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Abstract. Traditional smart grids lack real-time data
analysis capabilities when processing large-scale data,
resulting in insufficient timeliness of power dispatching
and fault response. Low load forecasting accuracy affects
the accuracy of distribution dispatching and reduces
distribution efficiency. This paper proposed a solution
that combined PSO (Particle Swarm Optimization) and
SVR (Support Vector Regression). PSO optimizes power
resource dispatching and minimizes energy consumption
under constraints by adjusting the operating status of
equipment. SVR predicts future loads through regression
analysis of historical load data to provide accurate
support for distribution planning. The paper applied the
PSO to hyperparameter and penalty factors to improve
prediction accuracy. According to the PSO optimization
and SVR prediction results, the power grid dispatching
plan is adjusted in real time, and the power flow and
equipment load are dynamically adjusted to ensure the
smooth operation of the system under different loads and
improve dispatching efficiency. The experimental results
show that the average MSE (Mean Square Error) of SVR
under different samples is 0.30, and the average MAE
(Mean Absolute Error) is 0.45, with high prediction
accuracy. After PSO optimization, the energy saving rate
and load balancing rate of the dispatching system under
high load conditions increased by 5% and 10%
respectively, the dispatching time was shortened by 15
seconds, and the fault response time was shortened by 15
seconds, with higher dispatching efficiency and real-time
performance.
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1. Introduction

A. Importance of Context and Subject Matter

The application of smart grid technology is profoundly
changing the operation mode and resource allocation of
power systems. As one of the core technologies of
modern power grids, smart grids integrate information
and communication technologies with  energy
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technologies to form a highly automated power
management system [1,2]. The key is to achieve
reasonable energy allocation and dynamic balance of
power supply through accurate load forecasting and
efficient resource scheduling, so as to meet the

increasingly complex power demand scenarios and
provide strong technical support for building a green and
grid

low-carbon energy system [3,4]. The smart

schematic diargam is shown in Figure 1.

Figure 1. Smart grid schematic diagram.

The current smart grid system has been widely used in
power scheduling and resource optimization, but its
performance in complex scenarios is still insufficient.
Traditional technologies rely on fixed models and linear
methods to process power grid data [5,6], ignoring the
nonlinear characteristics of power load that change
dynamically with multiple factors such as time, weather,
and user behavior [7,8], and the prediction results lack
accuracy. Especially when peak loads or emergencies
occur, existing methods make it difficult to quickly
adjust power distribution, which may cause problems
such as uneven power supply or equipment overload
[9,10].

Smart grids process massive amounts of real-time data,



and existing data analysis tools are difficult to match
actual needs in computing efficiency [11,12]. When the
grid operation environment becomes more complex, with
large-scale access to new energy and widespread use of
distributed power sources [13,14], the data processing
speed and decision-making efficiency of existing
methods can be significantly limited. This hysteresis
affects the dynamic response capability of the power grid
and may also lead to waste of power resources and
increase in system operating costs [15,16].

Traditional load forecasting models are mostly based on
historical data analysis, but often ignore the deep
correlation between environmental variables and user
behavior characteristics [17,18]. This method is difficult
to adapt to the complex and changeable actual scenarios
in power grid operation, resulting in a large deviation
between the prediction results and the actual demand,
which to a certain extent affects the scientificity and
reliability of dispatching decisions [19,20]. Traditional
smart grid technology has limitations in nonlinear
problem modeling, real-time data processing efficiency,
load forecasting accuracy, etc. It is necessary to solve
these core bottlenecks by improving technical models
and optimization algorithms to better meet the efficient
operation requirements of modern power systems.

This study explores how to use intelligent optimization
algorithms and machine learning models to redefine the
efficiency standards of distribution systems. In the
modern power grid environment, data-driven scheduling
and load forecasting have become key, and a single
algorithm or traditional model is difficult to cope with
complex demands and dynamic changes. The study
integrates PSO and SVR, innovatively constructs a
comprehensive model that can dynamically adapt to
variable load demands, and realizes intelligent resource
scheduling and precise control of power flow. The
innovation of the study is to establish an efficient and
flexible distribution optimization method that can deeply
mine multi-source data and adjust the power grid
operation strategy in real time. PSO is used to optimize
the operating status of power grid equipment and
minimize system energy consumption while meeting
constraints. Compared with traditional genetic
algorithms, PSO has better global search capabilities and
lower computational complexity; Compared with the
traditional PSO-SVR model, the main difference is that a
more sophisticated hyperparameter tuning strategy is
adopted, which combines real-time load forecasting with
dynamic scheduling optimization to improve the
accuracy and efficiency of the distribution system in
practical applications. combined with SVR, it provides
accurate load data support for power grid dispatching.
Through multi-algorithm collaborative optimization, a
closed-loop improvement from data to decision-making
is achieved, allowing the distribution system to achieve
efficient operation and stable control under high load and
dynamic demand scenarios, providing more practical
theoretical and methodological support for smart grid
technology.
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B. Related Work

In smart grid research, many scholars have proposed
various methods to improve the efficiency of power
distribution and the accuracy of power dispatching.
Some studies proposed load forecasting methods based
on neural networks, using historical load data to train
models and make forecasts [21,22]. Sun C proposed a
short-term load prediction framework, in which the
learning module automatically obtained the relationship
between variables, and can also effectively deal with
time and spatial dependence, with excellent prediction
accuracy on the data set [23]. These methods have high
computational complexity when processing large-scale
data, resulting in inaccurate prediction results. Some
studies have proposed a power dispatch optimization
method based on genetic algorithm, which has achieved
certain distribution optimization effects by optimizing
the operating status of each device in the power grid
[24,25]. Wang X proposed an improved optimal dispatch
strategy for hybrid ship power system based on genetic
algorithm, which is used to optimize the coordinated
work of diesel generators, energy storage systems,
propulsion systems, dynamic loads and photovoltaic
power generation devices, and to a certain extent
improves the performance of dispatch optimization and
global optimization capabilities [26]. This method relies
on a lot of computing time and cannot respond to load
changes in real time, which affects its application in
actual power grids. Although current research has
proposed a variety of improvement schemes, most
methods have problems such as complex calculations,
poor real-time performance, and insufficient prediction
accuracy. A more efficient and accurate solution is
needed.

Some scholars have tried to apply SVR [27,28] into
smart grids to solve the shortcomings of traditional
methods. Some scholars have used SVR to optimize
smart grids and achieved good prediction results,
showing high accuracy in load forecasting [29,30]. Yao
H explored the application of SVR model in cooling load
prediction, and used crystal structure algorithm and
reptile search algorithm to optimize and improve the
accuracy of the model. The SVR model combined with
the optimization algorithm can effectively obtain the
nonlinear relationship between building parameters and
cooling load [31]. These methods still face the problem
of adaptability when dealing with complex power grid
environments, especially when the power grid load
changes greatly, the prediction accuracy and scheduling
efficiency may decrease. The prediction accuracy and
dispatching efficiency may decrease. In the modern
power grid environment, a single algorithm or traditional
model is difficult to cope with complex demands and
dynamic changes. This study integrates PSO and SVR to
innovatively construct a comprehensive model that can
dynamically adapt to variable load demands and realize
intelligent resource scheduling and precise flow control.



2. Methods
A. PSSO Algorithm Optimizes Load Scheduling

PSO [32] is used to optimize the scheduling of power
resources in the distribution system. The fitness function
is defined, and PSO adjusts the operating status of each
device. The system minimizes energy consumption and
improves distribution efficiency under the premise of
satisfying constraints.

1) Definition of Fitness Function and Constraint
Setting of PSO Algorithm

When the PSO algorithm optimizes the load scheduling
of the distribution system, it is necessary to construct a
reasonable fitness function to evaluate the quality of the
solution. The design of the fitness function directly
affects the convergence and accuracy of the optimization
process, and must accurately express the energy
efficiency and constraints of the system; for the power
resource scheduling problem, the fitness function can be
expressed as the following formula:

F(x)=a-Y " CR+p-Y " L (x,) ()

C

equipment, P, is the power output of the equipment i,
L

of the load demand, and o and S are weight factors.
In this way, the fitness function considers the
minimization of energy consumption and also integrates
the constraints of load demand to ensure that the

scheduling plan minimizes energy consumption while
meeting the constraints of power grid operation.

is the power consumption coefficient of the

is the load constraint, x; is the adjustment variable

The constraints in load scheduling include the maximum
power output limit of the equipment, the power
transmission capacity limit of the power grid, and the
time sequence change constraint of the load demand; the
maximum power output of equipment i is F_, and

the constraint based on the maximum power output can
be expressed as:

P<P_, ¥i=12N (2)

The load demand of the distribution system should meet
the fluctuation range of the real-time load. Assuming that
the load demand range is L, <L, <L the dispatch

max

output of each device can be further constrained to meet
the changes in real-time load demand.
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2)  Particle Update and Scheduling Optimization
Process

The particles are updated and the speed and position are
constantly adjusted to find the optimal solution of the
fitness function. In the power resource scheduling
problem, the position of the particle represents the
scheduling state of the power equipment, and the speed
of the particle represents the adjustment direction and
amplitude of the equipment state. The particle's position

vector is  x=(x,,x,,---,x,) , the velocity vector is
v = (vl,vz,.--,vN ), N is the number of devices, and the

PSO update formulas are as follows:
v, (t+l)=w-v,. (t)-i—c1 e ~(p,. —-x, (lf))+c2 7 ~(g,. —-x, (t)) 3)
x (t+1)=x(t)+v, (t+1) (4

w is the inertia weight, ¢, and ¢, are acceleration

constants, 7; and r, are random numbers, p, is the

historical optimal position of the i th particle, and g,

is the optimal position of the group. The PSO adjusts the
speed and position of the particles to efficiently search
for an optimized load scheduling scheme.

The update of particles in scheduling optimization is
calculated based on fitness. The position of particles can
be adjusted to a more appropriate load range under load
overload to avoid energy waste. PSO also needs to
dynamically adjust the scheduling status of each device
to ensure a smooth transition of the device load and
avoid power shortages or equipment damage caused by
sudden load changes.

PSO combines load forecast information in optimization
and uses historical load data and real-time load demand
to adjust the search strategy of particles. Dynamic
adjustment of the search space of particles can quickly
respond to fluctuations in load demand. PSO can quickly
adjust the operating state of the equipment, and use the
feedback mechanism to optimize the scheduling strategy,
so that the system can achieve smooth operation under
different load demand conditions.

The advantage of PSO lies in its strong global search [33]
capability. The introduction of randomness can avoid
falling into the local optimal solution and provide a more
reliable solution in the case of large-scale power
scheduling. Combined with the results of power grid load
forecasting, the application of PSO algorithm in power
scheduling improves the accuracy of scheduling,
enhances the adaptability of the system in actual
operation, and can flexibly respond to power distribution
needs under different working conditions.
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Figure 2. PSO optimization process.

The PSO's application process is consisely shonwn in
Figure 2. The initial solution is generated by initializing
the particle swarm, and the performance of each particle
is evaluated by the fitness function. The fitness function
combines the power constraints, load constraints and
system stability constraints in the power system to ensure
that the optimization process meets the actual operation
requirements. The algorithm updates the speed and
position of the particles according to the evaluation
results, and adjusts the particle position to make it closer
to a better solution. The inertia weight and acceleration
constant in the update process control the movement of
the particles to improve the search efficiency. The
algorithm checks whether the convergence conditions are
met. If the conditions can be met, output the optimal
solution, otherwise, continue to iterate.

B. SVR Algorithm for Load Forecasting

D

Construction and Training of Load Forecasting
Model

The historical load data were subjected to the regression
analysis. Let the historical load data be

D:{(xl,y,),(xz,yz),---,(xN,yN)} ,  where X,
represents the input features of the historical time period
and y, represents the corresponding load value.

Appropriate features can be selected as input data to
improve the accuracy of load forecasting, and they can
be standardized to ensure that the model can converge
smoothly at different feature scales; preprocessing of
data reduces the impact caused by dimensional
differences.

In the stage of building a load forecasting model, the
goal of SVR is to optimize the hyperplane to minimize
the error between the predicted value and the actual
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value. Given an input vector and a target output, the SVR
model obtains the optimal hyperplane by solving the
following optimization problem:

.1
min—[wl +CY 6 )

w is the normal vector of the hyperplane, b is the bias
term, C is the penalty factor, and ¢ is the error

tolerance, which represents the deviation between the
predicted value and the actual value. The goal of this
optimization problem is to balance the complexity of the
model and the degree of fit of the training data to ensure
that the regression model finds a suitable balance
between accuracy and generalization ability.

SVR introduces kernel functions in real training to solve
the nonlinear regression problem. Common kernel
functions include the radial basis function kernel, and the
calculation formula is:

a2
K (x,x")=exp —% 6)

The kernel technique enables SVR to effectively handle
nonlinear relationships. The load forecasting can more
accurately obtain the complex patterns of load data and
avoid the limitations of simple linear regression in
dealing with nonlinear problems.

SVR has a strong mapping capability for
high-dimensional feature space and can effectively
handle nonlinear relationships. Power grid load data
usually has complex nonlinear patterns. By selecting
appropriate kernel functions, SVR can extract key trends



and laws under limited samples. SVR performs relatively
stably in a small amount of training data, avoiding
overfitting, and is suitable for the data characteristics in
power grid load forecasting.

2)  Regression Analysis and Result Output of Load
Forecasting

The new load data is analyzed by regression and the
predicted value is generated. In practical application, the
load data of the current period is input. SVR can output
the corresponding load forecast value as the load
prediction result for a period of time in the future. SVR
predicts future load requirements based on patterns
learned from historical data.

The output of SVR in the prediction is expressed by the
following formula:

J=w'g(x)+b (7)

The above method allows SVR to accurately predict the
future load demand within a given period of time and
provide accurate load data support for the distribution
dispatching system. SVR analyzes the temporal
characteristics and change patterns of historical load data,
and can predict the load demand of the power system in
the future period. This prediction result can help power
companies optimize the dispatch of power resources,
improve the stability of the power grid, and reduce the
risk of power shortage caused by load fluctuations.

C. PSO and SVR Algorithm Parameter Tuning
1) Kernel Function Parameter Optimization

The selection and parameter setting of kernel function in
SVR play a crucial role in prediction accuracy. It is
necessary to optimize the kernel function parameters in
SVR to improve performance. The common kernel
function is radial basis function [34,35], and its
performance is affected by kernel width. Using PSO
algorithm, the optimal kernel function parameters can be
efficiently searched, which can improve the prediction
accuracy of SVR model to a certain extent.

The PSO algorithm simulates the process of bird flocks
foraging for global search; each particle represents a
possible solution and is updated by its position and
velocity. For kernel function parameter optimization, the
goal of the PSO algorithm is to minimize the SVR
prediction error. In each iteration, the position of the

particle is p, = (GI.) , and the goal is to find the optimal

o so that the following optimization problem is
optimally solved:

min 30/ (5:0))” ®

f(x;;0) represents the SVR prediction function based

on the current o parameters, y, is the actual value,

x, 1is the input feature, and N is the number of

samples. The particle swarm evaluates the fitness value
of each particle position and guides the movement of
particles through the fitness function, so that the particles
gradually approach the optimal kernel function
parameters.

If the algorithm converges to a local minimum value, it
may lead to suboptimal solutions, thus affecting the
overall optimization effect. Each particle continuously
updates its position and speed in PSO optimization in
order to find the best kernel function parameters in the
search space. This change effectively avoids the local
optimal solution problem that traditional methods may
face, and improve SVR's ability to fit load data and
prediction accuracy.

2)  Penalty Factor Optimization

The penalty factor in SVR [36,37] also has a profound
impact on the prediction effect of the model. The penalty
factor controls the tolerance for training error and affects
the degree of fit of the model to the training data.
Smaller values allow for larger training errors, but may
also lead to underfitting; larger penalty factor values can
lead to overfitting of the model. Reasonable selection of
the penalty factor value is very important for the
adaptability of SVR.

The PSO algorithm is also applied to this process to
accurately select the penalty factor. Explore the different

(C ,0) pairs in the search space, and evaluate the fitness

of the particles to find the best parameter combination.
The objective function is:

.l o 2
min—3 (5 =/ (x:C.0)) +4C ()

A is a regularization parameter used to control the
impact of the penalty factor on the model. This objective
function takes into account the model fitting error and
the regularization term. PSO uses the global search
strategy to optimize C and o in turn to optimize the
prediction accuracy and adaptation of SVR.

The particle position and velocity at each iteration can be
updated. The position of the particle represents the

current parameter combination (C,a) , and the speed

determines the jumping distance of the particle.
Continuous iteration enables the particle population to
find the global optimal solution, and the optimized
parameters give SVR higher prediction reliability in load
prediction tasks.

The penalty factor of SVR is effectively optimized after



PSO optimization. In the actual power grid load provide reliable data support for the subsequent
prediction, this optimization can provide high precision distribution dispatching.
prediction results under the variable load demand, and
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Figure 3. PSO and SVR collaborative workflow.
Figure 3 shows the collaborative working process of different load demands.
PSO and SVR in power grid load forecasting. PSO
optimizes the kernel function parameters and penalty The adjustment process of power flow involves

factors of SVR through global search to improve the
prediction accuracy of SVR; the optimized kernel
function parameters and penalty factors respectively
improve the ability to fit the data and avoid the risk of
overfitting. The parameter-optimized SVR can accurately
predict the future power grid load and provide reliable
data support for distribution scheduling; the load forecast
results become the input data for distribution system
scheduling, ensuring that the power grid can operate
efficiently and smoothly under different load demands.
By combining PSO optimization with SVR, this solution
effectively improves the dispatching efficiency of the
power distribution system, allowing the power grid to
respond quickly when facing dynamic load demands.

D. Dynamic Dispatching Optimization and Load
Adjustment Implementation

1)  Power Flow Adjustment

The real-time adjustment of power flow direction is a
key step to ensure the smooth operation of the
distribution system. Real-time load forecasting obtains
the future load change trend, and combined with the
current power grid status, determines the load demand of
each area and equipment. The PSO optimization results
are used to reasonably dispatch power resources to
ensure that the power grid can effectively respond under
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multi-objective optimization problems. The goal is to
minimize distribution losses and ensure the stability of
the power grid. The objective function of the system is
defined as follows:

minY " 3" (8 +q;) (10)

P’

», represents the square of the power flow from node

is the line resistance between node i

is the

i tonode j, 7

and node
corresponding reactive power loss. Dynamically
adjusting the power flow and optimizing the objective
function can ensure the minimization of energy loss.
Under the premise of meeting the load demand,
optimizing power distribution can improve the
distribution efficiency and system stability to a certain
extent.

in the power grid, and g,

In actual implementation, PSO adjusts the power flow in
real time and connects the load demand with the actual
state of the power grid. When the load demand of a
certain part increases, the PSO algorithm adjusts the
power flow according to the current power grid topology
and equipment operation status, so that the power is
allocated from the lightly loaded area to the heavily



loaded area. This process can respond to load demand
fluctuations in real time and reduce power waste caused
by power imbalance.

2)  Dynamic Adjustment of Equipment Load

Dynamic adjustment of equipment load is an essential
part of improving the dispatching efficiency of
distribution system. Based on load forecasting and power
flow adjustment, dynamic adjustment of equipment load
ensures that each equipment can be optimally configured
according to real-time conditions under different load
demands. Based on real-time data and forecast results, a
constraint-based optimization model is used to adjust the
load of each equipment.

Assume that there are multiple devices in the power grid,
and the load of each device can be represented by L, (t) .

The goal is to adjust the device load so that the system
can minimize the total energy consumption while
satisfying various operating constraints. The device load
optimization problem can be expressed as:

rlr}(i;;ZZl(a,-Li (e +8) (D)

L, () represents the load of device i attime ¢, and
a, and B

device. The load of the device is adjusted in real time to
optimize the operating status of the device, ensuring that
each device can operate efficiently and avoiding device
damage or performance degradation caused by load
imbalance.

are the load weight coefficients of the

The algorithm optimizes and adjusts the load of each
device according to the real-time load demand and the
state of the power grid to achieve dynamic adjustment of
the equipment load. Equipment load adjustment needs to
take into account the changes in the current load, and
also needs to perform forward-looking scheduling
according to the state of the power grid to ensure that the
system's load fluctuations can be responded to smoothly.
The algorithm adjusts the load distribution of each
device during optimization. The system can respond
quickly when the load increases or decreases, and adjust
the load of the equipment to minimize the total energy
consumption of the system and improve scheduling
efficiency.

Combining the PSO optimization results with the future
load data predicted by SVR, the dynamic adjustment of
equipment load can track the changes in load demand in
real time, adjust the operating status of power grid
equipment, reduce energy waste, and improve the
dispatching efficiency of the distribution system. This
strategy ensures that the power grid can operate in an
efficient and stable manner when facing different load
demands, providing support for the long-term stability
and efficient operation of the power system.
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Figure 4. Topology of power transmission network.

Figure 4 shows the topology of power transmission
network between substations. Arrows connect different
nodes, representing the transmission path of power. The
color of the arrows reflects the size of the power flow.
The arrows with larger flow are redder. The data also
marks the power flow of each line. The intuitive display
of these power flows and flows can clearly show the
distribution of power between nodes in the distribution
system, helping to analyze the power dispatching
efficiency and system stability under different load
demands.

3. Method Effect Evaluation

A.  Evaluation of Hyperparameter Adjustment Effect

and Load Forecasting Accuracy

Loss function value

Figure 5. SVR hyperparameter adjustment.

Figure 5 shows the prediction error of the SVR model
under different hyperparameter combinations. The
determining factors are the kernel width parameter o
and the penalty factor C , and the z-axis represents the
loss function value. As C and o change, the error
value shows a certain pattern. When C is too large or



too small, the error value is high, and the model may be
overfitting or underfitting; under certain specific C and
o combinations, the error is small, indicating that the
model has a good fitting effect and high prediction
accuracy. This data change can help find the appropriate
hyperparameter range, which helps provide guidance for
parameter tuning of the SVR model and ensure the
accuracy and stability of load forecasting. Optimizing
these parameters can significantly improve the accuracy
of load forecasting in the distribution system, thereby
optimizing the efficiency of power dispatching.

Table 1. Hyperparameter adjustment.

Experiment No. | C Value | o Value ggggization
1 1 0.01 Poor

2 10 0.05 Medium

3 20 0.1 Medium

4 50 0.5 Good

5 100 1 Optimal

6 200 2 Good

7 500 5 Medium

8 1000 10 Poor

Table 1 shows the hyperparameter adjustment results
under 8 different combinations of C and o values.
By comparing the optimization results of each group of
experiments, it can be seen that the changes in the
optimization results show a certain pattern. Experiment 5
(C =100, o =1) performed best among all experiments,
with the best prediction performance and the smallest

error, and was considered to be the optimal
hyperparameter combination. Other combinations
performed poorly and failed to provide ideal
optimization results.
]
=

(a) Comparison of MSE
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MSE and MAE are used as the main evaluation
indicators to evaluate the load forecasting accuracy of
the SVR model. MSE can quantify the average deviation
between the predicted value and the true value. The
smaller the MSE value, the higher the prediction
accuracy of the model; MAE provides the average
absolute value of the prediction error, which more
intuitively reflects the actual error size of the model.
These two indicators are used for comprehensive
evaluation to fully understand the prediction
performance of SVR.

The experiment compares SVR with popular prediction
models such as XGBoost (eXtreme Gradient Boosting),
LightGBM (Light Gradient Boosting Machine) and GBR
(Gradient Boosting Regression). The hyperparameters of
each model can be optimized to ensure their best
performance in the task. The evaluation is based on the
same data sample to ensure the fairness and consistency
of the results; the MSE and MAE values of each model
are calculated during the experimental phase to analyze
the accuracy and error of each model in load forecasting.
The data set used in the experiment comes from a power
grid operator in a certain region. The historical load data
covers information such as daily load, weekly load and
seasonal load changes, with a total of more than 5,000
records. The data set includes load changes in different
time periods, weather conditions, holidays and other
factors. It has high diversity and representativeness and
can reflect the real fluctuation characteristics of the
power grid load. All datasets used have been properly
anonymized in the experiments and have been authorized
for use by the relevant data providers. To ensure the
robustness of the evaluation results, a 10-fold cross
validation was used to divide the data set into 10 subsets.
Nine of the subsets were used for training each time, and
the remaining subset was used for testing. This process
was repeated 10 times to ensure that the prediction model
with the best performance was selected.

XGBoost
LightGBM
GBR
SVR

(b) Comparison of MAE

)
TEEEEEEhEHEEREOShShSy
I IAIIISLIIS,

Figure 6. Comparison of MSE and MAE of different models.
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Figure 6 shows the MSE and MAE performance of
XGBoost, LightGBM, GBR and SVR on different
samples. The SVR algorithm shows the best prediction
accuracy in both indicators. The MSE and MAE values
are lower than those of other algorithms, with an average
MSE of about 0.30 and an average MAE of 0.45. The
error value of SVR is relatively stable and always
remains in a low range, indicating its accuracy and
reliability in load forecasting tasks. In contrast, XGBoost,
LightGBM, and GBR have large errors in performance in
different samples, and the MSE and MAE values are
generally high, showing the shortcomings of these
algorithms in load forecasting. XGBoost and GBR
exhibit MAE above 0.6 in some samples, while SVR
remains below 0.5, proving its advantage in prediction
accuracy. It can see the superior performance of SVR in
power grid load forecasting through these data. After
parameter tuning, it can provide more accurate load
forecasting results and improve the efficiency and
stability of power dispatching.

B. Fitness Value Change and Evaluation
Dispatching Efficiency

of

Table 2 shows the changes in fitness values in particle
swarm optimization, combined with confidence intervals
and p-values for analysis. The best fitness value drops
from 450 to 200, and the average fitness value and the
worst fitness value also show a corresponding downward
trend. This change shows that PSO can effectively
optimize the load scheduling scheme and gradually
approach the optimal solution. The values of the
confidence interval show that as the optimization process
progresses, the fluctuation of the fitness value gradually
decreases, and the system stability and optimization
effect are improved. Comparing the p-values of different

iterations, it is found that from the 50th iteration, the
optimization effect is statistically significant, p <0.05,

and the improvement of the optimization effect at the
100th, 150th and 200th iterations is more significant,
p <0.02 . These results verify the effectiveness of PSO

in load scheduling optimization and prove the ability of
the algorithm to gradually improve system performance
and save energy and reduce consumption in the process
of power resource optimization. The PSO algorithm
gradually optimizes the scheduling scheme and improves
the scheduling efficiency and stability of the system.

The energy saving rate and load balancing rate are used
as the main evaluation indicators to evaluate the
scheduling efficiency in the distribution network. The
energy saving rate is used to measure the percentage of
energy consumption reduction under the optimized
scheduling scheme compared with the traditional
scheduling method; the load balance rate reflects the
reasonable distribution of power resources among
various devices to ensure the balance and stability of
load distribution. The evaluation can compare the power
scheduling before and after PSO optimization. Based on
the results of the traditional scheduling method and the
PSO optimization method, the energy saving rate and
load balance rate are calculated respectively to quantify
the advantages of the optimization algorithm in
improving scheduling efficiency. The same distribution
network environment is used in the experiment to ensure
the consistency of the comparison of different scheduling
methods. Through multiple rounds of experimental
verification, the performance of the scheduling scheme
after PSO optimization in energy saving and load
balancing is analyzed, and a direct comparison is made
with the scheduling method before optimization to
comprehensively evaluate the efficiency of the scheme.

Table 2. Changes in fitness values with Confidence Intervals (CI).

Iteration Best Fitness Value (95% CI) Average Fitness Value (95% CI) Worst Fitness Value (95% CI) p-value
20 450 (+10) 460 (+12) 480 (+15) <0.1
50 300 (£8) 320 (£9) 350 (£11) <0.05
100 250 (£7) 265 (£6) 280 (£10) <0.02
150 230 (£6) 240 (£5) 260 (£9) <0.01
200 200 (£5) 210 (x4) 230 (£8) <0.01
100 )
PSO Before Energy Saving Rate
__ 80f {1 &9 PSO Before Load Balance Rate
% &8 PSO After Energy Saving Rate
60 3 -
E E= PSO After Load Balance Rate
c
& 40t
G
o
20}
0

Low Load Medium Load High Load

Load Level

Figure 7. Comparison of energy saving and load balance before and after PSO optimization.
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Figure 7 shows the changes in energy saving rate and
load balance rate before and after PSO optimization
under different load conditions. After PSO optimization,
the energy saving rate and load balance rate increased by
4% and 10% respectively at low load. Under medium
load conditions, the energy saving rate and load balance
rate increased by 5.5% and 11% respectively. The energy
saving rate and load balancing rate at high load increased
by 5% and 10%. These changes show that the PSO
optimization method has a preliminary effect at low load,
and the optimization effect is also more significant at
medium and high load, which improves the scheduling
efficiency and stability of the system. PSO optimization
effectively reduces energy waste and, to a certain extent,
ensures that power resources are more evenly distributed
when load fluctuations are large, thus improving the
overall performance of the system.

C. Real-time Analysis

The real-time performance of the power dispatching
system is evaluated mainly through two indicators:
dispatching time and fault response time. Dispatching
time measures the time required from load forecasting to
dispatching decision completion, reflecting the system's
response speed when facing load changes. Fault response
time evaluates how quickly the system can complete
fault detection, diagnosis and recovery dispatch after a
fault occurs, ensuring the stable operation of the power
grid. In the evaluation, the dispatching system before and
after PSO optimization is compared, and the dispatching

100

time and fault response time are recorded respectively.
The system's ability to cope with sudden load
fluctuations or faults before and after optimization is
analyzed experimentally to evaluate its real-time
response capability. The experiment can cover different
load conditions to ensure the comprehensiveness of the
evaluation results. Compared with the dispatching
system before PSO optimization, the advantages of PSO
optimization scheme in improving the real-time
performance of dispatching can be verified.

Figure 8 shows the changes in scheduling time and fault
response time before and after PSO optimization under
different load levels. As the load level increases, the
scheduling time and fault response time before PSO
optimization both increase. Compared with before PSO
optimization, the scheduling time and fault response time
after PSO optimization are significantly reduced. Under
low load conditions, PSO optimization reduced the
dispatch time and fault response time by 10 seconds each;
under medium load conditions, both were reduced by 10
seconds after optimization; under high load conditions,
the dispatch time was reduced by 15 seconds and the
fault response time was also reduced by 15 seconds.
From these data, PSO optimization has greatly improved
the system's dispatching time and fault response speed,
and the optimization effect is more prominent under high
load conditions, showing the real-time advantage of this
method in the dispatching of distribution systems, which
helps to ensure that the system can operate efficiently
and stably under various load conditions.

80
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PSO Before Scheduling Time

PSO Before Fault Response Time
PSO After Scheduling Time

E= PSO After Fault Response Time
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Load Level

Figure 8. Comparison of scheduling time and fault response time before and after PSO optimization.

4. Conclusions

The power grid dispatch optimization scheme combining
PSO and SVR proposed in this paper effectively solves
the real-time and load forecasting accuracy problems of
traditional smart grid technology when processing
large-scale data. PSO can be used to optimize the
scheduling of power resources, minimize energy
consumption and improve distribution efficiency while
meeting various constraints. SVR can be used for load
forecasting, providing accurate data support for power
grid scheduling and ensuring the scientificity and
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accuracy of the scheduling plan. The experimental
evaluation compared the performance of the system
before and after PSO optimization. The results showed
that the optimization scheme showed significant
advantages in dispatching efficiency, load balance and
real-time performance. After refined hyperparameter
adjustment and real-time load forecasting, the joint
optimization of PSO and SVR effectively improved the
real-time performance of the power grid dispatching
system, shortened the dispatching time and fault
response time, and enhanced the emergency response
capability and stability of the system. The evaluation
results of multiple indicators prove that this optimization



scheme not only ensures the efficient operation of the
power grid, but also achieves the rational use of energy
and real-time dispatch response.

The grid dispatching scheme based on PSO and SVR
optimization provides new ideas for load forecasting and
dispatching optimization of modern smart grids, and
provides an effective solution for improving grid
operation efficiency, reducing energy consumption and
increasing system response speed. Future research can
further explore the combination with other intelligent
optimization algorithms and prediction models. In
addition to PSO, ant colony algorithm, differential
evolution algorithm, simulated annealing algorithm and
grey wolf optimization algorithm can also be applied to
power grid dispatch optimization. These algorithms have
different search strategies and exploration capabilities.
They can be combined with PSO according to the
characteristics of the problem to improve the
optimization effect or overcome the local optimal
problem of PSO in certain scenarios, thereby improving
the adaptability and stability of the system in more
complex environments. In the delay problem in real-time
systems, power grid dispatch optimization requires
processing a large amount of dynamic data. Real-time
calculations and decisions may cause system delays and
affect dispatch efficiency. How to reduce delays while
ensuring optimization effects will be a key direction for
further research.
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