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Abstract. In view of the challenges of intermittency,
volatility, and spatial correlation between wind farms
brought about by wind power's expasion, this paper
improved the multi-time scale source-load scheduling
method. The joint probability distribution of wind farms
is constructed using covariance analysis and Copula
model to capture the correlation characteristics of wind
power fluctuations and generate multiple wind power
scenarios. The paper optimized the multi-time scale
framework of long-term planning, day-ahead scheduling
and real-time scheduling. The LSTM is integrated to
enhance wind power prediction, and the prediction
results are adjusted to meet the correlation criteria
through joint distribution. The charging and discharging
of energy storage is optimized through dynamic
programming, and the demand response strategy is
adjusted in real time through the load aggregation model
to dynamically configure flexible resources. The 30-day
comparative test verifies the effectiveness of the
improved method: the average reserve demand adequacy
ratio reaches 0.9, the proportion of unmet load time is
only 2.08%, and the wind power utilization rate and
flexible resource utilization rate are 87.64% and 77.13%
respectively. Based on simulation and numerical
optimization, this paper proposed an improved solution
to enhance the adaptability of the power system to
large-scale wind power access.
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Nomenclature

Abbreviations
LSTM Long Short-Term Memory
MILP Mixed-Integer Linear Programming

ERA5 Fifth Generation ECMWF Atmospheric Reanalysis
of The Global Climate

NREL National Renewable Energy Laboratory
MPC Model Predictive Control
Formula Parameters

iP The missing value

it The time corresponding to the missing value iP

iP The smoothed power data
N The window width

ij The correlation coefficient

iu The mean of the power of wind farm i

i
The standard deviation of the power of wind farm
i

if
The marginal probability density function of wind
farm i

x
iP The power outputs of wind farm x at time i
y
iP The power outputs of wind farm y at time i
xP The means of x

iP
yP The means of y

iP

id The ranking difference of wind farms

 ,
start
m tC

The start and stop cost of the unit in scenario m
and period t

 ,
res
m tC The reserve capacity cost
 ,
stor
m tC The energy storage equipment’s operating cost
 ,
total
m tP The total power generation

tD The system load demand

 ,m t
iP

The power generation of wind farm i in scenario
m and time period t

 ,m t
jP The output of traditional generator set j

 ,
stor
m tP The energy storage equipment’s net power output

1. Introduction

As wind power generation technology advances, wind
energy has become an essential part of the global power
system [1]. Wind power has been increasingly
convenient recently, and more and more countries and
regions regard it as an essential means to achieve
low-carbon transformation and optimize energy structure
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[2]. However, the spatial connectivity between wind
farms and the instability and unpredictability of wind
power generation have brought unprecedented challenges
to power system dispatching [3,4]. The volatility of wind
power leads to uncertainty in grid operation, which
affects the economy and reliability of the system [5,6].
Traditional power system dispatch methods often assume
that wind power can be accurately predicted and that the
power generation capacity of different wind farms is
independent of each other, leading to a lack of
coordination in dispatching at various time scales and
difficult to effectively respond to the uncertainty brought
about by fluctuations in wind power in the system [7]. In
addition, the allocation of flexible resources including
energy storage and demand response in the traditional
dispatch framework has also failed to fully consider the
correlation between wind farms [8,9], resulting in the
failure of flexible resources to maximize their benefits in
the rapid changes of wind power fluctuations, affecting
the economy and reliability of the overall system
dispatch. The current research key issues is to consider
the correlation between wind farms in power system
dispatching and improving the coordination and
flexibility effectively.

The impact of wind power correlation and uncertainty on
power system dispatch has attracted widespread attention
in recent years [10,11]. Scholars have carried out
numerous studies on wind power prediction models
[12,13] to improve prediction precision and reduce the
impact of wind power uncertainty [14,15], providing a
more reliable dispatch basis for the power system. Most
studies concentrated on enhancing the power prediction
model of a single wind farm, including time series
model-based short-term prediction [16,17] and machine
learning-based wind power prediction [18,19]. These
studies do not consider the influence of spatial
correlation between wind farms on the dispatch of the
entire system. Others on the optimization design of
multi-time-scale dispatch frameworks, improving the
flexibility of dispatch plans and the ability to cope with
wind power fluctuations by integrating coordination
mechanisms [20,21]. However, most of the existing
multi-time-scale dispatch methods fail to fully consider
the correlation between wind farms and lack an effective
mechanism for the dynamic allocation of flexible
resources. Therefore, effectively incorporating the
correlation between wind farms into the dispatch
optimization model and dynamically coordinating the
resource allocation in various time periods through a
multi-time-scale dispatch framework are still significant
difficulties in current research.

To cope with the challenges of wind power volatility and
correlation to power system dispatch, this paper
constructs the joint probability distribution between wind
farms through covariance analysis and the Copula model,
captures the correlation characteristics, and designs a
multi-time-scale optimization framework, covering
long-term planning, day-ahead dispatching, and real-time
dispatching. In wind power prediction, the LSTM model
is combined, and the prediction results are corrected

through joint distribution. This paper also optimizes the
energy storage charging and discharging strategy through
dynamic programming, optimizes the demand response
by combining the load aggregation model, and realizes
the dynamic allocation of flexible resources, improving
the system’s adaptability to wind power fluctuations.

2. Related Work

Wind power is an essential renewable energy source, but
its unpredictability and volatility pose a major threat to
power system stability and economic efficiency [22,23].
Researchers have proposed various methods to model the
correlation of wind power and its impact on power
system dispatch to deal with the volatility of wind power
effectively, mainly focusing on spatial correlation
modeling between wind farms [24,25] and
time-scale-based dispatch optimization [26,27].

Spatial correlation modeling is a key direction in the
modeling of wind power correlation. Traditional wind
power correlation modeling usually relies on simplified
correlation coefficients or statistical methods to describe
the correlation between wind farms [28,29]. However,
these methods often ignore the complex nonlinear
relationships and dependencies between wind farms,
resulting in an inaccurate description of the correlation.
The Copula model has gradually been utilized for
modeling the correlation between wind farms recently
[30,31]. Unlike traditional methods, this model can
handle spatial correlation and flexibly simulate the
complex associations between wind farms. By
constructing a joint probability distribution, this model
can provide more accurate prediction data for power
system dispatching so that the stability and dispatching
efficiency of the system under wind power fluctuations
can be improved.

The dispatch problem of power system has been widely
studied, especially the multi-time-scale dispatching
optimization technology based on wind power
correlation modeling. Huang J proposed a multi-time
scale coordinated control framework, which optimized
the dispatching and frequency regulation performance of
wind turbines through minute-level and second-level
control strategies, and verified its effectiveness. However,
he did not fully consider the system complexity when
large-scale wind power is connected, and the long-term
impact analysis of different unloading methods was
insufficient. The universality of practical application
needs to be further verified [32]. Zhang S proposed a
multi-time scale flexibility evaluation method using
empirical mode decomposition to analyze the flexibility
supply and demand of integrated energy systems under
different wind power installed capacity ratios. This
method quantifies the flexibility gap through model
prediction and decomposition algorithms, providing a
basis for system planning. However, the simplified
assumptions and insufficient case verification limit the
universality of the conclusions [33].
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In short-term dispatch, many studies adopt optimized
dispatch algorithms to improve the power system’s
operation efficiency to reduce the power gap. Hu Y
introduced the non-deterministic optimization whale
optimization algorithm for wind power forecasting, and
proposed a fast global optimization algorithm based on
bee population conversion to achieve dynamic economic
dispatch. This research improved the wind power
forecasting accuracy and dispatching efficiency, but did
not consider other key indicators such as environmental
factors and voltage deviation, and the universality and
long-term stability of large-scale wind power access need
to be further verified [34]. SeyedGarmroudi S D solved
the economic dispatch and joint economic emission
dispatch problems by improving the Pelican optimization
algorithm, showing superior performance. The lack of
universality and parameter sensitivity analysis of this
study limits its applicability in complex scenarios [35].
They combine the dispatch strategy of flexible resources
to cope with the uncertainty and volatility of wind power.
In addition, some studies also explore the impact of wind
power prediction errors on dispatch optimization results
and propose adjustment methods based on real-time data
and rolling dispatch to improve the emergency response
capability of the system. For long-term dispatch, the
research focuses more on the seasonal changes of wind
power and the balance between power demand and

power generation capacity on a longer time scale. Such
studies typically use interannual data for modeling to
optimize long-term investment and planning of energy
storage systems and ensure the power system stability
and economic efficiency under different seasonal and
climatic conditions.

Previous studies have attempted to apply Copula models
to capture the interdependencies between wind farms and
then optimize power system dispatch to effectively
integrate the spatial correlation between wind farms and
power system dispatch. Based on this, this paper
constructs the joint probability distribution between wind
farms by means of the Copula model and designs the
allocation strategy of flexible resources in combination
with multi-time-scale dispatch optimization.

3. Power System Source-Load Dispatch Method

A. Wind Farm Correlation Modeling

In this study, the core objective of wind farm correlation
modeling is to establish a high-precision joint probability
distribution model through the historical power data of
multiple wind farms and their meteorological data.
Figure 1 presents its framework.

Figure 1. Wind farm power prediction joint probability distribution model framework.

The data used to build the model comes from
meteorological data from the ERA5 (Fifth Generation
ECMWF Atmospheric Reanalysis of The Global Climate)
database and wind farm power data provided by NREL
(National Renewable Energy Laboratory).

When preprocessing the data, linear interpolation is first
utilized to fill in the missing power values [36]. Through

this method, for each missing power data point, the
existing data points before and after it are used to
estimate and generate a continuous time series. The
estimation formula for each missing value is as shown in
formula (1).

 1 1
1 1

1 1

i i
i i i i

i i

P P
P P t t

t t
 

 
 


  


(1)
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it indicates the time corresponding to the missing value

iP .

The interquartile range method is used to remove data
when dealing with outliers [37]. This method uses the
interquartile range of the data to find extreme values that
deviate from the typical fluctuation range.

In addition, the historical power data is smoothed
utilizing the sliding average method to eliminate
high-frequency noise and more effectively extract the
wind power change trend [38]. 24 hours are taken as the
window period. The average value of the power data
within 24 hours around each data point is calculated, the
calculation formula is shown in formula (2).

2

2

1 Ni

i jNj i
P P

N


 
  (2)

iP represents the smoothed power data, and N
denotes the window width.

The preprocessing process of meteorological data is
similar to that of power data. Two vital factors impacting
wind power generation are wind direction and speed.
These data are also missing or noisy. During the
processing, the missing wind speed and wind direction
data are first filled using linear interpolation. Then, the
meteorological data is smoothed using the sliding
average method to eliminate short-term noise caused by
meteorological fluctuations.

The correlation analysis mainly aims to identify and
quantify the linear and nonlinear dependencies between
wind farms. First, the Pearson correlation coefficient
matrix between each pair of wind farm power data is
calculated to quantify the linear correlation between
wind farms [39]. The calculation basis of the Pearson
correlation coefficient is the ratio of the covariance
between the wind farm power data and its standard
deviation, which can reflect the synchronization of the
power output of different wind farms. The closer the
element value of this matrix is to 1, the more
synchronized the power output between wind farms.
Conversely, a value close to -1 indicates that the power
output shows an opposite trend. The correlation
coefficient is defined as formula (3):

     Cov ,  i i j ji j
ij

i j i j

P u P uP P


   

     (3)

iu and i are the mean and standard deviation of the
power of wind farm i .

When constructing the joint probability distribution
model, the Gaussian Copula function is used to describe

the dependency structure between wind farms. In this
process, the marginal distribution is fitted for the power
output data of each wind farm. The distribution
parameters are determined using maximum likelihood
estimation, as shown in formula (4).

 1
ˆ argmax ;

i

N
i j i ij if P


   (4)

if is the marginal probability density function of wind
farm i .

Then, the Gaussian Copula function is used to combine
these marginal distributions into a joint distribution [40],
and the Copula parameters are optimized by the
maximum likelihood estimation method. Finally, the
numerical gradient descent method is used to iteratively
optimize the correlation structure to ensure that the
model can accurately reflect the correlation between
wind farms.

The Kolmogorov-Smirnov test is adopted to evaluate the
fitting precision and screen the optimal marginal
distribution model. After determining the marginal
distribution, the marginal distribution of each wind farm
is expanded to a joint distribution through the Gaussian
Copula function. The Copula parameters are optimized
through the maximum likelihood estimation method, and
the correlation structure is iteratively optimized using the
numerical gradient descent method [41]. The model
verification is completed by comparing the probability
distribution and correlation structure of the historical
data with the generated samples. The Kullback-Leibler
divergence and distribution deviation statistics are used
as evaluation indicators to quantitatively analyze the
fitting precision of the model-generated samples.

After the joint distribution model is established, the wind
power scenario is generated through the Monte Carlo
sampling method. Through the Cholesky decomposition
of the joint distribution, the independent normal
distribution samples are transformed into samples that
conform to the correlation structure, and the wind power
output scenario is generated through the inverse
transformation of the marginal distribution. The
autoregressive model trained on historical data is applied
to perform time series correction on the scenario
sequence to ensure that the generated power scenario has
temporal consistency and physical feasibility, further
retaining the temporal correlation characteristics of wind
power.

B. Improvement of Wind Power Prediction

Historical power output data and meteorological data
from several wind farms are used and preprocessed in the
wind power prediction improvement process. Figure 2
presents the wind power prediction improvement
framework.
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Figure 2. Wind power prediction improvement framework.

In data feature extraction, time series features of wind
power and meteorological variables are extracted from
historical data, such as daily average power value, the
relationship between wind speed and power, etc. All
input features are standardized.

In the implementation of the single wind farm power
prediction model, LSTM is used for modeling [42]. The
input layer of the LSTM model receives standardized
data, which is the model’s feature input to help the
network capture the wind power output’s temporal
pattern. The LSTM network’s hidden layer consists of
multiple LSTM units, through which the model can learn
the long-term and short-term dependencies in the data.
Finally, the predicted value for the corresponding time
period is generated in the output layer. During model
training, the model parameters are continuously adjusted
to reduce the prediction error gradually.

In the correlation correction stage, the wind farm power
output marginal distributions are first calculated. The
Gaussian Copula function is applied to merge them into a
joint distribution to capture the dependency structure
between wind farms. Then, the predicted values are
corrected to ensure that they conform to the actual spatial
correlation.

Through statistical analysis of historical data, the
fluctuation range of wind power is evaluated, and the
corresponding confidence interval is calculated to
quantify the uncertainty of the prediction results. The
Monte Carlo method is utilized to produce numerous
samples of simulations, and the confidence interval of

predictions is evaluated using these samples. By
analyzing these samples, the potential range of wind
power output fluctuations can be determined, and the
uncertainty of the predicted value can be quantified.

C. Multi-Time-Scale Dispatching Framework

1) Implementation of Long-term Planning

In implementing long-term planning, the input data
include wind farm correlation scenarios, technical
parameters of power generation equipment and system
load data. Wind farm correlation scenarios are generated
from historical wind power data through covariance
analysis and the Copula model. The relationship between
wind farms is examined using Pearson and Spearman
correlation coefficients to calculate linear and nonlinear
correlations between wind farms [43,44].

The calculation formula of Pearson correlation
coefficient is formula (5).

  
   

1

2 2

1 1

n x x y y
i ii

xy
n nx x y y

i ii i

P P P P

P P P P
 

 

 


 


 

(5)

x
iP and y

iP are the power outputs of wind farm x

and wind farm y at time i , and xP and yP are the
means of the corresponding power sequences.
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The Spearman rank correlation coefficient is a
correlation calculated based on the order of the data, the
calculation formula is as shown in formula (6).

 
2

1
2

6
1

1

n
ii

s

d

n n
  


 (6)

id is the ranking difference of wind farms.

Then, the univariate probability distribution of each wind
farm is expanded into a joint probability distribution
through the Gaussian Copula function, and the joint
output power distribution of multiple wind farms is
obtained. These joint distributions reflect the
dependencies between wind farms and provide the
necessary basis for the generation of wind power
fluctuation scenarios.

The objective of the optimization model construction
stage is to reduce the costs associated with flexible
resource allocation and reserve capacity. The reserve
capacity cost is mainly the additional power generation
capacity required to ensure the system’s stable operation
under the condition of wind power fluctuations. The
flexible resource allocation cost considers the
dispatching of energy storage equipment and demand
response resources. The constraints include system
power balance constraints, equipment constraints, energy
storage capacity limitations, and technical constraints on
the start and stop of generator sets.

Based on the system power balance constraint, the
system’s total power generation in each time period
should be greater than or equal to the total load demand.
Specifically, the power generation of all wind farms and
the power output of traditional generators and energy
storage equipment must meet the system load
requirements. Equipment constraints include restrictions
on the capacity and minimum output of generators and
restrictions on the energy storage equipment’s charging
and discharging rates. The output power of the generator
set must be between its maximum capacity and minimum
output. The energy storage equipment’s charging and
discharging rates are also limited and cannot exceed the
maximum charging and discharging rate set in the
technical parameters.

The optimization problem is solved using the
mixed-integer linear programming (MILP) method [45].
MILP can process both integer decision variables and
continuous decision variables. The generator set’s start
and stop status is represented by integer decision
variables. The energy storage equipment’s power
generation, charging, and discharging powers are
represented by continuous decision variables. By
converting the objective function and constraints into
standard linear expressions, all decision variables
involving the generator set and the energy storage
equipment are used in the model. The wind power

fluctuation scenario is used as input. Multiple wind
power scenarios are generated through Monte Carlo
sampling. The model is dispatched and optimized in
combination with the system load data. The model is
solved to obtain the optimal reserve capacity allocation
plan by determining the generator set’s start and stop
status and the energy storage equipment’s charging and
discharging strategy.

The specific solution process includes initializing the
input data and building an optimization model and then
using the solver to solve. The solver uses an efficient
optimization algorithm and heuristic search method to
calculate the approximate optimal solution. The solution
results output the start and stop status of the generators in
each period, the dispatching plan of demand response
resources, etc. The results of these solutions ensure that
the system satisfies the load demand while reducing the
cost of dispatching flexible resources and reserve
capacity when wind power changes.

2) Implementation of Day-Ahead Dispatching

Scenario generation in day-ahead dispatching is
according to wind power prediction results, historical
power output, and meteorological conditions of wind
farms to predict future power output. A multi-scenario
generation method is used, and a joint distribution
between wind farms is constructed through covariance
analysis and the Copula model to cope with the
inevitable volatility and uncertainty in wind power
prediction. For each wind farm, based on the relationship
between its historical power output and meteorological
conditions, the Gaussian Copula expands the single
variable power distribution into a multidimensional joint
distribution. Multiple wind power scenarios are
generated from the joint distribution through the Monte
Carlo sampling method to reflect the possible states of
different wind power outputs while considering the
correlation between wind farms. Each generated scenario
represents a possible wind power output state, covering
the temporal and spatial correlation of wind power
fluctuations.

In dispatching optimization, the objective is to reduce the
system’s overall operating cost. Its expression is shown
in formula (7):

         , , ,
total start res stor1 1

1min M T m t m t m t
m t

C C C C
M  

    (7)

 ,
start
m tC is the start and stop cost of the unit in scenario

m and period t ;  ,
res
m tC is the reserve capacity cost;

 ,
stor
m tC is the energy storage equipment’s operating cost.

Considering the uncertainty of wind power, the key
constraints of the optimization model include power
balance constraint and wind power fluctuation
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confidence interval constraint. The power balance
constraint requires that the total power generation  ,

total
m tP

in each time period t meets the system load demand
tD , the total power calculation is shown in formula (8):

       , , , ,
total stor1 1

N Gm t m t m t m t
i j ti j

P P P P D
 

     (8)

 ,m t
iP is the power generation of wind farm i in

scenario m and time period t ;  ,m t
jP is the output of

traditional generator set j ;  ,
stor
m tP is the energy storage

equipment’s net power output.

The confidence interval constraint of wind power
fluctuation requires that within each dispatching period,
the units’ start and stop decisions and the energy storage
dispatching can adapt to the wind power fluctuation
range.

In solving the scenario optimization algorithm, the
expected cost of multiple wind power fluctuation
scenarios is optimized. The operating cost of each
scenario consists of the unit start and stop cost, energy
storage charging and discharging cost, and reserve
capacity allocation cost. In multiple scenarios, the
expected operating cost is calculated by a weighted
average of all scenarios. The optimization algorithm uses
scenario optimization technology and combines
stochastic programming and dynamic programming
methods to deal with the uncertainty of wind power
effectively. The constraints and objective functions are

linearized to adapt to the solution of MILP problems so
that the optimization process can adapt to the computing
needs of large-scale systems.

In solving the model, the stochastic optimization method
is combined with the rolling time domain optimization
method to solve multiple scenarios. Each time the
optimization is performed, multiple wind power
scenarios are first generated according to historical data
and wind power prediction results. For each generated
scenario, the dispatching optimization model optimizes
the start and stop decision of the generator set and the
charging and discharging strategy of the energy storage
system according to the objective function of minimizing
the total operating cost. The optimization process
involves the processing of multiple scenarios and
dynamically adjusting the start and stop status of the unit
and the energy storage equipment’s charging and
discharging strategy.

3) Implementation of Real-time Dispatching

In implementing real-time dispatching, data input is the
basis of system operation. The system continuously
monitors power output and system load data through the
energy management system. All raw data is input into
the real-time dispatching model after standardization,
noise filtering, and outlier correction. Based on these
real-time data, the dispatching system can dynamically
update the power system’s operating status, precisely
calculate the power gap in the current period, and
compare it with the actual load demand of the system in
real time. Figure 3 presents the real-time dispatching
system framework.

Figure 3. Real-time dispatching system framework.

The model predictive control (MPC) method is adopted
to perform rolling updates on the dispatching plan to
achieve dynamic adjustment [46]. In each optimization
period, MPC uses the real-time data of the current period
as input and optimizes the dispatch decision for several
future periods based on wind power prediction results,

load forecast information, and energy storage equipment
status. The optimization objective function mainly
includes the system’s power generation and energy
storage costs. The constraints include physical output
limitations of wind farms, system load demands, and the
availability of flexible resources. During the optimization
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process, the problem is converted into a linear
programming problem and solved by the optimal
algorithm to ensure real-time calculation of the optimal
energy storage charging and discharging strategy and
demand response dispatching plan.

The real-time dispatching algorithm considers the energy
storage equipment’s current charging and discharging
status and remaining capacity when adjusting its
charging and discharging. The energy storage
equipment’s charging and discharging are limited by its
maximum capacity and charging and discharging rates.
In the dispatching model, the optimization algorithm
reasonably arranges the charging and discharging
operations of energy storage equipment based on the
real-time power gap, the energy storage equipment’s
remaining power, and the wind power output prediction.
When the system faces a power gap, the energy storage
equipment gives priority to providing power supplements.
When the wind power is higher than the load demand,
the energy storage system starts to charge and store the
remaining power. The dynamic programming algorithm
is utilized to the optimization of energy storage charging
and discharging to solve the charging and discharging
cycle and loss problems of energy storage, maximizing
the energy storage system’s benefits and extend the
equipment service life.

Regarding demand response, the real-time dispatching
system combines real-time load data and uses a load
aggregation model to integrate multiple demand response
resources. The load aggregation model combines
different types of demand response resources into a
virtual load pool to optimize dispatch decisions. During
the dispatch process, real-time loads are combined with
the demand response potential of adjustable load
resources, and optimization algorithms are applied to
determine the optimal load reduction and transfer
strategies. When the system load demand exceeds the
power supply capacity, priority is given to calling
demand response resources with fast response speeds,
such as load transfer for commercial users or industrial
load dispatch. These response measures can quickly
adjust load demand and alleviate the power gap problem
faced by the power system during wind power
fluctuations.

The core of the real-time dispatching strategy is to
respond quickly to wind power fluctuations, especially
when wind power fluctuates greatly. Based on the rolling
time domain optimization strategy, the real-time
dispatching system continuously adjusts the energy
storage equipment’s charging and discharging plan and
the dispatch strategy of demand response to balance the
impact of wind power fluctuations on load demand.
Through the optimization algorithm, the dispatching plan
for each time period is calculated in real time according
to multiple factors including real-time wind power data,
load demand, energy storage status, and future wind
power prediction. This solution realizes the power
system’s dynamic adaptation under the condition of wind
power fluctuations, ensuring that the system can operate

stably under the uncertainty of wind power, meet load
demand, and achieve a balance between economy and
reliability.

D. Dynamic Allocation of Flexible Resources

The energy storage system optimization relies on
real-time monitoring of state-space models to precisely
control the energy storage equipment’s charging and
discharging status. The model represents the charging
and discharging process as a discrete-time system. The
state variables include remaining power and charging
and discharging power. At each moment, the state of the
energy storage system is affected by the charging and
discharging power, equipment characteristics, and load
demand. The inputs include system load demand, wind
power prediction, energy storage capacity, and charging
and discharging constraints. The optimization objective
comprehensively considers the charging and discharging
cost, equipment maintenance cost, and reserve capacity
requirements. The charging and discharging and cycle
constraints are used in the objective function to extend
the equipment service life. Finally, the charging and
discharging strategy is optimized through dynamic
programming methods.

Demand response optimization effectively manages
demand response resources within the system through a
load aggregation model. The model aggregates different
types of load resources, such as industrial loads,
commercial loads, and residential loads, to form a virtual
load pool so that various types of loads can be flexibly
adjusted when needed to achieve system resource
balance. The model inputs include real-time load data,
wind power output, load regulation requirements, and
resource response characteristics. The model prioritizes
load resources with faster response speeds and stronger
regulation capabilities based on the response time,
response amplitude, and cost-effectiveness of the load
type. When the system load demand exceeds the power
supply capacity, the response capability and priority of
the load resources determine the strategy of load
reduction and transfer. In situations where wind power
fluctuates dramatically, the call of demand response
resources can effectively alleviate the power gap and
reduce the demand for reserve capacity.

The optimization model considers the dynamic
characteristics of demand response resources and energy
storage equipment, realizes the joint optimization of
energy storage and demand response, coordinates
charging and discharging and load adjustment, and
maximizes the utilization efficiency of flexible resources.
The model constraints cover the energy storage
equipment’s charging and discharging rate, capacity
limitations, response rate, and time constraints of
demand response resources, etc. The objective of joint
optimization is to fully meet load demand and power
balance while minimizing system operating costs.
Through this optimization, the system can dynamically
dispatch energy storage equipment and demand response

97



resources according to real-time wind power fluctuations
and load demand and reasonably arrange energy storage
charging and discharging and load reduction strategies.
The MILP method is adopted to solve this joint
optimization problem. The energy storage charging and
discharging plan and demand response strategy are
solved based on the objective function and constraints.
By applying this optimization model, the system can
maintain the balance and coordination of flexible
resources in a changing operating environment.

4. Simulation Application and Performance
Evaluation

A. Simulation Application Experiment

The experimental setting of this paper is based on the
IEEE 39-node power system. The experimental period is
30 days, a total of 720 hours. The experiment includes
three wind farms, located at Bus 5, Bus 15 and Bus 30 in
the IEEE 39-node power system, and their installed
capacities are shown in Table 1:

Table 1. Wind farm settings.

Wind Farm
Number

Bus
Number

Installation Capacity
(MW)

1 Bus 5 100
2 Bus 15 150
3 Bus 30 120

The experimental environment is shown in Figure 4.

Figure 4. Experimental environment.

The experiment is divided into three stages: long-term
planning, day-ahead dispatching, and real-time
dispatching. In the long-term planning stage, the reserve
capacity allocation within a week is optimized. During
day-ahead dispatching, daily unit start and stop plans and
energy storage equipment charging and discharging
plans are formulated. In the real-time dispatching stage,
the dispatching strategy of flexible resources is adjusted
according to power prediction data. The wind power
fluctuation data in the experiment is collected in units of
five minutes. The load demand data is collected in units
of one hour. The status of the energy storage equipment
and adjustable load is updated in units of fifteen minutes.

The experimental setting includes an experimental group
and control groups. The experimental group adopts the
method in this paper, considering the correlation between
wind farms and performing multi-time-scale dispatching
optimization. The control groups include three methods.
Control group 1 adopts single-time-scale dispatching
based on deterministic prediction, ignoring the
correlation between wind farms, with fixed reserve
capacity and dispatching plan [47]. In control group 2,
the correlation of wind farms is ignored, and dispatching
is performed through independent scenario optimization
without considering multi-time-scale coordination [48].
Control group 3 adopts a simple time series averaging
method, dispatching according to the average value of
historical data, ignoring wind power uncertainty and
dynamic adjustment [49]. The operating costs,
dispatching reliability, flexible resource utilization, and
other indicators of each group in the experiments are
compared to confirm the effectiveness of the method in
this paper.

B. Application Effect

1) Economic Efficiency

In this paper, economic efficiency is the total operating
cost directly calculated through the optimization model,
covering key components including reserve capacity cost,
start and stop cost, and energy storage operating cost. By
comparing the cost changes under different dispatch
strategies, the role of the optimization method in
reducing system operating costs and improving
economic benefits is evaluated. This indicator verifies
the actual effect of the method in this paper in optimizing
power system dispatch and flexible resource allocation.
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Figure 5. Comparison of economic efficiency between the experimental group and control groups.

Figure 5 compares the reserve capacity cost, start and
stop cost, and energy storage operating cost. The reserve
capacity cost of the experimental group is 507,800 yuan,
while that of the control groups 1, 2, and 3 are 713,400
yuan, 669,200 yuan, and 791,500 yuan, indicating that
the experimental group has more advantages in cost
control. Similarly, the start and stop cost and energy
storage operating cost are also significantly lower than
those of the control groups, which are 198,400 yuan and
116,700 yuan, respectively, in the experimental group.
The standard deviation of the experimental group is
lower than that of each item in the control groups,
showing the stability and consistency of the costs of the
experimental group under different circumstances.

2) Reserve Demand Adequacy

The adequacy of reserve demand is measured by
comparing wind power fluctuations with reserve capacity
allocation and counting the proportion of reserve demand
met in each period. This indicator can be used to evaluate
the effectiveness of the system’s reserve capacity in
responding to wind changes. It reflects the system’s
ability to meet reserve capacity requirements in different
scenarios. By analyzing the proportion of time periods in
which reserve demand is met, the reliability of the
optimized dispatching strategy in dealing with
uncertainty and wind power fluctuations is quantified.

Figure 6. Comparison of the adequacy of each method’s reserve demand.

The paper compared each group's reserve demand
adequacy in Figure 6. From the overall trend, the
experimental group has the highest reserve demand
adequacy. The average adequacy of the experimental
group is 0.9, showing strong stability and small

fluctuations. The adequacy value of control groups is
generally lower. By comparison, it can be found that the
experimental group has apparent advantages in the
reserve demand adequacy and can better cope with
changes in system demand.
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3) Dispatching Reliability

The dispatching reliability is measured by counting the
number of times the load demand is not met and
calculating its proportion in the total period. Specifically,
the optimization model’s dispatch results are compared
with the actual load demand, and the total duration and
number of times the load demand is not met are counted.
Indicators such as the average and maximum unmet load
duration are further analyzed. This indicator reflects the
stability and adaptability of the dispatch plan in dealing
with load fluctuations and wind power uncertainties.

The paper compared load groups satisfaction in Table 2.
In the experimental group, the load is not met 16 times in
720 time periods. The proportion of unmet load duration
is 2.08%. The average duration is 0.94 hours, with a
maximum duration of 1.53 hours. Loads of control
groups 1, 2, and 3 are not met 33 times, 28 times, and 36

times, and the proportion of unmet load duration is
5.17%, 4.96%, and 5.58%, respectively. Overall, the
method in this paper is better than control groups in
terms of load satisfaction and duration, showing better
system stability.

4) Wind Power Utilization and Flexible Resource
Utilization

The wind power utilization rate is calculated by the ratio
of the actual power consumption of the wind farm to the
total output to evaluate the effective utilization of wind
energy resources. The flexible resource utilization rate is
calculated by counting the energy storage equipment’s
charging and discharging capacity and the call volume of
demand response and calculating its proportion to the
total capacity, thereby measuring the regulation capacity
of flexible resources in the power system.

Table 2. Comparison of dispatching reliability between the experimental group and control groups.

Experimental Group Control
Group 1

Control
Group 2

Control
Group 3

Total duration 720 720 720 720

Number of times the load
demand is not met 16 33 28 36

Unmet load
duration

Proportion 2.08% 5.17% 4.96% 5.58%

Mean 0.94 1.13 1.28 1.12

Maximum 1.53 2.02 1.81 2.98

Figure 7. Comparison of wind power utilization and flexible resource utilization.

The differences between the experimental and control
groups is shown in Figure 7 regarding wind power
utilization and flexible resource utilization, with the
experimental group performing more stably overall. The
average wind power utilization of the experimental group
is 87.64%, which is higher than 77.17% of control group
1, 75.89% of control group 2, and 74.55% of control

group 3. Regarding flexible resource utilization, the
average utilization rate of the experimental group is
77.13%, which is also higher than the other three groups.
The data demonstrates significant advantages of the
method in this paper in wind power utilization and
flexible resource dispatching.
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5. Conclusion

This study achieved reliable, economical and efficient
operation of the power system under the condition of
large-scale wind power access by constructing a joint
probability distribution model of wind farms and an
optimization scheduling framework. The scientific
innovation of the study lies in capturing the correlation
characteristics of wind power fluctuations through
covariance analysis and Copula model, and optimizing
wind power prediction and energy storage charging and
discharging strategies by combining LSTM model and
dynamic programming. Practical innovation is reflected
in the coordination of long-term planning, day-ahead
scheduling and real-time scheduling through a multi-time
scale scheduling framework, dynamic configuration of
flexible resources, and significant improvement of the
adaptability and economy of the system. Through a
30-day comparative test, it was verified that this method
has significant advantages in reducing operating costs,
improving wind power utilization and resource flexibility,
enhancing the system's adaptability to wind power
fluctuations, and ensuring scheduling reliability. Despite
this, the current method still faces the challenge of
computational complexity when dealing with large-scale
wind farm group scheduling, and has high requirements
for the accuracy and timeliness of real-time data. Future
research will focus on exploring more efficient
computing methods, optimizing scheduling processes,
reducing computing resource usage, and combining data
fusion technology to improve data quality, so as to
ensure the stability and reliability of scheduling
strategies in practical applications, and further promote
the efficient integration and utilization of renewable
energy in the power system.
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