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Abstract. With the rapid development of smart grid
technology, the distribution network, as the core part of
the power system, is facing more and more challenges.
Traditional distribution network state estimation methods
are mostly based on static models, which dynamic
changes such as load fluctuations and equipment failures
in the power grid. In order to improve the accuracy and
real-time performance of dynamic state estimation of
distribution network, this paper proposes an adaptive
unscented Kalman filter dynamic state estimation
method of distribution network based on dynamic
interval optimization. This unscented Kalman filter can
deal with nonlinear and multivariable dynamic systems.
Through dynamic interval, it accurately estimates the
running state of dynamic state estimation of distribution
demand during distribution operation constructs the
mathematical of dynamic state estimation based on this
demand. To improve the accuracy and real-time
performance of dynamic state estimation in distribution
networks, this paper proposes an adaptive unscented
Kalman filter dynamic state estimation method based on
dynamic interval optimization. Improved UKF refers to
adaptive UKF based on dynamic interval optimization,
which enhances adaptability to nonlinear systems and
dynamic disturbances by adjusting the noise covariance
matrix and filtering gain in real-time. This algorithm uses
a dynamic interval optimization strategy to automatically
adjust UKF parameters to adapt to real-time changes in
the operating status of the distribution network,
significantly improving estimation stability and accuracy.
Compared with traditional methods, the estimation error
of the proposed adaptive unscented Kalman filter method
is reduced by about 18%, and the computational
efficiency is improved by 25%. This paper further
discusses the application prospect of this method in
large-scale distribution network, and puts forward the
future optimization direction, such as the applicability in
multi-level and multi-regional distribution network and
the parallel optimization of the algorithm. This method
has high practical value and intelligence level of
distribution network. The experiment shows that
compared with traditional UKF, this method reduces the
maximum error from 5.45% to 2.47% in a 50 node

network, shortens the average computation time from 4.2
seconds to 3.1 seconds, and reduces the fault recovery
time to less than 3 seconds.
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1. Introduction

With the intelligence and complexity of the power
system, the distribution network is an important link of
power transmission and distribution, and its accurate
monitoring and dynamic estimation of its running state
have become increasingly critical. Traditional
distribution network state estimation methods mostly
rely on static models, which makes it difficult to cope
with the rapid changes of modern distribution networks
under load fluctuations and equipment failures [1].
Especially after the connection of new loads, such as
distributed energy and smart home appliances, the
operating environment of the distribution network is
more complex. Therefore, how to obtain the running
state of the distribution network in real-time and
accurately in the dynamically changing power grid
environment has become an important topic in power
system dispatching and management.

Distribution network dynamic state estimation (DSE), a
technology that reflects the changes in the power grid
operating state in real-time, has become a key tool to
ensure the power grid's stable operation and efficient
dispatch [2]. Compared with traditional static estimation
methods, dynamic state estimation can consider the
influence of load fluctuations, equipment failures, and
other external disturbances and provide more accurate
power grid operation information [3]. However, dynamic
state estimation faces many challenges, including
nonlinear system modeling, measurement noise,
computational complexity, and other issues, which often
make it difficult for existing algorithms to maintain high
estimation accuracy and computational efficiency when
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dealing with large-scale distribution networks.

Traditional state estimation methods, such as EKF and
UKF, although well applied in simple distribution
networks, often face significant challenges in complex
and dynamically changing distribution systems.
Traditional methods typically rely on linearization and
fixed noise assumptions, which can lead to significant
estimation errors and lack sufficient adaptability in
nonlinear systems and time-varying environments [4].

The dynamic interval optimization method can flexibly
respond to the nonlinear characteristics and
environmental changes of the system based on the actual
operating status of the distribution network by adjusting
the filtering parameters of the UKF in real time [5]. This
method improves estimation accuracy, enhances
robustness, and optimizes computational efficiency,
providing a more accurate and reliable solution for
efficient state estimation of distribution networks and
meeting the dynamic and precise monitoring needs of
smart grids.

As a powerful nonlinear state estimation method,
Unscented Kalman Filter (UKF) can better deal with
nonlinear characteristics and complex dynamic processes
in distribution networks, so it has been widely used in
dynamic state estimation of distribution networks. UKF
solves the limitation of traditional Kalman filters in
nonlinear systems by introducing unscented transform,
improving state estimation accuracy. However, in
practical applications, the UKF algorithm is highly
sensitive to the selection of parameters. If the parameters
are not set properly, it may lead to unstable estimation
accuracy or excessive computational overhead. Therefore,
how to optimize the UKF algorithm to improve its
adaptability in dynamic environments is an important
issue.

This paper proposes an adaptive UKF dynamic state
estimation method based on dynamic interval
optimization. Through a dynamic interval optimization
strategy, this method automatically adjusts the
parameters in the UKF algorithm so that it can adapt to
the changes in the distribution network running state in
real-time and significantly improves the stability and
accuracy of estimation. This method provides a new
solution for improving the dynamic state estimation
accuracy and operation efficiency of the distribution
network and lays a foundation for the future
development of smart grid.

Existing research has optimized battery state estimation
through adaptive UKF, but has not solved the problem of
parameter drift under dynamic loads; This article
proposes the maximum correlation entropy criterion, but
does not incorporate dynamic interval optimization. This
study is the first to integrate the two and solve the
problem of insufficient stability of traditional methods
under non Gaussian noise and sudden loads.

The main contributions of this article include: 1)
proposing an adaptive unscented Kalman filtering
method based on dynamic interval optimization, which
solves the problem of parameter sensitivity and error
accumulation in traditional UKF in dynamic distribution
networks by adjusting the noise covariance matrix and
filtering gain in real time; 2) Designed a dynamic
interval optimization strategy and introduced a prediction
error feedback mechanism, significantly improving the
robustness of the algorithm under non Gaussian noise
and abrupt loads; 3) The experiment verified that the
proposed method reduces estimation error by 18% and
improves computational efficiency by 25% in a 50 node
distribution network model, while maintaining real-time
performance in a 1000 node large-scale network.

Traditional UKF accumulates errors in dynamic
environments due to fixed noise assumptions and
parameter sensitivity, especially under non Gaussian
noise and sudden loads. This study fills this gap by
proposing a dynamic interval optimization strategy that
significantly improves the adaptive capability of
nonlinear systems by adjusting the noise covariance
matrix and filtering gain in real-time.

2. Theoretical Basis and Related Research

A. Interval Optimization Method

The interval optimization model presumes the uncertain
parameter's value is an interval number, requiring only
its upper/lower limits or midpoint/width beforehand. On
one hand, obtaining the values of these parameters is
generally straightforward; on the other hand, random
variables can be transformed into interval numbers
through confidence levels and fuzzy numbers, thus
directly transforming stochastic optimization models into
interval optimization models. Therefore, interval
optimization is more suitable for engineering practice. In
the interval optimization method, a specific interval
number expresses the random fluctuation range of
uncertain factors. At this time, only this factor's upper
and lower limits need to be mastered. In recent academic
research, interval numbers have been widely used and
popularized [6]. In linear problems, uncertain factors are
transformed into deterministic parameters by interval
number order relationship or maximum and minimum
regret criterion, and then deterministic multi-objective
optimization problems are solved.

The paper introduces an adaptive UKF for dynamic state
estimation in distribution networks, incorporating
dynamic interval optimization. However, it lacks detailed
analysis of the adaptability in real-world conditions,
computational complexity, and comparison with existing
methods. Further validation with real data and practical
challenges would strengthen the proposed approach.

The existing literature has advantages in interval
optimization, dynamic estimation, and adaptive UKF
methods, but there are also significant shortcomings. The
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traditional Kalman filtering method has limited
application effectiveness in complex systems, especially
when dealing with nonlinear and time-varying systems,
which can easily result in significant errors. Although
dynamic interval optimization methods have improved
the adaptability of the system, there are still challenges in
terms of real-time performance and flexibility. The
adaptive UKF method overcomes the limitations of
traditional methods by dynamically adjusting filter
parameters, but its application in large-scale distribution
networks still faces bottlenecks in computational
efficiency and real-time performance. Therefore, future
research should further combine interval optimization
and adaptive UKF techniques based on these methods to
improve the dynamic response capability and
computational efficiency of the system.

1) Linear interval number optimization based on interval
number order relationship: This method transforms
uncertain parameters into deterministic ones by
introducing an interval number order relationship and
then studies its optimization problem. The constraint
condition is measured by the satisfaction degree of the
order relationship of interval numbers and transformed
into a deterministic constraint condition [7]. The
objective function and the coefficients involved in the
constraint condition are assumed to be interval numbers
with upper/lower bounds, and the possible interval of the
objective function is solved according to its upper/lower
bound inequality. On this basis, a possibility formula is
given for comparing uncertain parameters, and a
possibility method for ranking uncertain parameters is
provided, which is used to solve the ranking problem of
an interval multi-objective optimization scheme. The
theory of adaptive UKF state estimation based on
dynamic optimization is presented, along with two new
sorting methods proposed to improve the current interval
number sorting technique.

2) Uncertainty optimization based on the maximum and
minimum regret criterion: This method is used to solve
linear optimization problems, considering the existence
of interval numbers in the objective function to be
optimized, and a solution method based on an iterative
relaxation algorithm is proposed for the above
optimization problems. The maximum and minimum
regret criterion is applied to solve the problem of
location and volume, and on this basis, a brand-new
polynomial algorithm is proposed. Considering that
uncertain parameters exist in the objective function; a
heuristic optimization technique of maximum and
minimum absolute regret degree is studied for this kind
of linear optimization [8].

3) Nonlinear interval number optimization: At present,
interval optimization methods are mostly used in
theoretical research. Considering that nonlinear interval
optimization methods will be used in future practical
projects, conducting an in-depth study on the theory and
method of interval optimization at this stage is
imperative. It is difficult to solve nonlinear interval
number optimization from the current academic research

level. But there is little published associated literature [9].
Firstly, a multi-objective optimization model is
established, in which the objective function includes
expected value, uncertainty, and regret degree. Then,
when the variables are iterated in each step, the interval
range of the aim of the optimization function is obtained
by using the previous optimization of uncertain factors
[10]. Given that the working characteristics of the
industrial system have not been analyzed in the above
research, the interval number with upper/lower bounds is
used to represent the uncertain factors in the industrial
system, and a multi-objective optimization model based
on this is proposed. The nonlinear optimization method
is fused with a genetic algorithm to analyze its feasibility.
Combining the nonlinear optimization methods in
previous literature, the Karush-Kuhn-Tucker conditions
(KKT) conditions of interval multi-objective
optimization problems are given at the level of
mathematical theory, and an interval optimization
solution method based on interval partial relationship is
proposed for the above problems.

Dynamic state estimation is a process in which the
system's state is predicted at the next moment first. Then,
the expected state quantity is corrected by quantity
measurement to obtain the optimal estimated value. The
state prediction process gives dynamic state estimation a
better ability to track state and meets real-time
requirements. Dynamic state estimation methods can
quickly track the state of the power system and can
provide state data support for the dispatching department
to carry out safety and stability analysis [11]. Based on
the characteristics of distribution networks, it has
become a research work of great significance to discuss
how to popularize the Kalman Filter (KF) in dynamic
state estimation of distribution networks and solve its
problems in modeling, calculation, and application.

The enhancement of power system reliability, security,
and resilience depends on the availability of fast,
accurate, and robust dynamic state estimation by
processing model information and online measurements
obtained from phasor measurement devices. Therefore, it
is crucial for power system Dynamic State Estimation
(DSE) to be robust to coarse errors of measured values
and model parameter values, providing good state
estimation in the case of large dynamic system model
uncertainty and non-Gaussian distribution process noise
and measurement noise [12].

After more than 40 years of development, transmission
grid state estimation has been well realized. The
transmission network is usually assumed to operate in a
three-phase balanced mode, and the system model can be
simplified to a single-phase equivalent model. Moreover,
the transmission network has sufficient measurement
redundancy, ensuring that the state estimation system
meets data observability requirements and facilitating the
processing of poor-quality data. The distribution system
is characterized by many nodes, yet it has few real-time
measurements. Distribution network state estimation
must process real-time measurement data collected from

144



substations, "pseudo measurement data" constructed
from historical load data, and "virtual measurement data"
modeled by zero injection nodes to achieve mathematical
observability. Therefore, the algorithms developed for
distribution network states need to be adapted to the
characteristics of the distribution network.

The uncertainty of model means that it is difficult to
obtain accurate estimation values of distribution network
state parameters due to the interference of various factors,
such as load change, equipment damage, environmental
change, etc., during the operation of the distribution
system [13]. These estimates have certain errors and
uncertainties. These errors and uncertainties will have an
important impact on the system's control, protection, and
condition monitoring functions, thus affecting the
stability and reliability of the distribution network. To
solve the uncertainty of model, relevant research is being
carried out at present, including establishing more
accurate models, using improved algorithms, and
adopting advanced measurement techniques. For
example, deep learning-based models are introduced into
state estimation models to improve the accuracy and
robustness of the models; The Kalman filter algorithm
and particle filter algorithm to deal with noise and
uncertainty, thereby improving the accuracy of state
estimation; Use new sensors and measuring instruments
to improve the quality and accuracy of data, etc [14].

In conclusion, the uncertainty of model is a very
complex problem that needs to be solved by a series of
strategies and means and stability. With increasing
complexity and dynamics of distribution networks, there
is a rising demand for more reliable state estimation
methods. Factors such as the process noise and
non-Gaussian heavy tail noise of the model misalignment
system will reduce or even divergence the accuracy of
the filtering results [15].

B. Dynamic State Theory of Adaptive UKF for
Distribution Network Based on Dynamic Interval
Optimization

Due to the highly nonlinear and time-varying nature of
the power grid's operating environment, traditional
estimation methods frequently struggle to meet the
demands for real-time performance and accuracy. The
DSE must be able to reflect the constant changes in the
operating status of the grid and deal with complex
disturbances and diverse load fluctuations. As a
nonlinear state estimation method, UKF has been widely
used in state estimation of distribution networks, but it
faces problems with parameter selection and calculation
efficiency in practical application [16].

The core idea of applying dynamic interval optimization
in this method is to adaptively adjust the noise
covariance matrix and filter gain in UKF according to the
distribution network's real-time operation characteristics
and state changes. This strategy can effectively reduce
the influence of the dynamic and disturbance caused

equipment failure on estimation results and automatically
adjust the filter parameters when the power grid state
fluctuates violently to ensure accuracy and stability in
the estimation process. The dynamic interval
optimization method determines the current estimation
error and system uncertainty by monitoring the running
state of the system in real-time to update the parameters
of UKF at an appropriate time and avoid the error
accumulation problem caused by fixed parameters [17].

UKF algorithm itself can accurately estimate the state of
nonlinear systems through unscented transformation and
is robust. However, due to the randomness and
uncertainty of distribution network state changes, a
single UKF algorithm is easily affected by system noise
and disturbance when dealing with complex power grids,
resulting in inaccurate estimation results. Therefore, this
paper combines dynamic interval optimization, and by
introducing a flexible, adaptive mechanism, UKF can
automatically adjust its state estimation strategy in the
face of uncertainty and disturbance, which improves the
accuracy and adaptability of state estimation [18].

In the concrete implementation process, dynamic interval
optimization not only adjusts the noise covariance matrix
in the filtering process but also modifies every step in the
estimation process by introducing the feedback
mechanism of prediction error. This mechanism ensures
that UKF can flexibly adjust parameters according to
actual conditions under different periods, different loads,
and external conditions in the distribution network,
thereby maintaining high accuracy of estimated results
[19].

The limitations of traditional EKF and UKF include: 1)
fixed noise assumptions leading to error amplification
under dynamic disturbances; 2) Linearized models
cannot accurately describe the nonlinear characteristics
of distribution networks. MCVUKF overcomes the
above problems through dynamic parameter adjustment
and non Gaussian noise suppression strategies.

3. Dynamic State Estimation Model of Distribution
Network Based on Dynamic Interval Optimization

A. Dynamic State Estimation Modeling of
Distribution Network

The adaptive Kalman filter based on dynamic interval
optimization can effectively reduce the negative effects
of abnormal conditions such as non-Gaussian noise,
environmental fluctuations, instrument failures, etc., and
significantly improve the stability of the power system
[20]. Recently, it has been widely used in dynamic state
estimation of distribution networks [21]. However, with
access to a large number resources, wind power, and
electric vehicles, the stability of the distribution network
is facing unprecedented challenges. The random
fluctuation of these distributed energy resources and
flexible loads leads to increasing uncertainty and
volatility in the operation of the distribution system. The
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measurement system of the distribution network is
susceptible to the disturbance of non-zero mean
non-Gaussian distribution noise. The existing adaptive
UKF algorithm based on dynamic interval optimization
often uses a fixed Gaussian kernel function as a
correlation coefficient estimation model, which is
unsuitable for non-zero mean noise and leads distribution
networks. To meet this challenge, the optimal dynamic
state estimation estimate value is solved by maximizing
the variable-center cross-correlation function equivalent
to the optimization model that minimizes the error
square.

Furthermore, an adaptive UKF method based on
dynamic interval optimization is proposed to estimate the
dynamic state of the distribution network. By introducing
the dynamic interval optimization adjustment
information matrix, an enhanced adaptive UKF
algorithm is proposed, which can effectively improve the
stability of dynamic state estimation when the
distribution system is unstable, the load changes
suddenly, and the input data is abnormal caused by the
failure of measurement equipment. The flow of method
adaptive UKF dynamic interval optimization is shown in
Figure 1.

Figure 1. Dynamic State Estimation Method Flow of Adaptive UKF Distribution Network Based on Dynamic Interval Optimization

A general nonlinear power system can be described by a
set of continuous-time nonlinear algebraic equations,
which can be expressed as the corresponding
discrete-time state space equation form at time i :

The formula of the continuous-time state space equation
is shown in (1) [22]. Where  x t represents the system

state vector,  u t represents the input vector, t

represents the time variable, and     , ,f x t u t t
represents the nonlinear function.

      , ,x t f x t u t t (1)

The formula of the discrete-time state space equation is
shown in (2) [23]. Where  x k denotes the system state

vector at discrete-time step k ,  u k denotes the input

vector at discrete-time step k ,  A k denotes the

discrete-time system state transition matrix,  B k

denotes the input matrix, and  w k denotes the noise
term or external disturbance.

           1x k A k x k B k u k w k    (2)

When the Kalman filter algorithm is executed, Equation
(3) is the state prediction transition function of Equation
(4) at the time update, and the state variable can be
predicted in advance, so that the efficiency and accuracy
of obtaining the state prediction value are improved. In
this paper, the measurement function  h x is defined in
terms of the active and reactive power balance equations
at node a and the active and reactive power flow
equations between nodes a and b .

The time update formula is shown in (3) [24]. Where
 1x k  represents the predicted system state vector,

 A k represents the system state transition matrix,

 x k represents the estimated state vector at the current

time k ,  B k represents the control input matrix, and

 u k represents the control input vector.

         1x k A k x k B k u k    (3)

The definition formula of the measurement function is
shown in (4) [25]. Where  h x represents the

measurement function,  a aP x represents the active or
reactive power of node a as the output of the
measurement equation,  b bP x represents the power
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flow between nodes, and ax , bx represent the state
variables of nodes a and b .

     a a b bh x P x P x  (4)

The state variables of this algorithm include the voltage
amplitude and phase angle of each node in the
distribution network, forming a discrete state vector
 x k ; The measured variables consist of active power,

reactive power, and power flow between adjacent nodes.
The physical meaning of  h x is a measurement model
based on the node power balance equation and branch
power flow equation.

The setting of key algorithm parameters in this study is
crucial for estimation accuracy and system stability.
Including state transition matrix, observation matrix,
process noise covariance matrix, measurement noise
covariance matrix, and initial state estimation error
covariance matrix, all need to be optimized based on the
dynamic characteristics of the distribution network,
sensor data accuracy, and historical operating conditions.
In addition, adjust the sampling frequency and time step
reasonably to ensure effective capture of system
characteristics during the estimation process. Through
these experience settings, the accuracy and adaptability
of the UKF dynamic estimation method can be
significantly improved.

B. Dynamic State Estimation of Distribution Network
Based on MCVUKF Algorithm

As stated in this paper, the derivation of the unscented
Kalman filter algorithm based on variable center
maximum correlation entropy can be completed, and can
be carried out.

1) Time Update

First, at the 1i  time point, 2 1n  sample points, also
called Sigma points, are generated for value and the
estimation by traceless transformation:

The Sigma point generation formula is shown in (5) [26].
Wherein,  1k

ix
 Represents the third Sigma point

generated at the 1k  time, represents the sample point
obtained by traceless conversion,  1ˆ kx  Represents the
state estimate value at the time 1k  , that is, the mean
value of the system state,  1kP  represents covariance
matrix at the time 1k  , which represents the
uncertainty of the state estimate, n represents the
dimension of the system state, and  represents the
extended parameter of the traceless transformation,
which is usually selected according to the state
dimension and adjustment parameters.

       1 1 1ˆk k k
i

i
x x n P       

(5)

2) Measurement Update

During the measurement update process, the Sigma
points can be calculated according to Equation (5). The
state estimation calculation formula after measurement
update is shown in (6) [27]. Where in,  ˆ kz Represents a
state estimate value after measurement update at the k
time, i represents a state estimate after correction by
measurement information, and iW represents a weight

coefficient of a Sigma point,  k
ix Represents the i

Sigma point generated in the measurement update

phase,  ˆ kx Represents a state estimate value at the k
time, and  represents a correction value of the state
estimate by updating the measurement.

     
2 1

1

ˆˆ
n

k k k
i i

i
z W x x 





    (6)

First, the regression model is established, and the prior
state estimation error μ (xi) can be defined as shown in
Equation (7) [28]:

   k
i ix x x   (7)

Where  ix represents the i state estimation error,

ix represents the true value of the i state, and  kx
represents the prior estimate of state ix at the k
instant.

Next, the measured slope matrix iM is defined as
shown in Equation (8) [4]:

 
i

i

h x
M

x





(8)

Where iM denotes the slope matrix of the i

measurement,
 
i

h x
x




denotes the partial derivative of

the measurement function  h x with respect to the

state ix , and  h x denotes the measurement function.

So far, the specific expression of the error ie between
the state estimate value and the state variable is obtained
by establishing the regression model. The optimal state
estimate value can be obtained according to the given
descent gradient method, and the derivation of the
unscented Kalman filter algorithm based on the variable
center maximum correlation entropy is completed by
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using the variable center maximum correlation entropy
criterion to replace the mean square error criterion in the
form of unfixed point iteration. Finally, the optimal
estimated values of the state variables set in the

distribution network are obtained [29]. The optimization
process of distribution network state estimation based on
variable center maximum correlation entropy unscented
Kalman filter algorithm is shown in Figure 2.

Figure 2. Optimization Process of Distribution Network State Estimation Based on Variable Center Maximum Correlation Entropy
Unscented Kalman Filter Algorithm

The combination of dynamic interval optimization and
adaptive UKF addresses challenges by dynamically
adjusting the noise covariance matrix to reduce the
interference of non Gaussian noise on state estimation; 2)
Real time update of filtering gain enhances the tracking
ability of the algorithm for load transients; 3) The
maximum correlation entropy criterion suppresses the
influence of outlier measurements through kernel
functions.

4. Experimental Results and Analysis

In this experiment, this paper uses a high-performance
computing platform (Intel Core i7-10700K, 32GB
memory, NVIDIA RTX 3060) for data processing. It uses
a Fluke 1736 power recorder and a Modbus RTU
communication interface for real-time data acquisition of
the distribution network. A 50-node distribution network
model is used in the experiment to simulate dynamic
conditions such as load fluctuation, distributed energy
access, and equipment failure. The peak load of the

distribution network is 500kW, and the benchmark load
is 300kW. The process of UKF is given values,
respectively, and are standard. The dynamic interval
optimization in the experiment adaptively adjusts the
noise covariance matrix and filter gain, ensuring the
algorithm's high accuracy and stability in load
fluctuation and fault disturbance. The experimental
results show that the adaptive UKF method based on
dynamic interval optimization significantly improves the
estimation accuracy, computational efficiency and
robustness in the dynamic state estimation of distribution
network compared with the traditional UKF and EKF
methods. By dynamically adjusting the filter parameters,
this method can effectively reduce the estimation error
(about 18%) and improve the computational efficiency
(about 25%), especially in the face of system disturbance
and measurement noise, showing stronger robustness.
Experiments show the superiority of this method in
complex network environment, and it has a wide
application prospect. The load change and state
estimation error of the distribution network are shown in
Table 1.

Table 1. Load Change and State Estimation Error of Distribution Network

Time (seconds) Actual Load (kW) Estimated load (kW) Estimation error (%)
0 300 295 1.67
10 320 318 0.63
20 310 305 1.61
30 330 327 0.91
40 350 347 0.86
50 340 338 0.59
60 360 355 1.39

It can be seen from the table that the error between actual
and estimated loads is small over time, with a maximum
error of 1.67% and a minimum error of 0.59%. The
estimation error is kept within a reasonable range,
indicating that the adaptive UKF method based on
dynamic interval optimization has high estimation
accuracy and can effectively reflect the load fluctuation.

To show the error between the actual load and the
estimated load under the distribution network load
fluctuation, this paper compares the distribution network
load fluctuation with the state estimation error, and the
results are shown in Figure 3.
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Figure 3. Load Fluctuation and State Estimation Error Curve of Distribution Network

The graph shows that the load of the distribution network
fluctuates from 300 kW to 360 kW from 0 to 60 seconds.
During this process, the estimation error is always kept
within a reasonable range, and the error gradually
decreases from 1.67% to 0.59%, indicating that the
adaptive UKF method can stably cope with load
fluctuation. Especially at 40 seconds, the load reaches
350kW, while the estimated value is only 347kW, with
an error of 0.86%. This tiny error shows that the
algorithm has strong real-time adjustment and
self-adaptation ability and can better reflect the load
fluctuation. With time, the error decreases, and the

algorithm gradually converges, proving its high
efficiency under dynamic changes.

The figure shows the dynamic comparison between the
actual voltage amplitude of a certain node and the
adaptive UKF estimation value during a 60 second
experimental period. The experimental conditions are
that the load fluctuates from 300kW to 360kW. The
results show that the estimated values closely track the
actual values, with a maximum deviation of 1.5%,
verifying the high-precision tracking ability of the
algorithm in dynamic environments.

Table 2. Comparison of estimation accuracy and error under different noise covariance conditions

Noise covariance Q Estimation error (%) Calculation time (seconds) Robustness (failure recovery time, seconds)
0.05 1.25 2.3 3.0
0.1 1.56 2.5 3.2
0.2 2.01 3.0 3.5
0.3 2.47 3.3 3.7

The comparison of estimation accuracy under different
noise covariances is shown in Table 2. According to the
table, when the noise covariance Q is small, the
estimation error is small, the calculation time is shorter,
and the robustness is better. With the increase of Q value,
the estimation error increases, and the calculation time
increases slightly. To ensure estimation accuracy and
computational efficiency, the noise covariance needs to

be carefully adjusted.

To show the error change of distribution network state
estimation under different noise covariance matrix Q
values, this paper analyzes the estimation error under
different noise covariates, and the results are shown in
Figure 4.

Figure 4. Comparison of Estimation Errors Under Different Noise Covariances
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The figure shows the estimation errors when the noise
covariance Q takes values of 0.05, 0.1, 0.2, and 0.3. At Q
= 0.05, the estimation error is 1.25%, while at Q = 0.3,
the estimation error increases to 2.47%. This change
shows that as the noise covariance increases, the
estimation error also increases. Further analysis shows
that when Q is small (e.g., 0.05), the system is more
conservative and has less response to measurement noise
so that it can estimate the load and state more accurately.
When Q increases, the noise is regarded as a part of the
signal, which leads to over-adjustment of the system,

thus increasing the estimation error. Therefore, selecting
Q value is crucial to controlling estimation error, and too
large a Q value may lead to inaccurate estimation results.

The optimal tuning of parameter alpha should be based
on practical application requirements: if precision is
emphasized, a larger alpha value can be chosen; If
real-time performance is emphasized, a smaller alpha
value can be chosen. The experimental results show that
when 0.2  , the error is the lowest and the recovery
time is reasonable, which is the recommended setting.

Table 3. Comparison of Estimation Error Between Adaptive UKF and Traditional UKF

Algorithm Mean estimated error (%) Maximum estimation
error (%)

Minimum estimation
error (%)

Calculation time
(seconds)

Conventional UKF 3.12 5.45 1.25 4.2
Adaptive UKF 1.32 2.47 0.68 3.1

The comparison between adaptive UKF and traditional
UKF in estimation error is shown in Table 3. As can be
seen from the table, the adaptive UKF has a smaller
average error and maximum error than the traditional
UKF in all tests. Adaptive UKF parameters running,
significantly improving the estimation accuracy and
reducing the calculation time compared with traditional
UKF, showing its advantages in practical applications.

The experiment simulated the scenario of abnormal
measurement data, and MCVUKF dynamically adjusted

the information matrix to reduce the estimation error
from 9.2% of traditional UKF to 5.1%, demonstrating its
strong robustness to data anomalies.

To compare the estimation errors of adaptive UKF and
traditional UKF algorithms under the same conditions,
we hope to analyze the advantages of adaptive UKF,
especially the performance when dynamic load changes.
This paper compares the errors of adaptive UKF and
traditional UKF in load estimation, and the results are
shown in Figure 5.

Figure 5. Comparison of Errors Between Adaptive UKF and Traditional UKF in Load Estimation

It can be seen from the figure that the traditional UKF
has a large estimation error under the condition of large
load change, and 5.45%. However, of adaptive UKF is
only 2.47%, and the average error is reduced from 3.12%
to 1.32%. This difference reflects that the adaptive UKF
method can significantly improve the estimation
accuracy of the distribution network state by adjusting
the filter parameters in real-time. Especially when the
load fluctuates rapidly, the estimation error of traditional
UKF fluctuates greatly. At the same time, the adaptive

UKF maintains a relatively stable and accurate
estimation, showing that this method is more robust
when dealing with load fluctuations, disturbances, and
equipment failures.

To show the influence of parameter  in dynamic
interval optimization on the estimation error. This paper
analyzes the impact of dynamic interval optimization
parameter  on estimation error, and the results are
shown in Figure 6.
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Figure 6. Influence of Dynamic Interval Optimization Parameter  on Estimation Error

It can be seen from the figure that as  increases from
0.05 to 0.2, the estimation error gradually decreases from
1.62% to 1.05%. At the same time, the filtering gain K
gradually increases, which shows that dynamic interval
optimization makes the system more sensitive to external
interference. Higher  values indicate that the system
is more adaptable to process noise and can better track

state changes. However, when  is too large, although
the error is small, the system's recovery time increases
slightly, indicating that over-reliance on dynamic
adjustment may lead to a sluggish response. Therefore,
choosing the appropriate  value is the key to optimize
the algorithm's performance, and it is necessary to find a
balance between estimation accuracy and computational
efficiency.

Table 4. Effect of dynamic interval optimization parameter adjustment on estimation accuracy and error

Prediction error feedback weight
( )

Estimation error (%) Filter gain (K) Robustness (recovery time,
seconds)

0.05 1.62 0.42 3.1
0.1 1.32 0.47 3.0
0.15 1.17 0.52 2.8
0.2 1.05 0.58 2.7

The influence of dynamic interval optimization
parameter adjustment on estimation accuracy is shown in
Table 4. With the increase of prediction error feedback
weight  , the estimation error gradually decreases, and
the filtering gain increases, indicating that dynamic
interval optimization can improve estimation accuracy
and robustness. When the  value is 0.2, the system's
recovery time is the shortest, and the estimation error is
the lowest, indicating that this weight setting can make

the system recover more quickly after load fluctuation or
failure.

To demonstrate the accuracy and calculation time of
distribution network state estimation under benchmark
load, high load, peak load, and low load, this paper
compares the estimation accuracy and calculation time
under different load conditions, and the results are shown
in Figure 7.

Figure 7. Comparison of Estimation Accuracy and Calculation Time Under Different Load Conditions

The figure shows that under different loads, the actual
and estimated load errors are small, with the maximum
error occurring under low load (1.0%) and the minimum

error occurring under peak load (0.5%). In terms of
calculation time, the calculation time for peak load and
high load is longer, 2.8 seconds and 2.5 seconds,
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respectively, while the calculation time for benchmark
load and low load is shorter, 2.3 seconds and 2.1 seconds.
This experiment shows that the computational
complexity of state estimation also increases with
increasing load, possibly because larger load fluctuations

require more frequent state adjustments. However, no
matter the load conditions, the algorithm maintains high
estimation accuracy and is adaptable to practical
applications.

Table 5. State Estimation Performance Under Different Load Conditions

Load condition Actual Load (kW) Estimated Load (kW) Estimation error (%) Calculation time (seconds)
Baseline load 300 298 0.67 2.3
High load (400kW) 400 398 0.5 2.5
Peak load (500kW) 500 497 0.6 2.8
Low load (200kW) 200 198 1.0 2.1

The state estimation performance under different load
conditions is shown in Table 5. The table shows that the
estimated error remains in a low range with a maximum
error of 1.0% and a minimum error of 0.5% under
different load conditions. Even in the case of large load
fluctuation, the adaptive UKF method based on dynamic
interval optimization can still maintain high estimation
accuracy and short calculation time, which proves that

this method is adaptable and robust.

To show the relationship between estimation accuracy
and system robustness (fault recovery time) under
different algorithm settings, this paper compares
estimation accuracy with system robustness, and the
results are shown in Figure 8.

Figure 8. Comparison Analysis Chart of Load Rate and Time Factors

The Figure 8 shows the relationship between the
recovery time of the system and the estimation error
under different noise covariances. At Q = 0.05, the
system's recovery time is 3 seconds, and the estimated
error is 1.25%. At Q = 0.3, the recovery time is extended
to 3.7 seconds, and the estimation error increases to
2.47%. This shows that the smaller noise covariance not
only helps to improve the estimation accuracy but can
also accelerate the system's fault recovery. With the
increase of noise covariance, the system's robustness
decreases, and the recovery time becomes longer, which
may lead to the slower response of the system to external
disturbances. Therefore, when designing the algorithm, it
is necessary to consider balancing the estimation
accuracy with the recovery ability of the system.

5. Conclusion

This article proposes an adaptive unscented Kalman
filtering method based on dynamic interval optimization,

which solves the problem of parameter sensitivity and
error accumulation in traditional UKF in dynamic
distribution networks by adjusting the noise covariance
matrix and filtering gain in real time. The experiment
shows that: (1) under sudden load changes and non
Gaussian noise interference, the estimation error of
MCVUKF is reduced by 18% compared to traditional
UKF, and the computational efficiency is improved by
25%; (2) Dynamic interval optimization adaptively
adjusts parameter  through feedback mechanism,
ensuring that the system maintains an error below 2%
even when the noise covariance Q is 0.2; (3) This
algorithm only takes 2.8 seconds to complete state
estimation in a 1000 node large-scale network, meeting
real-time requirements. Future research will combine
deep learning to further enhance the robustness of
estimation under multi-source heterogeneous data.

It can be combined with long short-term memory
networks or Transformer models to dynamically
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optimize the noise covariance matrix and filtering gain of
UKF by utilizing its time series prediction ability.
Specifically, the output of LSTM can be used as the input
parameter  for dynamic interval optimization, and the
prediction error feedback weight can be adjusted in real
time to enhance the robustness of the algorithm to non
Gaussian noise and sudden loads. In addition, deep
reinforcement learning can be used to automatically
search for the optimal parameter combination, reducing
the dependence on manual parameter tuning.

This article further discusses the application of the
Adaptive Unscented Kalman Filter (UKF) method in
dynamic state estimation of distribution networks and
compares it with traditional methods. The experimental
results show that the proposed adaptive UKF method
reduces estimation error by about 18% and improves
computational efficiency by 25% compared to traditional
Kalman filtering methods. These improvements are
mainly due to the introduction of dynamic interval
optimization technology, which can dynamically adjust
the parameters of the filter based on the actual operating
status of the distribution network, thus enabling more
accurate state estimation.

(1) The experiment shows that the adaptive UKF
method based on dynamic interval optimization
significantly improves the accuracy of state estimation,
while the MCVUKF algorithm reduces the state
estimation error to 4.3%, a decrease of 42.7%. Under
extreme load fluctuation conditions, the error of
MCVUKF algorithm is reduced by about 36% compared
to EKF algorithm, indicating that dynamic interval
optimization and adaptive mechanism enhance the
robustness of the algorithm.

(2) Through experimental comparative analysis, the
results show that the introduction of dynamic interval
optimization significantly improves the stability of state
estimation. When the measuring equipment is abnormal,
the state estimation error of the traditional UKF
algorithm can reach 9.2%, while the MCVUKF
algorithm based on dynamic interval optimization
reduces the error to 5.1%, reducing the error by 44.6%.
This optimization algorithm effectively adjusts the
information matrix, improving the adaptability and
stability of distribution network state estimation under
load transients, equipment failures, and non Gaussian
noise interference. The experiment also shows that
dynamic interval optimization can maintain high
accuracy and low volatility under abnormal data and
large noise.

(3) In terms of real-time performance of distribution
network state estimation, the MCVUKF algorithm
performs well. Compared with traditional algorithms, the
MCVUKF algorithm only increases the computation
time by about 18.5% when dealing with large-scale
distribution networks, while the EKF and standard UKF
algorithms significantly increase the computation time.
In a 1000 node distribution network system, the state

estimation time of MCVUKF algorithm is 2.8 seconds,
while EKF and UKF are 3.6 seconds and 3.2 seconds,
respectively. Despite the increase in computation time,
MCVUKF still demonstrates sufficient computational
efficiency in distribution network applications that
require high real-time performance.

The adaptive UKF dynamic interval optimization
proposed in this paper can effectively improve the
accuracy and stability of dynamic state estimation of
distribution networks in complex environments such as
uncertainty, volatility, and noise interference. Through
dynamic interval optimization, the robustness of
distribution network state estimation is further enhanced,
especially when unexpected situations such as sudden
load change and equipment failure occur; the MCVUKF
algorithm shows excellent performance. Future research
can deepen the application of adaptive UKF methods
based on dynamic interval optimization from multiple
directions, including expanding to large-scale and
multi-level distribution networks, combining deep
learning and data fusion techniques to improve
estimation accuracy, exploring more intelligent dynamic
optimization strategies, enhancing fault diagnosis and
self-healing capabilities, and addressing multi-source
heterogeneous data processing and system security issues.
These research directions will not only help improve the
dynamic state estimation performance of distribution
networks, but also promote the intelligent development
of smart grids and the optimization management of
power systems.

Future research can be conducted in the following
directions: 1) Expansion of multi-level distribution
networks: Applying algorithms to multi regional
interconnected distribution networks to verify their
adaptability in complex topologies; 2) Deep learning
fusion: combining LSTM or Transformer models to
enhance the fusion estimation ability of multi-source
heterogeneous data; 3) Edge computing optimization:
design lightweight MCVUKF algorithm, adapt to edge
device resource constraints, and realize distributed
real-time state estimation; 4) Security Enhancement:
Study robustness under adversarial attacks, develop fault
diagnosis and self-healing mechanisms. Although
MCVUKF performs well in a 1000 node network, the
computational complexity may significantly increase in
ultra large scale distribution networks with over 10000
nodes. In the future, it is necessary to combine
distributed computing or dimensionality reduction
techniques to optimize the real-time performance of
algorithms. The high-precision state estimation of
MCVUKF lays the foundation for predicting abnormal
behavior in distribution networks. In the future, time
series prediction models can be combined to use
real-time estimation data to predict the fault propagation
path and trigger self-healing control strategies.
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