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Abstract. The existing power line defect recognition
method relies on traditional image processing technology,
which has the disadvantages of slow processing speed,
low recognition accuracy, and inability to effectively deal
with complex scenes, resulting in frequent false positives
and false negatives. To solve this problem, this paper
combined the unmanned aerial vehicle (UAV) inspection
digital orthophotos and the search tree algorithm to
realize the automatic recognition method of power line
defects. Firstly, the paper used UAV to obtain
high-resolution power grid orthophotos. After geometric
correction, the image is divided into multiple regions of
interest using image segmentation technology. Then, the
paper used U-Net CNN (convolutional neural network)
for pixel-level semantic segmentation to recognize
potential defect areas. Unlike prior UAV-based defect
detection frameworks that primarily utilize standard
convolutional networks, the integration of U-Net with
A-star search leverages semantic segmentation and path
optimization to enhance defect localization accuracy. In
the U-Net network, the learning ability of deep features
is enhanced by residual blocks and skip connections. The
A-star search algorithm is used to search the path of the
defect area output by U-Net, and the heuristic function is
used to optimize the positioning of suspected defects.
The geometric morphology of the power line is analyzed
by combining Hough transform, and the straight line and
curve features are extracted to improve the recognition
ability of power line structure defects. Finally, the paper
integrated and optimized through multi-scale analysis
and post-processing technology to precisely locate the
defect type and location. Experimental results show that
the proposed method achieves a maximum accuracy of
98.2% in power grid line defect recognition, and the
minimum positioning accuracy reaches 2 mm. Compared
to the Canny edge detection method with an accuracy of
82.3% and the baseline U-Net model averaging 92.6%,
this approach integrating U-Net with A-star search
demonstrates superior recognition precision. Despite its
high accuracy, the method faces challenges related to
computational overhead under real-time constraints,
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variable performance across adverse weather conditions,
and reliance on extensive annotated datasets, providing
efficient and precise automation technical support for
power grid inspection and improves power grid operation
and maintenance's the intelligent level.
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1. Introduction

With the continuous development of power systems, the
inspection and maintenance of power grid lines are
becoming more important. The real-time detection of
power line defects directly impacts the operational safety
and reliability of power grids, mitigating risks of
widespread outages and substantial economic losses.
Power lines [1,2], as the core facilities of power grids
[3,4], carry a large amount of power transmission [5,6]
tasks. Once a fault occurs [7,8], it may lead to large-scale
power outages [9,10] and equipment damage, and even
cause serious economic losses and safety hazards. How
to efficiently and accurately detect defects [11] and
abnormal problems in power grid lines has become a
research focus in the power industry [12,13]. Traditional
power grid line [14] inspection methods mainly rely on
manual inspection and automation technology based on
simple image processing. These methods have many
limitations, which are particularly prominent under the
requirements of high-precision and high-efficiency
automatic  recognition.  Manual  inspection s
time-consuming and labor-intensive, and is easily
affected by factors such as the experience of inspectors,
weather, and working environment, resulting in
uncertainty in inspection results and missed detection.
Although the automation method based on traditional
image processing [15,16] technology has improved the
inspection efficiency to a certain extent, it is still difficult
to provide high-precision recognition and positioning
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when faced with the complex terrain environment,
different lighting conditions, and diverse defect forms of
power grid lines. Traditional image processing methods
usually lack sufficient capture of image details and
cannot effectively deal with noise interference and
complex backgrounds. The paper’s method addresses
these limitations by leveraging high-resolution UAV
orthophotos to mitigate the impact of environmental
noise, varying lighting conditions, and diverse defect
morphologies, thereby enhancing defect detection
reliability in practical power grid inspection scenarios.
Therefore, they cannot meet the high-precision and
high-robustness requirements in practical applications.
Although the existing deep learning (DL) [17,18] models
have made significant progress image recognition, and
power grid defect recognition [19,20], how to make full
use of the high-resolution orthophotos obtained by UAV
[21,22] to accurately and quickly locate defects still
needs further research [23,24].

With the continuous advancement of UAV technology
and image processing technology, the efficiency and
accuracy of power inspection have been significantly
improved. Prior research has leveraged convolutional
neural networks to detect insulator defects, hybrid deep
learning frameworks to identify damaged power lines,
and optimization strategies like the Golden Eagle
optimizer to refine UAV path planning, yet these
methods often face challenges in balancing
computational efficiency with precision across diverse
inspection environments. Yang [25] et al. used DL and
transfer learning models to propose a new recognition
algorithm for the defect of missing caps on high-voltage
transmission line insulators, achieving efficient and
preicse detection in complex environments. As the
requirements for path planning [26,27] for inspection
tasks become increasingly stringent, researchers are
committed to improving inspection efficiency and path
planning accuracy through optimization algorithms. Pan
[28] et al. used the Golden Eagle optimizer that
incorporates personal example learning and mirror
reflection learning to optimize UAV power inspection
path planning and achieve efficient path generation and
smoothing. To further improve the analysis efficiency
and accuracy of inspection data [29,30], researchers
focus on the application of image processing technology,
especially innovations in noise suppression and data
visualization. Liu [31] et al. used the power corridor
visualization technology of data acquisition layer image
denoising to visualize UAV line inspection data, improve
inspection accuracy, and verify the significant
advantages of this method in practical applications.
These studies have achieved remarkable results, but the
robustness and practicality of the algorithms in
high-precision and large-scale power inspection tasks
[32,33] still need to be further improved.

In power line defect recognition, people have proposed a
variety of technical solutions to improve the accuracy
and real-time performance of defect detection. Liu [34]
et al. reviewed insulator defect detection using DL
methods, pointed out that current research has
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shortcomings such as inaccurate insulator defect
positioning, insufficient robustness of detection models
in complex scenes, and limited model performance
improvement due to small-scale insulator defect data,
and looked forward to future development directions. To
overcome these limitations, people continue to explore
innovative methods that integrate multiple detection
methods to improve the accuracy and reliability of defect
recognition [35,36]. Zhu [37] et al. combined online and
offline partial discharge (PD) diagnosis methods to
improve the recognition accuracy of cable defects in
distribution networks and verified the effectiveness of
this method in practical applications. With the
development of the Internet of Things [38] technology,
the application of edge computing has gradually shown
its advantages in real-time data processing and fault
diagnosis. Han [39] et al. constructed a GRU-VAE
(Gated Recurrent Unit-Variational Auto-Encoder) defect
recognition model and applied an edge computing
architecture to achieve real-time defect detection of
electromechanical equipment at the edge of the power
grid, providing a new path for electromechanical
equipment defect detection. These studies have provided
innovative technical solutions for power grid line defect
recognition, but in practical applications, they still face
challenges such as insufficient model stability, limited
data samples, and real-time detection capabilities.

To solve this problem, this paper adopts an automated
power grid line defect recognition method that combines
UAV inspection digital orthophotos with DL technology.
U-Net is employed for its superior performance in
pixel-level semantic segmentation of high-resolution
images, outperforming alternatives like Mask R-CNN or
Transformer-based architectures in preserving spatial
details critical for small defect detection, while the A-star
algorithm is integrated for its efficiency in path
optimization, surpassing Dijkstra’s exhaustive search and
genetic  algorithms’ computational complexity in
dynamic defect localization. Using UAV to obtain
high-resolution power grid orthophotos avoids the
shortcomings of traditional manual inspections and
simple image processing methods, and combines
efficient image processing algorithms to improve the
accuracy and efficiency of power grid line defect
recognition. This paper geometrically corrects the
high-resolution orthophotos taken by UAV to ensure the
accuracy of the spatial information of the image. Then,
the image is divided into multiple regions of interest
using image segmentation technology. This process
optimizes the subsequent recognition of defective areas
by extracting features from the image. The U-Net
convolutional neural network is used to perform
pixel-level semantic segmentation on these areas to
precisely recognize defective areas in the power grid line.
The U-Net network has a strong feature extraction
capability and performs well in  processing
high-resolution images. It can effectively recognize small
defects and anomalies in complex scenes. To further
improve the positioning accuracy of defects, this paper
applies the A-star search algorithm to finely locate the
suspected defect areas recognized. The algorithm



optimizes the search path by setting heuristic functions
and dynamic cost functions, thereby precisely locating
the defect location and avoiding false positives. Finally,
the geometric morphology of the power grid line is
analyzed in combination with the Hough transform to
improve the recognition ability of power line structural

defects and further improve the overall recognition effect.

In the post-processing stage of the results, the
interference of environmental noise is reduced through
multi-scale analysis and image fusion technology, and
precise defect type and location positioning is achieved.
This method significantly improves the accuracy of
power grid line defect recognition, and improves the
adaptability to complex scenes and diversified defects,
and promotes the automation and intelligent process of
power grid inspection.

2. Defect Recognition Method

This paper introduces the overall process of power grid
line defect recognition in detail, covering all steps from
UAV acquisition of high-resolution images to the final
output of defect recognition results. The process includes
image  acquisition and  preprocessing, image
segmentation and defect area recognition, defect
positioning and path search, geometric morphology
analysis and defect optimization, as well as
post-processing and result optimization. Each link is
carefully designed to ensure recognition accuracy and
system robustness. Through the coordinated optimization
of each link, this paper strives to achieve efficient and
accurate detection of power grid line defects. The defect
recognition process is shown in Figure 1.
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Figure 1. Power grid line defect recognition process.

A. Image Acquisition and Preprocessing

Acquiring high-resolution digital orthophotos is the basis
for power grid defect recognition. This paper uses UAV
to collect images at different angles and distances. The
collected image style is shown in Figure 2.

Figure 2. Collected image style.
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After the image is acquired, geometric correction is
performed to eliminate image deformation caused by
UAV flight posture, camera angle, and lens distortion.
The key to geometric correction is to establish a precise
mapping between image coordinates and geographic
coordinates through ground control points (GCPs). The
relationship between the point (x,,y,) in the image and

its corresponding geographic coordinate (X,,Y,) is

represented by a transformation matrix:
Xi
Yi

MR HENE

In the Formula (1), a, b, ¢, d are the parameters of
the transformation matrix, and e and [ are the
translation amounts. These parameters are estimated by

the least squares method to minimize the error between
the actual GCP and the transformed point.

After geometric correction, coordinate transformation is
performed to map the image pixel coordinates to the
UTM (Universal Transverse Mercator) coordinate system



to ensure the consistency of the image in geographic
space. Assuming that the pixel coordinate of a point in

the image is (x,y), and its geographic coordi0 (X,Y)

e

In the Formula (2), T is the projection transformation
matrix, which is responsible for converting the image
coordinate system to the geographic coordinate system.
During the conversion process, the parameters of T are
determined by the actual measured GCP points to ensure
high-precision docking between the image and the
geographic coordinate system.

1S:

After geometric correction and coordinate transformation,
image optimization and data enhancement are required to
improve the image quality and the accuracy of
subsequent defect detection. Image optimization
improves the defect recognition accuracy by enhancing
the detail information; data enhancement improves the
model robustness through image transformation and
adapts to different environmental changes. The first step
of image optimization is histogram equalization, which
adjusts the pixel distribution to make the brightness
range uniform and the pixel value range [0,L-1],

where L is the total number of pixel values. The goal
of histogram equalization is to map the pixel value

I(x,y) of the input image to the new pixel value

1 '(x, y) through the mapping function T , so that the

pixel value distribution of the output image is more
uniform. The mapping process is:

ren)=T)=e0 3 O o

In the Formula (3), N
the image, and /(i)

is the total number of pixels in
is the histogram of the original

image. This method can effectively improve the contrast
of the image, enhance the details, and facilitate the
subsequent extraction of defect areas.

The application of data augmentation methods helps to
generate diverse training samples, avoid overfitting and
enhance the adaptability of the model in complex
environments. Data augmentation operations are
generally implemented through affine transformations,
which include translation, rotation, scaling, etc. It is
assumed that the translation transformation matrix of the
image is:
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In the Formula (4), Ax

horizontal and vertical translation of the image,
respectively. Through this matrix, each pixel position

(x, y) in the image is converted to a new position

(=)

and Ay represent the

For rotation transformation, assuming that the rotation
angle is @, the rotation matrix is:

{cos@
R=| .
sin 0

—sin 9} ©

cos @

The pixel position after rotation is:

The equation for scaling transformation is:

el

In the Formula (8), S is the scaling matrix, which
represents the scaling ratio of the image in the horizontal
and vertical directions.

B. Image Segmentation and Defect Area Recognition

This paper uses the U-Net convolutional neural network
for image segmentation, aiming to accurately separate
potential defect areas from high-resolution digital
orthophotos acquired by UAV. The U-Net network has an
encoder and decoder structure. The encoder is used to
extract deep features of the image, and the decoder
reconstructs the spatial resolution of the image through
upsampling operations, and finally outputs the category
probability of each pixel. The network structure of U-Net
consists of multiple convolutional layers and pooling
layers. The U-Net architecture employs a symmetric
encoder-decoder framework with four downsampling
layers in the encoder, each featuring two 3x3
convolutions followed by a 2x2 max-pooling operation,
and corresponding upsampling layers in the decoder that
integrate feature maps via skip connections to preserve
spatial details. The network extracts local features of the
image through convolution operations and gradually
increases the receptive field to capture the global
information of the image. To improve the network’s
ability to learn deep features, residual blocks and jump
connections are used in U-Net. The residual block



applies shortcut connections to alleviate the gradient
vanishing problem and ensure smooth information flow
during training. The jump connection directly connects
the feature map in the encoder with the upsampling result
in the decoder, so that the network can retain more
detailed information and improve the accuracy of the
segmentation results.

During the training process, the image data is
standardized and uniformly adjusted to the same size.
Data augmentation technology is widely used in the
construction of training sets. By rotating, scaling,
cropping, and other operations on the original image, the
diversity of training samples is increased, and the
generalization ability of the model is improved. In terms
of loss function, the cross-entropy loss function is used
to measure the difference between the predicted result
and the true label, and the optimization goal is to
minimize the loss function. Assuming that the network
prediction output is p, and the true label is y, , the

cross-entropy loss function is defined as:

Table 1. U-Net model hyperparameter optimization process.

£=- [y log(5,)+ (1~ )log(1-5,)] ©)

i=1

N s the total number of pixels in the image. To further
improve the segmentation accuracy, the Dice coefficient
is also used as an evaluation indicator in the training of
U-Net. This coefficient measures the overlap between the
predicted segmentation result and the true segmentation
result, and is defined as:

Dice = =17
é:vlyi Zi]\ilj}i

To ensure the best training effect, this paper gradually
optimizes multiple key  hyperparameters. The
hyperparameters and initial values, first optimization,
second optimization, and final values are shown in Table
1.

(10)

Parameter Initial Value First Optimization Second Optimization Final Value
Learning Rate 0.001 0.0005 0.0003 0.0001

Batch Size 16 32 32 64

Number of Layers 4 5 5 5

Kernel Size 3x3 3x3 5x5 5x5
Activation Function ReLU LeakyReLU LeakyReLU LeakyReLU
Optimizer Adam Adam Adam Adam

Loss Function Cross-Entropy Cross-Entropy Cross-Entropy Cross-Entropy
Data Augmentation 0.2 0.3 0.4 0.5

In the output results of image segmentation, noise and
discontinuity in small defect areas are common problems.
To solve this problem, this paper uses morphological
operations as a post-processing step to further optimize
the segmentation results. Morphological operations are a
processing method based on image shape, which is often
used in binary image processing. They can remove noise
and fill the holes in the defect area, thereby enhancing
the connectivity of the target area. The erosion operation
is to scan the image through a structural element to
remove small areas and noise in the image. Here, it is
used to remove small pseudo-defects. This operation
shrinks the white area in the image and eliminates
irregular or isolated noise. Assuming that the structural
element is S, the erosion operation E is:

E(I1,8)= min I (x+x,y+y,) (11)

(x.y)es

In the Formula (11), (x,,y,) is the offset of the

structural element. The erosion operation scans the image
and the structural element, takes the minimum value of
the intersection area, and removes the area in the image
that is smaller than the structural element to reduce
noise.
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The opposite of the erosion operation is the dilation
operation. The dilation operation expands the target area
in the image, making the small defect area more
prominent, and then fills the holes in the area. The
dilation operation is usually used to enhance the
connectivity of the target area. In the dilation operation,
the structural element is convolved with the image to
expand the bright area in the image. The dilation
operation D is:

D(1,8)= max I(x+x,y+y,) (12)

(.r\v eS

This operation is similar to corrosion, except that the
dilation operation takes the maximum value in the region,
which expands the target region in the image.

Combining corrosion and dilation operations, an opening
operation and a closing operation are formed, which are
used to remove small noise points and fill small holes
respectively. The opening operation usually performs
corrosion first and then dilation operation, which
effectively removes small noise points and maintains the
shape of the target region. The closing operation
performs dilation first and then corrosion, which is



mainly used to fill holes in the region. Through these
morphological operations, the output image of the U-Net
model is further optimized, and the noise is removed.
The defective area is smoothed and filled, and the
continuity and accuracy of the defective area are ensured.
The optimized image is used as the input for subsequent
defect positioning and path search, providing clearer and
more precise defective area information, and providing a
reliable basis for the precise recognition and positioning
of power grid line defects.

C. Defect Positioning and Path Search

The precise defect positioning is one of the key links
Start

U-Net Outputs Suspected Defect Regions

Define Search Space
Based on Grayscale and Edge Information

Initialize A-star Algorithm
Set Start and End Points

Calculate Heuristic Function h(n)
Combining Spatial Distance and Texture Information

Adjust Threshold Dynamically
Based on Search Area and Path Length

during power grid line defect recognition. To achieve this
goal, this paper uses the A-star search algorithm to
precisely locate the suspected defect area output by the
U-Net network. The A-star algorithm is a path search
algorithm based on a heuristic function. By optimizing
the path search process, it can efficiently locate the
defect area in complex scenes. In this process, the image
segmentation results are used to delineate the suspected
defect area according to the grayscale and edge
information of the image. These areas serve as the search
space of the A-star algorithm and become the starting
point for finding the optimal path. Figure 3 shows the
application process of the A-star search algorithm in
power line defect location.

Calculate Cost Function g(n)
Based on Path Point Cost and Image Complexity

Combine h(n) and g(n)
Select Minimum Cost Path

Is Path Optimal
or Maximum Search Steps Reached?

Yes

Output Precise Defect Location

End

Figure 3. A-star Search Algorithm Defect Localization Flowchart.

This paper selects a heuristic function based on spatial
distance and image texture. The heuristic function A (x)

is set as the estimated cost from the current position to
the target position, and the local features and texture
information of the image are combined to calculate the
estimated path cost from the current node to the target
node. The expression of the heuristic function is:

h(x)= 0:~|xIar —x||+ﬂ-T(x) (13)
|xtar —x|| represents the Euclidean distance between the
current position and the target position; T(x)

represents the texture information of the current position;
the weight coefficients are represented by o and S,

which are used to balance the influence of spatial
distance and texture information on the search process.

The cost function g(x) is used to evaluate the actual

cost of the current path, which is calculated based on the

121

cost Cost(x,)

complexity of image processing:

of the points in the path and the

g(x) =iCost(x,.) (14)

The A-star algorithm selects the path with the minimum
cost by combining the heuristic function and the cost
function to determine the exact location of the suspected
defect area. This process is carried out in multiple
iterations until the algorithm finds the best path or
reaches the maximum number of search steps. During the
search process, to avoid false positives and false
negatives, a dynamic threshold adjustment mechanism is
adopted to adjust the weight of the cost function in
real-time according to the current search area and path
length to adapt to different image features and scene
changes. Through the optimization of path search, the
A-star algorithm can effectively locate the defect area in



the power grid line.

D. Geometric Morphology and Defect Recognition
Optimization

In the process of power line defect recognition, the
geometric morphology of the power line has an
important influence on the recognition accuracy and
efficiency of the defect. To improve the accuracy of the
recognition results, this paper combines Hough transform
to analyze the geometric morphology of the power line,
extract the straight line and curve features in the power
line, and optimize the defect recognition effect. Hough
transform is used for straight line detection, which
recognizes the straight line in the image by converting
the image space into parameter space. After binarizing
the defect area output by U-Net, the Hough transform
straight line is applied to extract the distance r from
the point to the origin:

r=xcos@+ysinfd (15)

In the Formula (15), (x,y) is the pixel coordinate in

the image, and & is the angle of the line. The main
straight line structure in the power line is recognized by
mapping each point in the image.

After extracting the straight line features of the power
line, the suspected curve part is analyzed. The bending of
the power line is usually caused by equipment aging or
environmental factors. To precisely recognize such
defects, the polynomial fitting method is used to model
the curve features. Through least squares fitting, the
mathematical model of the curve is established to obtain
its geometric features. The fitting equation is:

n n—1
v=ax"+a, x"" +---+ax+a, (16)

a, is the coefficient, and n is the order. The

coefficients are optimized by the least squares method,
and the geometric features of the curve are fitted at the
same time.

When analyzing the polynomial fitting results, the parts
with significant changes in the curve segment are
detected by detecting the change in curvature. These
parts are the defective areas of the power grid line. The

calculation equation of curvature x(x) is:

5 (A7)
(+())

The detection results of power grid line defects are
further optimized by precisely recognizing the areas with
sudden changes in curvature. Curve extraction and
analysis combine the geometric features of power grid
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lines, which can effectively distinguish normal lines
from defects, optimize geometric morphology analysis,
improve the recognition ability of bending defects, and
reduce false detections caused by noise interference.

E. Post-processing and Result Optimization

In the recognition of power line defects, post-processing
and result optimization are important steps to improve
the recognition accuracy and robustness. In view of the
environmental noise interference and image quality
problems in complex environments, the defect
recognition results are optimized through multi-scale
analysis and image fusion technology. In the multi-scale
analysis stage, images of different resolutions are used
for processing. By adjusting the scale level of the image,
the defect features of different sizes are captured, which
effectively overcomes the limitation that it is difficult to
recognize small defects under a single scale. The image
is scaled in a pyramidal manner to form a multi-level
image. For each layer of the image, the DL model is used
to predict the defect area. The paper obtained a
comprehensive defect positioning image with stronger
recognition ability by fusing different scales results.

In the image fusion link, weighted averaging or other
fusion algorithms are used to comprehensively process
the results of multi-scale images. In weighted fusion,
different weight coefficients are assigned to images of
different scales, and the weight coefficients are adjusted
according to the defect recognition accuracy of each
scale. This step aims to balance the contribution of the
results of each scale, suppress the interference caused by
low-precision scales, and strengthen the influence of
high-precision scales. The final defect recognition result

1,(x,y) after fusion is:

n

>ow I (x,y) (18)

i=1

1, (x.y)

I,(x,y) is the recognition result of the i -th scale; w,

i

is the weight; » is the number of scale layers.

In view of the interference of complex background and
noise, filtering technology is used to smooth the image
during the fusion process to remove unnecessary noise
information. The image is denoised by an adaptive filter
to effectively improve the stability of the model in a

complex environment. The denoised image Y (x, y) is:

N

> w(mn)-X (x+m,y+n) (19)

n=-—N

Y(x,y)=

M
m=—M

In the Formula (19), X(x,y) is the original image;
w(m,n) represents the filter weight; M and N are

the filter sizes. These operations are processed by



applying structural elements to the image to ensure the
continuity of the edges and further improve the accuracy
of defect detection.

3. Experiments

A. Experimental  Environment  and  Dataset

Preparation

The annotation of the dataset in this paper is completed
by combining manual and automatic methods to ensure
high annotation accuracy and representativeness. The
training set and test set are divided in a ratio of 8:2, of
which 80% of the data is used for model training and
20% of the data is used for model evaluation to ensure
the reliability of the experimental results and the model’s
generalization ability. The dataset comprises 12,000
high-resolution UAV orthophotos, with 9,600 images
allocated to the training set and 2,400 to the test set,
capturing diverse defect types across various
environmental conditions. Data augmentation techniques
applied during preprocessing involve random rotations

Table 2. Experimental configuration.

within a 30-degree range, scaling factors between 0.8
and 1.2, and horizontal flips, resulting in a threefold
increase in effective training samples to 28,800 images.
Missing data, encountered in 3% of the original images
due to occlusions or sensor noise, are addressed by
excluding affected samples from the training set and
interpolating pixel values using bilinear interpolation for
minor gaps, ensuring dataset integrity without
introducing synthetic bias. Extending this method to
large-scale power grid inspection proves feasible, relying
on coordinated UAV fleets to cover extensive areas,
utilizing edge computing for on-site data processing to
reduce transmission load, integrating ground station
distributed architectures to manage high data volumes,
leveraging the model’s high accuracy and robustness to
adapt to wvaried line conditions, with automated
workflows minimizing manual intervention to enhance
efficiency, aligning the technical framework with the
real-time and precision demands of large-scale inspection.
To support efficient experimental operations, this paper
optimizes the configuration of the hardware and software
environment. The configuration of the experimental
environment is shown in Table 2.

Configuration Item Configuration Version/Model Function

GPU NVIDIA GeForce RTX 3080 Accelerates deep learning training.

CPU Intel Core 17-10700K Handles data and model training computations.

Memory DDR4 32 GB Supports large-scale data processing and model
training.

Storage SSD 1 TB Stores datasets and trained models.

Operating System Windows 10 Prov1d§s the environment for framework
execution.

Deep Learning Framework | PyTorch 18 Prowdes support for model training and
inference.

Image Processing Library OpenCV 4.5.1 Handles  [mage segmentation and
post-processing.

. Used for writing experimental code, data

Programming Language Python 3.8 processing, and training,

Dataset Self-built / Public - Used for model training and testing.

Annotation Tool Labelbox / VGG Annotator | - Annotates defect regions in the dataset.

Version Control Tool Git 23 x(a)lgzei{gses the versions of experimental code and

The model’s adaptability to other power line datasets
relies on the diversity of training data and the generality
of feature extraction. U-Net’s semantic segmentation
structure  leverages deep feature learning to
accommodate power line images from varied sources,
while A-star’s path optimization adjusts search strategies
based on defect spatial distribution, mitigating structural
differences across datasets. In real-world deployment,
varying UAV camera resolutions are addressed through
image preprocessing and multi-scale analysis, ensuring
detection consistency. Adverse weather and illumination
variations challenge model robustness, requiring data
augmentation and network architecture optimization to
maintain performance stability. Extending the method to
other power infrastructure necessitates adjustments in
geometric morphology analysis to accommodate diverse
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line structures.
B. Parameter Selection

In the task of recognizing power line defects, the
selection of hyperparameters directly affects the model’s
performance. This paper optimizes the key parameters of
the U-Net model. The adjustment of each set of
parameters is based on its contribution to the model
accuracy and recognition accuracy, in order to achieve
the best recognition effect. Five typical parameter
combinations and their corresponding accuracy are
shown in Table 3, which is convenient for comparative
analysis of the model’s performance under different
hyperparameter settings. According to the performance



of each group of parameters in Table 3, this paper selects

Table 3. Performance of different parameter combinations.

combination 4 for experiments.

garam_e ter Learning Rate | Batch Size | Number of Layers | Kernel Size | Data Augmentation Accuracy (%)
ombination

1 0.001 16 4 3x3 0.2 90.5

2 0.0005 32 5 3x3 0.3 92.3

3 0.0003 32 5 5x5 0.4 94.1

4 0.0001 64 5 5x5 0.5 97.4

5 0.00005 64 6 5x5 0.5 95.8
Table 3 reveals that Combination 4 achieves the highest 4. Results

recognition accuracy at 97.4%, while Combination 1
records the lowest at 90.5%. The superior performance of
Combination 4 stems from its optimized learning rate,
larger batch size, and increased data augmentation,
which enhance model convergence and generalization on
diverse data. Combination 1, with a higher learning rate
and minimal augmentation, suffers from inadequate
feature learning and limited adaptability to complex
scenes, resulting in reduced accuracy. The selection of
U-Net hyperparameters in Combination 4 relies on
iterative grid search over 25 configurations, evaluated by
validation accuracy on a 10% subset of the training data.
Sensitivity analysis reveals that reducing the learning
rate from 0.001 to 0.0001 decreases overfitting, with
validation loss dropping from 0.12 to 0.04, while
increasing batch size from 16 to 64 stabilizes gradient
updates, improving convergence speed by 18%. Kernel
size adjustment from 3x3 to 5x5 enhances feature
capture for small defects, boosting F1 score by 0.03, and
the Adam optimizer with default momentum parameters
( B =09, B, =0.999) outperforms SGD by 5% in

accuracy due to adaptive step sizing.

A. Recognition Accuracy and Defect Positioning
Capability

The types of defects in power grid lines are diverse, and
the manifestations of different defects and the challenges
to the inspection system are different. Broken lines cause
the power grid to fail to operate normally; corrosion and
tilting affect the stability of the line structure; looseness
can easily cause problems such as poor contact and line
tripping. The accumulation of dirt increases the risk of
the insulation layer, and damage can easily cause power
outages. In this experiment, UAV is used to obtain
high-resolution digital orthophotos. DL and search tree
algorithms are combined to automatically recognize and
locate the above six defects, and their performance is
analyzed. Figure 4 shows the performance of the model’s
accuracy, F1 score, and positioning deviation for
different defect types.
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Figure 4. Analysis of power grid line defect recognition performance.

The data analysis in Figure 4 shows that the model
performs best in recognizing damage defects, with an
accuracy of 98.2%, an F1 score of 0.97, and a
positioning deviation of only 2 mm. The broken defects
have obvious characteristics, showing strong contrast and
clear edges in the image, and the model can precisely
recognize and locate them. The model performs worst in
recognizing dirt defects, with the three indicators being
90.5%, 0.86, and 3 mm, respectively. Dirt defects appear
as slight blur and low contrast on the image, which
makes the model susceptible to environmental noise and
image quality fluctuations during recognition, resulting
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in reduced recognition accuracy. Dirt is not an obvious
geometric shape and lacks stable structural features,
which increases the difficulty of model positioning. The
processing capabilities of other defect types are relatively
balanced. The model shows high accuracy in positioning
and recognition. When dealing with structural defects
such as damage and tilt, its accuracy and positioning
accuracy are good. This shows that the model is more
effective when dealing with clear and morphologically
stable defects, while its performance is greatly affected
when dealing with blurred and low-contrast defects. The
integration of U-Net and A-star improves prior



techniques through deep feature extraction and path
optimization. Unlike traditional image processing
methods that rely on edge extraction and are susceptible
to noise interference, this approach uses semantic
segmentation to capture subtle defect characteristics,

enhancing recognition reliability. Traditional
convolutional neural networks lack localization
optimization, whereas A-star refines defect positioning
via heuristic search, improving precision. For
low-contrast defects, U-Net’s pixel-level analysis
overcomes limitations of conventional methods in
complex Dbackgrounds, elevating overall detection

robustness and accuracy.
B.  Algorithm Efficiency and Processing Speed

To evaluate the impact of power grid line complexity on
the performance of automatic defect recognition, the
experiment sets different power grid line complexity
scenes and tests the running time and processing speed of
the method at each complexity. The change in
complexity is set by the number of branches of the line
from 1 to 20. The running time and number of images
processed per second at each complexity are recorded in
the experiment. The experimental results are shown in
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Figure 5.

Figure 5 shows the relationship between power grid line
complexity and performance. As the line complexity
increases, the running time shows a gradual increase,
from 2.02 seconds to 2.83 seconds, but the increase
gradually decreases, indicating that although the increase
in complexity leads to an increase in computational
overhead, the impact gradually stabilizes. Regarding
processing speed, FPS drops from 20.29 to 15.55, and
the rate of decline tends to be gentle under high
complexity conditions. This shows that although the
increase in complexity increases the computational
burden, the system’s adaptability to performance
degradation gradually increases at higher complexity.
This phenomenon stems from the method’s own gradual
optimization of high-complexity scenes, which slows
down the rate of performance degradation. Increasing
image resolution from 1024x1024 to 2048x2048 extends
processing time from 2.02 seconds to 3.15 seconds per
image, as tested on the RTX 3080 GPU, due to
heightened computational demand, while GPU
acceleration reduces this by 35% and edge computing on
lightweight devices like Jetson Nano cuts latency by
20% through on-site processing.
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Figure 5. Impact of power grid line complexity on running time and processing speed.

C. Recognition Effect in Different Scenes

In the task of recognizing power grid line defects, the
impact of different environmental conditions on model
performance cannot be ignored, so it is of great
significance to compare the performance of different
recognition methods in multiple scenes. The experiment
compares three defect recognition methods: the
automatic recognition method of U-Net combined with
the search tree algorithm in this paper, the support vector
machine (SVM), and the Canny edge detection and
morphological processing method based on classic image
processing technology. U-Net combines DL with search
tree optimization for path positioning; the support vector
machine relies on manual feature extraction and
classification; the Canny edge detection uses traditional
image processing methods to recognize defects in power
grid lines. To fully evaluate the applicability of these
methods, the experiments are conducted in six different
scenes, including clear weather, rainy days, snowy days,
mountainous areas, urban areas, and night environments,
which have their own challenges. Weather factors cause
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image blurring; complex terrain affects image feature
extraction; image quality decreases under low light.
Figure 6 shows the defect recognition accuracy of the
three methods in these scenes.
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Figure 6. Comparison of the accuracy of different methods in
multiple scenes.



The data in Figure 6 show that the combination of U-Net
and the search tree algorithm shows obvious advantages
in all scenes. In clear weather, the recognition accuracy
of the U-Net method reaches 97.4%, while SVM and
Canny edge detection are 89.5% and 82.3%, respectively.
The baseline of U-Net alone achieves 92.6% in clear
weather, demonstrating that the search tree enhances
performance beyond the standalone model. As the
environmental complexity increases, the performance
gap between rainy, snowy, and mountainous scenes
gradually widens. The accuracy of the U-Net method
remains high in these scenes, 95.1% on rainy days and
93.8% on snowy days, with U-Net alone recording
90.3% and 89.1%, respectively, still surpassing
traditional methods, while the accuracy of the SVM and
Canny methods drops significantly, reflecting the lack of
robustness of traditional methods in complex
environments. In urban and night scenes, the U-Net
method also maintains a relatively stable performance,
with accuracy rates of 96.2% and 92.7%, respectively,
compared to U-Net alone at 91.5% and 88.4%,

reinforcing the added precision from the A-star algorithm.

The performance of the support vector machine and
Canny edge detection methods fluctuates greatly in
different scenes, and the accuracy rate drops significantly
under low light conditions at night. In summary, the
model combining U-Net with the search tree algorithm
shows strong adaptability and high recognition accuracy
under variable environmental conditions, and is an
effective method to solve complex environmental
problems in power grid line defect recognition. The
integration of U-Net and A-star reduces false positives
by 8.3% and false negatives by 6.7% compared to the
baseline U-Net model, as measured across the test set of
2,400 images, enhancing detection reliability for subtle
and complex defect patterns.

D.  Path Optimization Capability

In power grid inspection tasks, path optimization is
crucial to improving inspection efficiency and reducing
energy consumption. Different path optimization
algorithms are suitable for different application scenes.
The A-star algorithm can quickly find the optimal path in
a dynamic environment with its heuristic search
mechanism. The Dijkstra algorithm relies on
breadth-first search to ensure the global optimal path, but
its computational efficiency is low in large-scale
problems. The genetic algorithm (GA) searches by
simulating the process of natural selection and is suitable
for optimization tasks in large-scale complex scenes.
However, its computational efficiency is low, and it is
sensitive to parameter settings. The Ant Colony
Optimization (ACO) algorithm simulates the foraging
process of ants to search for paths and has strong
adaptive capabilities, but is relatively inferior in path
optimization accuracy. The Particle Swarm Optimization
(PSO) algorithm finds the optimal path by simulating the
movement of particle groups, balancing global and local
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search capabilities, and 1is suitable for handling
dynamically changing path optimization problems
[40,41]. To comprehensively evaluate the performance of
these methods, the experiment compares their
performance in path planning efficiency and path
optimization accuracy, and the results are shown in
Figure 7.
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Figure 7. Performance
optimization algorithms.
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As can be seen from Figure 7, various path optimization
algorithms perform differently in different indicators.
A-star performs best in path planning efficiency, with a
processing time of 2.5 seconds, while Dijkstra has a
longer processing time of 4 seconds due to its global
search characteristics. In terms of path optimization
accuracy, A-star’s accuracy is 97.8%, slightly lower than
Dijkstra’s 98.3%, but its computational efficiency is
higher. Although GA and ACO have decreased in
accuracy, 93.5% and 94.7%, respectively, they have
strong ability to adapt to large-scale and complex
environments. PSO’s path optimization accuracy is
96.2%, showing a good balance. In general, although
Dijkstra has the best accuracy, A-star has more
advantages in efficiency. Therefore, A-star is the best
choice in general.

E. Model Robustness and Adaptability

In automatic recognition of power grid inspection, the
impact of environmental factors on model performance
cannot be ignored. Different weather conditions and light
intensity have a significant impact on the quality of
image data and the adaptability of the model. Therefore,
this experiment tests the performance of the model in
different scenes through four typical scenes: good
weather, bad weather, good lighting, and poor lighting.
The experimental results are shown in Figure 8, where
indicators I to IV are recognition accuracy, positioning
accuracy, false positive rate, and adaptability,
respectively.
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It can be observed from Figure 8 that in a good weather
environment, the model’s recognition accuracy and
positioning accuracy are the best, reaching 95% and 97%,
respectively, with a false positive rate of only 5% and an
adaptability of 90%. As the weather conditions become
more severe, the recognition accuracy and positioning
accuracy drop significantly, dropping to 85% and 88%,
respectively; the false positive rate rises to 12%, and the
adaptability also weakens to 75%. When the lighting is

Table 4. Performance comparison of different methods.

good, the model’s recognition accuracy and positioning
accuracy rebound, reaching 92% and 94%, respectively,
but the false positive rate and adaptability are slightly
inferior to those in good weather conditions. In scenes
with poor lighting, the model’s performance is relatively
weak, with the recognition accuracy and positioning
accuracy dropping to 80% and 82% and the false positive
rate of 15%, and the adaptability is also low, at only 70%.
This shows that lighting and weather conditions have a
significant impact on model performance, and good
weather and lighting conditions can improve the
accuracy and adaptability of the model.

F. Comparative Analysis

Table 4 summarizes the performance metrics of
U-Net+A-star, traditional CNN, and traditional image
processing (Canny edge detection), including root mean
square error (RMSE), precision, recall, and F1 score.
U-Net+A-star achieves an RMSE of 1.2 mm, precision
of 97.4%, recall of 96.8%, and F1 score of 0.97 on the
test set, outperforming traditional CNN (RMSE 2.1 mm,
precision 92.6%, recall 91.5%, F1 score 0.92) and the
Canny method (RMSE 3.5 mm, precision 82.3%, recall
80.1%, F1 score 0.81). U-Net+A-star maintains high
precision in small defect detection through pixel-level
segmentation and path optimization, whereas traditional
CNN underperforms in localization due to the absence of
path optimization. The Canny method lags across all
metrics, constrained by noise interference and limited
feature extraction capability.

Method RMSE (mm) Precision (%) Recall (%) F1 Score
U-Net+A-star 1.2 97.4 96.8 0.97
Traditional CNN 2.1 92.6 91.5 0.92
Canny Edge 3.5 82.3 80.1 0.81

5. Conclusions

This paper adopts a power line defect recognition
method based on UAV digital orthophotos and search
tree  algorithm, realizes  pixel-level  semantic
segmentation through U-Net convolutional neural
network, and uses A-star search algorithm to locate
suspected defect areas. Experiments show that the
accuracy of this method in recognizing damage defects is
98.2%, and the positioning deviation is 2 mm,; the overall
recognition accuracy reaches 97.4% under clear weather
conditions; the frame rate is maintained above 15 when
processing complex line scenes, showing good
processing speed and recognition accuracy. Although this
study shows high robustness in multiple scenes, the
performance is slightly reduced in the recognition of
fuzzy defects and low light conditions, and the false
positive rate increases to 15%. Integration into existing
power grid maintenance workflows involves deploying
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the method on UAVs equipped with edge computing
units for real-time defect detection during inspection
flights, enabling immediate data processing and reducing
dependency on post-flight analysis. Future research can
further improve the system’s adaptability to complex
scenes and diverse defects by optimizing the
generalization ability and data enhancement strategy of
the DL model, providing more stable and -efficient
technical support for actual power grid inspections.
Future enhancements involve integrating attention-based
deep learning models, such as Transformers, to improve
feature extraction for low-contrast defects, alongside
hybrid metaheuristic techniques, like PSO combined
with GA, to optimize path search efficiency and accuracy
under diverse conditions. Subsequent studies will explore
accelerating processing speeds through hardware
optimization and investigate the method’s applicability to
defect detection in railway infrastructure or renewable
energy systems.
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