effectively capture these edge
features and then calibrate the location of the mining area.
The convolution kernel performs local convolution on
the image through a sliding window, thereby extracting
contrast differences in the image and helping to analyze
the boundaries of mining areas and their spatial
distribution characteristics.
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As the network level deepens, CNN further extracts more
abstract spatial features. Deep convolutional layers can
identify more complex geographical features, such as the
distribution pattern of mining areas, mountains, hills, etc.
At this time, the convolution kernel not only focuses on
low-level edges or textures but also captures more
complex shape and structure information. Features such
as terrain ups and downs and river distribution are
usually manifested as unique textures, colors, or shapes
in images. Deep convolutional layers can precisely
identify these complex features. This process can be
expressed by the formula:

     11
, ,K

l l lk
F i j I i m j n W k

    (7)

 ,lF i j is the feature extracted by the l -th

convolutional layer.  lW k is the convolution kernel of
the l -th layer. 1lI  is the feature map of the previous
layer. This process enables deep feature maps to help the
network understand more complex spatial patterns in the
image.

After feature extraction, the pooling layer further
simplifies the image representation by reducing the
dimension, enhancing the model’s robustness to complex
terrain features. Especially in remote sensing images
with complex climate and geographical conditions, the
pooling operation helps to remove redundant information
and retain key features. Pooling operations commonly
use maximum pooling and average pooling, among
which maximum pooling retains the most significant
features in the local area, which is particularly important
for extracting spatial features such as mining area
boundaries and terrain changes.

In addition, CNN has the ability to extract multi-scale
features and can identify spatial features at multiple

scales. Features of different regions in remote sensing
images may be more significant at different scales. CNN
extracts features from various scales through multi-layer
convolution operations. It can identify large-scale terrain
features and precisely detect subtle changes in local areas.
For large-scale terrain such as mountains and hills, CNN
can capture its overall shape through deep convolution.
For detailed features such as roads and rivers, CNN
extracts more detailed local changes through shallower
convolution. This multi-scale learning process can be
expressed by Formula (8):

 scale 1

L
ll

F I K


  (8)

Among them, scaleF represents multi-scale features, and
L represents the total number of convolutional layers.
Through this mechanism, CNN can fully extract rich
spatial information from images, thereby providing
precise recognition of complex spatial distribution
features in remote sensing images.

C. LSTM for Time Series Data Analysis

1) Overview of LSTM Networks

LSTM is a special type of recurrent neural network
(RNN). Its core advantage is that it effectively
overcomes the gradient vanishing and gradient exploding
problems of traditional RNN when dealing with
long-term dependency problems. Traditional RNN finds
it difficult to effectively transmit long-term dependency
information when the time step increases, resulting in
poor performance when facing longer time-dependent
tasks. LSTM can retain long-term information and
suppress the flow of irrelevant information through its
unique network structure, significantly improving the
ability to model long-term dependency relationships.
Figure 3 presents the LSTM network structure:

Figure 3. LSTM network structure.
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The input gate, forget gate, and output gate are the three
main gating mechanisms that make up the LSTM
network. These gating methods improve the network’s
ability to identify long-term dependencies in time series
data by carefully regulating the flow of information and
deciding which data should be saved, modified, or
deleted. Specifically, which new data is written to the
memory cell is controlled by the input gate. To determine
which information should be retained in the memory cell
and measure the relevance of the incoming information,
it performs a weighted sum of the current input and the
network output at the previous moment to generate a
number between 0 and 1. The following is the
computation formula:

  1,t i t t ii W h x b    (9)

Among them, ti is the output of the input gate. The
Sigmoid activation function is represented as  . The
weight and bias of the input gate are represented as iW
and ib , respectively. The hidden state at the previous
moment is represented as 1th  . The input at the current
moment is tx . Which data is removed from the memory
cell is determined by the forget gate. Its computation
formula is:

  1,t f t t ff W h x b    (10)

The forget gate filters out irrelevant or outdated
information based on the current input and the output of
the previous moment, maximizes the content of the
memory cell, and generates a value between 0 and 1,
indicating the proportion of information retained. The
output gate is responsible for taking the output data of
the current moment out of the memory cell and sending
it to the subsequent layers of the network. Its
computation formula is:

  1,t o t t oo W h x b    (11)

It determines the impact of the memory content at the
current moment on subsequent computations and
predictions. By dynamically adjusting the output gate,
LSTM can flexibly control the flow of information at
different time steps, thereby improving the model’s
adaptability.

2) Time Series Data Analysis

Given its distinctive network architecture, LSTM
primarily serves to identify extended patterns within
sequential data observations, particularly in
environmental monitoring applications. Through
specialized control components, LSTM manages
temporal data streams by selectively retaining or
discarding information – that is to say, it learns complex

temporal relationships through adaptive memory
systems.

Specifically, the framework utilizes three regulatory
mechanisms: input regulators determine how incoming
observations update internal memory storage,
elimination filters decide which historical patterns
become less relevant over time, and output controllers
shape final predictions based on accumulated knowledge.
To put it simply, these components work together to
maintain useful historical patterns while filtering
outdated details that might reduce predictive accuracy.

In environmental monitoring scenarios, LSTM identifies
multi-year trends from accumulated datasets, such as
seasonal patterns in mineral availability, decade-long
climate variations, and evolving extraction processes
across mining operations. By progressively updating its
memory storage, the system detects cyclical phenomena
and applies these insights for forecasting future resource
conditions. For instance, it might predict mineral
depletion timelines through historical seasonal
fluctuations or estimate extraction timelines based on
cumulative usage trends observed in past decades.

Similarly for sustainable energy assessments, LSTM
recognizes connections between weather pattern shifts
and energy output fluctuations. Through analysis of
historical climate records, it forecasts production
variations in weather-dependent energy sectors like solar
farms or wind turbine arrays. By learning repeating
cycles within observational data, the technology supports
energy infrastructure planning through predictive models
of supply-demand imbalances – an approach that helps
optimize resource allocation despite inherent
environmental uncertainties.

D. Multi-source Data Fusion and Collaborative
Analysis

1) Multi-source Data Fusion

A key technical step in this study is multi-source data
fusion, which attempts to effectively combine multiple
forms of remote sensing data, including optical images,
radar data, geological data, etc., to extract more detailed
information and provide an detailed basis for resource
development. Since remote sensing data have different
spatial resolutions, temporal resolutions, and band
characteristics, efficiently utilizing the advantages of
various types of data for precise fusion has become the
key to improving resource exploration precision. Based
on the preprocessed data in the previous paper,
multi-source data fusion technology is adopted to
integrate these heterogeneous data into a unified
information platform, thereby further enhancing the
comprehensive application value of the data. Figure 4
presents the specific fusion process:
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Figure 4. Multi-source data fusion process.

This study uses principal component analysis (PCA) and
weighted average method for data fusion, aiming to
effectively deal with noise and inconsistency in
multi-source remote sensing data. In the process of
multi-source remote sensing data fusion, there may be
quality differences, noise interference and inconsistency
among the data sources, especially in the case of
different spatial resolutions, observation times and sensor
types. In order to meet these challenges, the data sources
are first processed by the weighted average method, and
different weights are assigned to different data sources.
This method weights each data source according to its
accuracy and reliability, effectively reducing the impact
of noise and errors. The weighted average formula is as
follows:

fused 1

n
i ii

D w D


 (12)

Among them, fusedD is the fused data, iD is the i -th
data source, iw is the weight of the i -th data source,
and n is the total number of data sources. In this way,
the advantages of each data source can be maximized in
the fusion process, and the impact of low-quality data
sources can be reduced, which is especially suitable for
situations where there are differences in the quality and
importance of data sources.

In addition, in order to further reduce the redundant
information and noise in multi-source data, this study
also uses PCA for dimensionality reduction. PCA
removes redundant information and reduces noise by
mapping high-dimensional data to low-dimensional
space, thereby enhancing the validity of the data.
Through orthogonal transformation, PCA can extract the
main features in multi-source data and further improve
the accuracy of subsequent analysis. Its mathematical

expression is:

Z = XW (13)

Among them, X represents the raw data matrix. W
represents the transformation matrix composed of
eigenvectors. Z represents the data after dimensionality
reduction. Through PCA, multi-source data can be
projected onto new coordinate axes, and the main
features of each data source can be extracted, further
improving the validity of the data and the precision of
analysis.

2) Collaborative Analysis

Collaborative analysis is the core of this study. By
combining spatial features extracted from different data
sources with temporal information, collaborative
development, utilization, and optimization of resources
can be achieved. To this end, this study combines the
spatial features extracted by CNN with the temporal
information analyzed by LSTM to build a joint modeling
framework for collaborative analysis of mineral
resources and renewable energy. Figure 5 shows the
collaborative analysis process:

Figure 5. Collaborative analysis process
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In the joint modeling stage, this paper constructs a
multimodal deep learning model that integrates
convolutional neural networks (CNN) and long
short-term memory networks (LSTM) to achieve the
coordinated optimization of spatial feature extraction and
time series modeling, and improve the intelligent level
and dynamic prediction ability of resource development.

First, CNN is used to preprocess and extract spatial
features of multi-source data such as remote sensing
images and radar monitoring layers. The input data
dimension is [T,C,H,W]=[12,3,128,128], where T
represents the number of time steps, C represents the
number of channels, and H and W represent the image
size. The CNN convolution layer adopts a three-layer
structure, each layer contains 32, 64, and 128
convolution kernels, the kernel size is 3×3, and the
activation function is ReLU. After convolution and
pooling operations, the output spatial feature dimension
is [T, 1d ]=[12,256], which provides rich spatial semantics
for subsequent time modeling.

The feature sequences extracted by CNN are spliced in
chronological order to construct the time series input

12 256
CNN

F  . At the same time, external time series
features such as meteorological parameters and historical
resource mining records 12 32

ext
F  are introduced,

and the feature splicing strategy is used to form a
comprehensive input vector:

  12 288
fusion CNN extConcat ,  F F F  (14)

This vector is input to a two-layer LSTM network for
dynamic modeling. The LSTM hidden state dimension is
set to hidden 128d to balance the model capacity and
generalization ability.

In order to enhance the model's ability to focus on key
features, an attention mechanism is introduced to weight
the fusion sequence. For the feature vector tf at the tth
time step, its attention weight is calculated as follows:

 
 

 T
1 1

1

exp
, tan

exp
t

t t tT
kk

e
e h

e




  


v Wf b (15)

The final weighted representation is:

1
ˆ T

t tt



f f (16)

This mechanism enables the model to dynamically f
ocus on the time periods and spatial regions that m
ost significantly affect resource changes. In the mod
el optimization phase, a joint loss function is used t
o integrate the classification performance of CNN an
d the prediction performance of LSTM:

total CNN LSTM    L L L (17)

Among them, CNNL is the cross entropy loss, LSTML ,
 = 0.4,  = 0.6. This parameter setting has been
proven to achieve a good balance between spatial pattern
recognition and temporal trend modeling.

E. Model Training and Optimization

1) Model Training

This study uses the CNN and LSTM combined
framework as the basis for model training. Both forward
propagation and backward propagation are stages of the
training process. CNN is used to extract spatial features
in forward propagation. LSTM is used to represent
temporal information in backward propagation. Finally,
the resource prediction results are obtained. Backward
propagation computes the gradient of the loss function
and gradually modifies the weights and biases of the
network to reduce the difference between the expected
results and the actual results. The mean-square error
(MSE) is used as the loss function in this paper to
measure the prediction error in the regression problem,
which can be expressed as a mathematical formula:

 21

1 ˆN
i ii

L y y
N 

  (18)

Among them, iy represents the true value, and ŷ
represents the model-predicted value. In optimizing
model parameters, this study uses the stochastic gradient
descent (SGD) algorithm and combines the momentum
term to accelerate convergence and avoid falling into the
local optimal solution. Table 1 lists the initial
hyperparameter settings:

Table 1. Initial hyperparameter settings.

Learning Rate 0.001 Momentum coefficient 0.9

Batch Size 32 Training epochs 100 epochs

Optimization Algorithm SGD with momentum Activation functions ReLU and tanh

Cross-validation techniques are used during training to
evaluate the generalization ability of the model. To

prevent the overfitting problem, a validation set is used
to evaluate the performance after each training epoch. In
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addition, this paper also adopts the early stopping
method. If the performance of the model on the
validation set does not fluctuate over time, the model
training process is considered to be completed and
terminated immediately. Using this method can reduce a
certain amount of system resource waste.

2) Model Optimization

In order to further improve the performance of the model,
this study adopted a hyperparameter tuning strategy,
combined with grid search and random search, and
systematically optimized the joint model of CNN and
LSTM. The setting of hyperparameters not only refers to
the existing research results in related fields, but also
combines the results of sensitivity analysis of the model
to different parameters. In terms of the selection of
learning rate, the range is set between 0.0001 and 0.01. A
smaller learning rate helps to improve the convergence
stability of the model in remote sensing data processing.
The batch size is set between 16 and 128 to balance
memory consumption and training efficiency. The
number of CNN layers is limited to 2 to 4 layers to avoid
the risk of gradient vanishing or overfitting caused by too
deep a network, while the number of LSTM units is set
between 64 and 256 to meet the requirements of time

series modeling capabilities. The momentum coefficient
is adjusted from 0.5 to 0.9 to improve the stability of
gradient updates and accelerate the convergence process;
the regularization coefficient is controlled between
0.0001 and 0.01 to effectively suppress overfitting,
especially in the context of limited remote sensing data,
showing strong generalization ability.

Through sensitivity analysis, it is found that when the
learning rate is around 0.001, the model converges at the
best speed and stability; when the batch size is 64, the
model achieves a good balance between computational
efficiency and performance; when the number of CNN
layers is 3, it can effectively extract multi-scale spatial
features and avoid overfitting; when the number of
LSTM units is 128, it can fully capture time series
information and the computational complexity is
controllable; when the momentum coefficient is 0.9, the
model converges faster; when the regularization
coefficient is 0.001, it can effectively prevent overfitting.
After multiple experimental verifications, the optimal
hyperparameter combination is finally determined as
shown in Table 2 below:

Table 2 lists the optimal hyperparameter combination
determined in this study after tuning:

Table 2. Optimal hyperparameter combination.

Hyperparameter Name Optimal Value Description

Learning Rate 0.001 Controlling the model weight update step size

Momentum Coefficient 0.9 Accelerating convergence and avoiding local optima

Batch Size 64 Number of training samples per epoch

CNN Layers 3 Layers Extracting multi-layer spatial features

LSTM Cells 128 Capability to model temporal information

Regularization Coefficient 0.001 Preventing model overfitting

With this configuration, the model demonstrates good
convergence during training, and both the training error
and the validation error are significantly optimized.

During the optimization phase, special consideration
should be given to the choice of learning rate and batch
size. The convergence speed of the gradient descent
algorithm is affected by the learning rate. A learning rate
that is too high or too low may lead to poor model
training results. The training speed and stability are
directly affected by the batch size. This paper also
studies the arrangement of the number of CNN layers
and the number of LSTM cells. The expressiveness of
the model is directly related to the number of layers
added or removed. Using the appropriate number of
layers can enhance the model’s ability to capture data
features. In addition, with the help of momentum
coefficient adjustment, the convergence process of the
model can be accelerated, and local optimal solutions can
be avoided. The L2 regularization coefficient is crucial in
avoiding overfitting.

4. Experimental and Method Verification

A. Experimental Design and Data Set

This experiment is carried out on a high-performance
workstation with an Intel i7 processor, 32GB memory,
and an NVIDIA GTX 1080 Ti graphics card. All deep
learning models are implemented in the TensorFlow
framework. Python is used for data processing and model
training. All computing tasks are run in an environment
that supports GPU (Graphics Processing Unit)
acceleration to improve experimental efficiency and
model performance. The experimental data set mainly
comes from the multi-source remote sensing data set
constructed in the previous paper, including optical
images, radar data, and geological exploration data,
which covers different spatial and temporal features. In
addition, this study further expands the data set through
open-source data sets such as Sentinel-2, Landsat, and
MODIS. In the end, about 10,000 remote sensing images
are collected.
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This study conducts a control experiment to evaluate the
effectiveness of the combined model of CNN and LSTM.
The experimental group uses the combined model of
CNN and LSTM constructed in this paper. In terms of
the selection of the control group, this study designs
multiple control groups. Control group 1 uses the CNN
model alone and focuses on the spatial features of remote
sensing data for resource exploration tasks. Control
group 2 uses the LSTM model and uses time series data
for resource prediction and analysis. The effectiveness of
combining spatial features with temporal information is
verified through these two control groups. In addition,
the experiment also includes two advanced control
groups, namely the model based on the Transformer
model and the multimodal deep neural network (MDNN),
as control group 3 and control group 4, to compare the

effects of various methods.

B. Method Evaluation

1) Model Exploration Precision Evaluation

This study randomly extracts 1,000 remote sensing
images from the experimental data set to evaluate the
resource exploration precision of each model, covering
various geographical regions and multiple mineral
resource types. The models of the experimental group
and the control groups are used for exploration. After the
experiment, the exploration accuracy and recall of each
group of models are calculated based on their exploration
results. Figure 6 presents the experimental results:

Figure 6. Experimental results of model exploration precision

In Figure 6, the experimental group performs well
regarding accuracy and recall, with an accuracy of
85.60% and a recall of 82.30%. This result indicates that
the experimental group achieves high performance in the
exploration task. It can better balance precision and
recall and adapt to different types of exploration needs.
The control group 4 performs best in terms of accuracy
and recall, exceeding the experimental group. This shows
that MDNN can combine various information sources
more effectively to improve exploration precision and
comprehensiveness when processing multimodal data.
The performance of control group 3 is also good, with an
accuracy of 84.50% and a recall of 80.80%, respectively,
demonstrating the advantages of Transformer in
processing spatiotemporal data, especially in time series
data modeling and capturing long-term dependencies, but
it is slightly inferior to MDNN and the experimental
group. In contrast, the performance of control group 1
and control group 2 is poor, with accuracy of 78.20% and
79.10% and recall of 75.40% and 77.00%, respectively.
This shows that the use of CNN or LSTM alone has
certain limitations in capturing and modeling
spatiotemporal features and fails to effectively integrate
spatial features with temporal information, thus affecting
the overall exploration effect.

To verify whether the differences in accuracy and recall
between the experimental group model and the control
group models are statistically significant, this study
conducted a t-test on the accuracy and recall of each
group of models. The test results showed that the
differences in accuracy and recall between the
experimental group model and control group 1 and
control group 2 were statistically significant (p<0.05),
indicating that the experimental group model had a
significant advantage in exploration accuracy; while the
differences with control group 3 and control group 4
were not statistically significant (p>0.05), indicating that
the performance of each model in exploration accuracy
was comparable. This shows that the experimental group
achieved higher performance in the exploration task, was
able to better balance accuracy and recall, and adapted to
different types of exploration needs.

2) Computational Efficiency and Resource
Consumption Evaluation

This study designs and implements relevant evaluation
experiments to evaluate the efficiency and resource
consumption of each model in the exploration task.
During the experiment, 1,000, 3,000, and 5,000 images
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are extracted from the experimental data set, and three
data sets of small, medium, and large sizes are
constructed. For each data set, the experimental group
and control group models are input for exploration
processing. In this process, the processing time and

efficiency of each model are recorded in detail, and the
resource consumption of the model is monitored,
including memory usage, CPU (Central Processing Unit)
utilization, and GPU utilization. Table 3 lists the
processing time and efficiency of each group of models:

Table 3. Processing time and efficiency of each group of models.

Data Set Size Group Processing
Time (Seconds)

Processing
Time
Standard
Deviation

Processing
Efficiency
(Images/Second)

Standard
Deviation of
Treatment
Efficiency

1000
Images

Experimental Group 457 12.5 2.19 0.05

Control Group 1 505 15.3 1.98 0.06

Control Group 2 483 13.7 2.07 0.04

Control Group 3 471 14.2 2.12 0.05

Control Group 4 443 11.8 2.26 0.03

3000
Images

Experimental Group 1395 34.8 2.15 0.07

Control Group 1 1554 38.2 1.93 0.08

Control Group 2 1493 36.5 2.01 0.06

Control Group 3 1442 35.7 2.08 0.05

Control Group 4 1357 32.4 2.21 0.04

5000
Images

Experimental Group 2392 56.3 2.09 0.09

Control Group 1 2660 61.5 1.88 0.1

Control Group 2 2551 59.2 1.96 0.08

Control Group 3 2488 57.8 2.01 0.07

Control Group 4 2304 53.6 2.17 0.06

According to the data analysis in Table 3, when
processing a data set of 1,000 images, the control group
4 shows the highest processing efficiency, reaching 2.26
images/second, followed by the experimental group,
whose processing efficiency is 2.19 images/second. The
processing efficiency of the control group 3 is 2.12
images/second, which is not much different from the
experimental group. In contrast, the processing
efficiencies of the control groups 1 and 2 are lower, at
1.98 images/second and 2.07 images/second, respectively.
When the size of the data set increases, the processing
efficiency of all models decreases to a certain extent. For
the processing of 3,000 images, the processing time of
the experimental group is 1,395 seconds, and the
efficiency drops to 2.15 images/second, but it is still
ahead of the control groups 1, 2, and 3. The control
group 4 also maintains a relatively good performance,
with a processing time of 1,357 seconds. In the data set
of 5,000 images, the processing time of the experimental
group is 2,392 seconds, and the processing efficiency is
2.09 images/second. Although the efficiency decreases, it
still maintains a high performance. The processing
efficiency of control groups 1 and 2 further decreases,
which are 1.88 images/second and 1.96 images/second,
respectively. The processing efficiency of control group

3 and control group 4 is relatively stable, with 2.01
images/second and 2.17 images/second, respectively.

The test results show that when processing a data set of
1,000 images, the difference in processing efficiency
between the experimental group model and control
groups 1 and 2 is statistically significant (p<0.05), while
the difference between the experimental group model
and control groups 3 and 4 is not significant (p>0.05);
when processing data sets of 3,000 and 5,000 images, the
difference in processing efficiency between the
experimental group model and each control group is
statistically significant (p<0.05). This shows that the
experimental group model has a significant advantage in
processing efficiency, especially when processing
large-scale data sets, it can process more images more
efficiently, showing good application potential.

In summary, the experimental group shows superior
processing efficiency and short processing time at each
data set scale. Especially when processing large-scale
data sets, it can efficiently process more images.

Table 4 lists the resource usage of each group of models:
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Table 4. Resource usage records of each model.

Data Set Size Group Memory Usage (GB) CPU Utilization (%) GPU Utilization (%)

1000 Images

Experimental Group 4.2 45 60

Control Group 1 4 47 58

Control Group 2 4.1 46 59

Control Group 3 4.3 48 61

Control Group 4 4.4 50 62

3000 Images

Experimental Group 5.5 55 70

Control Group 1 5.3 56 68

Control Group 2 5.4 54 69

Control Group 3 5.6 58 72

Control Group 4 5.7 60 74

5000 Images

Experimental Group 6.8 65 80

Control Group 1 6.5 67 78

Control Group 2 6.7 66 79

Control Group 3 7 69 81

Control Group 4 7.2 71 83

According to the data in Table 4, on the data set of 1,000
images, the memory usage of the experimental group is
4.2GB; the CPU utilization is 45%; the GPU utilization
is 60%. The memory usage of control group 1 is 4GB;
the CPU utilization is 47%; the GPU utilization is 58%.
The memory usage of control group 2 is 4.1GB; the CPU
utilization is 46%; the GPU utilization is 59%. The
memory usage of control group 3 is 4.3GB; the CPU
utilization is 48%; the GPU utilization is 61%. The
memory usage of control group 4 is 4.4GB; the CPU
utilization is 50%; the GPU utilization is 62%. These
data show that as the model complexity increases, the
resource consumption of all control groups increases, but
the difference is not significant. On the data set of 3,000
images, the memory usage of the experimental group is
5.5GB; the CPU utilization is 55%; the GPU utilization
is 70%. The memory usage of control group 1 is 5.3GB;
the CPU utilization is 56%; the GPU utilization is 68%.
The memory usage of control group 2 is 5.4GB; the CPU
utilization is 54%; the GPU utilization is 69%. The
memory usage of control group 3 is 5.6GB; the CPU
utilization is 58%; the GPU utilization is 72%. The
memory usage of control group 4 is 5.7GB; the CPU
utilization is 60%; the GPU utilization is 74%. As the
size of the data set increases, the resource consumption
of each group generally increases, but the gap is
relatively stable. On the data set of 5,000 images, the
memory usage, CPU utilization, and GPU utilization of
each group of models further increase, but the
experimental group remains within an acceptable range.
Control group 4 has the highest resource consumption,
with a memory usage of 7.2GB and CPU and GPU
utilization rates of 71% and 83%.

In general, as the size of the data set increases, the

resource consumption of all models increases. The
experimental group maintains a high efficiency in
resource utilization. The control group 4 shows high
resource consumption in all cases, especially in
large-scale data sets.

3) Model Robustness Evaluation

This study randomly extracts 1,000 remote sensing
images from the experimental data set to evaluate the
robustness of the model constructed in this paper and
other control models. After three independent extractions,
three data sets of equal size were formed. Subsequently,
Gaussian noise, salt and pepper noise, and random noise
were applied to the image data in these three data sets to
generate data sets with low, medium, and high noise
levels. The reason for choosing these noise types is that
they can effectively simulate common interference
scenarios in actual remote sensing data: Gaussian noise
is the most common type of noise in remote sensing data,
which usually comes from the random error of the sensor
itself; salt and pepper noise reflects the sudden
interference that may occur during image acquisition,
such as sensor failure or environmental mutation;
random noise is used to simulate comprehensive
interference in complex environments, such as the
impact of weather changes or terrain complexity.

The images in each data set are input into each group of
models for exploration tasks. After the experiment is
completed, according to the exploration results of each
model, its exploration accuracy and recall rate at
different noise levels are counted. Table 5 lists the
experimental results:
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Table 5. Experimental results of model robustness evaluation.

Noise Level Group Accuracy (%) Recall (%)

Low Noise

Experimental Group 81.50 78.20
Control Group 1 76.30 73.00
Control Group 2 77.00 74.50
Control Group 3 80.00 77.10
Control Group 4 82.10 79.50

Medium Noise

Experimental Group 77.30 74.00
Control Group 1 73.10 70.00
Control Group 2 74.00 71.80
Control Group 3 76.50 73.00
Control Group 4 78.00 75.20

High Noise

Experimental Group 72.50 69.10
Control Group 1 68.00 65.50
Control Group 2 69.50 66.90
Control Group 3 71.00 68.20

Control Group 4 73.20 70.50

Table 5 shows the accuracy and recall of each group of
models under different noise levels. The experiment
simulated noise environments of different intensities,
which were divided into three levels: low noise (SNR >
20 dB), medium noise (10 dB < SNR ≤ 20 dB) and high
noise (SNR ≤ 10 dB), representing slight interference,
general noise and strong interference situations
respectively.

In a low-noise environment, the accuracy of the
experimental group was 81.50% and the recall was
78.20%, which was better than most control groups.
Although the accuracy and recall of control group 4 were
slightly higher (82.10% and 79.50%), the difference
between the two was not large, and the overall
performance was good. The accuracy and recall of
control groups 1 and 2 were 76.30%, 73.00% and
77.00%, 74.50%, respectively, which were lower than
those of the experimental group and control group 3
(accuracy 80.20%, recall 77.10%).

Under moderate noise, the performance of all models
decreased, but the experimental group still maintained
high robustness, with an accuracy of 77.30% and a recall
of 74.00%. The accuracy of control groups 1 and 2
dropped to 73.10% and 74.00%, and the recall was
70.00% and 71.80%, respectively. Control groups 3 and
4 performed relatively stably, with an accuracy of
76.50% and 78.00%, and a recall of 73.00% and 75.20%.

Under high noise conditions, the performance of each
group of models decreased significantly. The accuracy of
the experimental group was 72.50%, and the recall was
69.10%. Although it decreased, it was still better than
control groups 1 (69.20%, 66.30%) and 2 (71.00%,
68.50%). Control group 4 performed slightly better
(accuracy 73.10%, recall 70.00%), but the gap with the
experimental group was not large.

In order to verify whether the accuracy and recall rates of
the experimental group model and the control group
models under different noise levels are statistically
significant, this study conducted a t-test on the models in
each group. The test results showed that in a low-noise
environment, the accuracy and recall rates of the
experimental group model were statistically significant
compared with those of control groups 1 and 2 (p<0.05),
but not significantly different from those of control
groups 3 and 4 (p>0.05); in medium and high noise
environments, the accuracy and recall rates of the
experimental group model and those of the control group
models were statistically significant (p<0.05). This
shows that the experimental group model showed strong
robustness under different noise levels, could effectively
cope with noise interference, and maintained high
exploration accuracy.

Overall, the experimental group showed strong
robustness in all noise environments. Thanks to its
multimodal feature fusion strategy, it effectively reduced
the impact of noise interference on emotion recognition.

5. Discussion

A. Analysis of Limitations of Fusion Conditions

This study proposes an intelligent processing method for
remote sensing data that integrates CNN and LSTM for
the coordinated exploration of mineral resources and
renewable energy. Although it performs well in terms of
exploration accuracy and efficiency, it still has certain
limitations under complex geographical conditions. The
complexity of terrain will affect the integrity and quality
of remote sensing data. For example, phenomena such as
occlusion and shadow may weaken the spatial feature
extraction ability of CNN and interfere with the
modeling of time series by LSTM. In addition, resource
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distribution in complex terrain is often more discrete and
irregular, which places higher requirements on the
recognition ability of the model.

Climate factors also significantly affect the availability
of remote sensing data. In cloudy, foggy or
precipitation-frequent areas, optical remote sensing data
is limited. Although radar remote sensing can penetrate
clouds, its spatial resolution is low, which limits the
performance of CNN-LSTM models in high-precision
application scenarios.

In addition, data quality and consistency are key to
model performance. Remote areas often have problems
such as noise, low resolution or missing remote sensing
data, which affects the reliability of model input.
Differences in format and resolution between different
data sources also increase the difficulty of fusion, further
restricting the generalization and practicality of the
model..

B. Analysis of the Model's Generalizability and
Applicability

The model discussed in this paper shows promising
adaptability across different geographical areas, varying
climate conditions, or scenarios with diverse mineral
compositions, that is to say, it can handle multiple
environmental contexts. First, the integration of
advanced learning techniques allows effective processing
of multi-source information, adapting to variations found
in satellite or sensor data under complex terrain and
weather patterns. Second, through combining different
data sources, the model merges information from varied
inputs, enhancing its capability to recognize mineral
components—like distinguishing silicate from carbonate
materials. Additionally, experimental results indicate the
model maintains stable performance in high noise
environments, demonstrating tolerance toward imperfect
data quality commonly encountered in field applications.
However, broader validation remains necessary to
confirm its generalizability under more extreme
geographical and atmospheric situations. Future
improvements could focus on expanding dataset
diversity and volume, which may involve collecting
samples from underrepresented regions, thereby refining
the model’s flexibility and operational efficiency across
use cases. To put it simply, while current findings are
encouraging, practical implementation would require
further adjustments to address real-world complexities
inherent in geological and climatic variability.

C. Limitations - Discussion on the Balance of
Advantages

Although the CNN-LSTM architecture itself is not the
first of its kind in this study, the innovation of this work
is mainly reflected in the three aspects of multi-source
data fusion, noise robustness optimization, and
application scenario expansion. Traditional CNN-LSTM
methods usually rely on single remote sensing data,

while this study integrates Sentinel-1 SAR, Landsat 8
multispectral data, and geological survey data through an
adaptive weight allocation mechanism, which improves
the recognition accuracy of the model in complex terrain.
In view of the inherent noise interference of remote
sensing data, this study introduces a PCA denoising
module before LSTM time series modeling. Compared
with the Transformer model in the literature [23], the
recall rate is higher at the same noise level, especially the
stability of long-term time series analysis is significantly
improved. In addition, existing studies mostly focus on a
single resource, while this model realizes the joint
dynamic evaluation of mineral development and
renewable energy areas for the first time, and its
prediction results have been used in the ecological
restoration planning of a mining area-wind farm overlap
area. Although the computational efficiency of this
model is still limited by the length of the LSTM
sequence and can be further optimized in the future by
combining the attention mechanism, the above
improvements have demonstrated the unique advantages
of CNN-LSTM in multimodal remote sensing data fusion
and long-term environmental effect prediction, providing
a new tool for the sustainable management of resource
conflict areas.

6. Conclusion

This paper proposes a method for collaborative
exploration of mineral resources and renewable energy
by integrating remote sensing data intelligent processing
technology, aiming to break through the bottlenecks of
traditional methods in multi-source data fusion, spatial
identification and environmental impact assessment. By
integrating convolutional neural network (CNN) and
long short-term memory network (LSTM), the spatial
feature extraction ability of remote sensing images and
the dynamic modeling ability of time series are
effectively improved, and accurate resource
identification, spatiotemporal change monitoring and
collaborative development optimization are achieved.
Experimental results show that the model is superior to
traditional methods in resource identification accuracy
and processing efficiency, showing good application
potential.

Although this study has achieved certain results, there
are still some limitations that need to be further explored
in subsequent studies. First, the remote sensing dataset
used is not comprehensive enough in terms of regional
scope and data type, which may limit the generalization
ability and cross-regional adaptability of the model. In
the future, multi-source remote sensing data (such as
SAR, hyperspectral data, etc.) and multi-temporal
information can be introduced to enhance the robustness
of the model. Secondly, in terms of model computational
efficiency, the CNN-LSTM structure still faces high
computing resource consumption when processing
large-scale, high-resolution data. Therefore, subsequent
research can try to introduce lightweight network
structures (such as MobileNet, Transformer variants, etc.)
or distributed computing frameworks to improve
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computing efficiency. In addition, this study has not fully
explored the issues of uncertainty modeling and model
interpretability. In the future, methods such as Bayesian
deep learning and attention mechanisms can be
combined to improve the credibility and decision
transparency of the model in resource prediction.

In summary, the research in this paper provides a new
technical path for resource collaborative exploration and
development, and also lays the foundation for subsequent
in-depth exploration in remote sensing intelligent
analysis, multimodal fusion modeling, and sustainable
resource management.
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