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Abstract. Existing reactive power configuration methods
cannot fully consider the impact of dynamic changes in
grid topology and load fluctuations when evaluating
impedance characteristics and voltage margin, making it
difficult to achieve precise regulation in steady-state
overvoltage control. To address this issue, this paper
constructs a simulation model based on digital twins to
simulate the operation status of the power grid in
real-time and calculate the impedance modulus margin
(IMM) index of each node to precisely evaluate the
voltage stability. Then, the grid topology is modeled by
graph neural network (GNN); the voltage stability
information and reactive power demand between nodes
are extracted; the key nodes are identified based on this
information. Finally, the PPO (Proximal Policy
Optimization) algorithm is utilized to optimize the
configuration of reactive power compensation equipment
and determine its optimal layout and operation strategy.
The experimental outcomes demonstrate that the system
voltage stability margin reaches 0.35 in the scenario of
multi-equipment collaborative work, and the steady-state
overvoltage amplitude is limited to 1.02 times the rated
voltage. The research results demonstrate the importance
of the IMM-based reactive power configuration method
proposed in this paper to enhance the security and
voltage stability of hydropower distribution networks.
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1. Introduction

Hydropower distribution network is an essential part of
the power system and plays a key role in ensuring power
supply, optimizing energy utilization, and promoting the
development of smart grid. With the gradual replacement
of traditional energy by renewable energy [1] and the
complexity of power grid structure [2,3], hydropower
distribution network [4,5] faces greater challenges in

steady-state overvoltage [6] control. Overvoltage [7,8]
affects equipment [9,10], causes grid failure [11,12],
triggers large-scale power outages, and threatens the safe
operation of power system [13,14]. In steady-state
overvoltage control, impedance characteristics [15] and
reactive power [16,17] configuration play a key role, but
traditional reactive power configuration methods ignore
the dynamic characteristics of the grid and voltage
margin, making it difficult to effectively suppress
overvoltage. Existing reactive power dispatch methods
[18,19] rely on static analysis, ignore node interaction
and nonlinear changes in the grid, and increase the
difficulty of voltage stability [20,21] evaluation and
optimization dispatch. To meet the growing stability
requirements of contemporary power systems, traditional
dispatch methods are becoming less and less suitable for
complex grid conditions. Most methods have poor
adaptability to power grid topology and cannot
accurately reflect the impact of factors such as load
fluctuations and external disturbances on voltage stability.
These methods do not make full use of real-time data and
intelligent algorithms in the power grid, making them
inefficient in dealing with real-time changes and difficult
to achieve precise prediction and dynamic adjustment.

In the study of power systems, voltage stability and
overvoltage control have always been key technical
issues. Kanojia [22] et al. conducted in-depth research on
the application value of voltage stability index in
renewable energy-dominated power systems and pointed
out that various voltage stability indexes can provide
important references for evaluating and optimizing
system voltage stability. The application of data-driven
methods in power systems has significantly improved the
accuracy and adaptability of voltage control strategies
[23,24] through real-time data analysis and optimization
algorithms. Liu [25] et al. used a data-driven approach to
design an adaptive transient overvoltage control strategy
for wind farms, which effectively suppressed transient
overvoltages in wind farms during grid faults and
ensured the stable operation of wind farms. With the



continuous development of power system control
methods, new computing technologies have begun to be
applied into voltage stability analysis [26,27]. These
technologies improve the efficiency of stability analysis
and enhance the adaptability to complex system
behaviors. Omi [28] et al. proposed a voltage stability
margin (VSM) calculation method based on OPF-DM
(Optimal-Power-Flow-based Direct Method) and verified
it on multiple power system models, proving that it has
significantly improved the calculation stability and
accuracy compared with traditional methods. These
studies have made some progress in voltage stability and
overvoltage control [29,30], but there are still problems
with insufficient precision and real-time performance in
practical  applications, especially the integrated
application in complex systems has not been fully
explored.

In the study of reactive power configuration methods for
power grids, different researchers have proposed a
variety of effective strategies for improving steady-state
overvoltage control and optimizing reactive power
distribution. Eid [31] et al. utilized the Improved Marine
Predators Algorithm (IMPA) to optimize the optimal
configuration of distributed generation and parallel
capacitors in the distribution network, effectively
reducing the active and reactive power losses of the
system and improving voltage stability and overall
system performance. As the demand for reactive power
compensation in power systems is increasing, researchers
have started to concern about how to achieve more
efficient reactive power management through advanced
scheduling methods [32,33]. Hao [34] et al. proposed a
distributed reactive power compensation method using
reversible substations in direct-current traction power
supply systems, which significantly improved the system
power factor and met the need for expensive additional
equipment. For different power system network
structures, how to accurately estimate and allocate
reactive power in the optimal configuration [35,36] has
become a key issue in improving system operation
efficiency. Therefore, the use of advanced methods based
on network topology characteristics has gradually
become an effective research direction. Alayande [37] et
al. proposed the Network Structural Characteristics
Theory (NSCT) and the Network Structure Coefficient
Matrix (NSCM) to efficiently estimate and reasonably
allocate reactive power losses in interconnected power
systems, revealing that the methods based on network
topology characteristics have significantly improved the
computational complexity and accuracy compared with
traditional methods. These methods have achieved
certain results in reactive configuration optimization
[38,39], but they still have shortcomings in
computational complexity, precision control, and
adaptability to large-scale power grids.

Hydropower distribution networks face greater
challenges in voltage stability as renewable energy
sources gradually replace traditional energy sources.
With the increasing complexity of the grid structure,
steady-state  overvoltage control in hydropower

distribution networks becomes particularly critical.
Traditional reactive power configuration methods make
it difficult to accurately assess the impedance
characteristics and voltage margin of the grid, and cannot
effectively suppress overvoltage phenomena. The
method proposed in this study builds a simulation model
of a hydropower distribution network based on digital
twin technology, accurately assesses voltage stability by
calculating the IMM index of each node, and identifies
potential overvoltage risks. By constructing a
hydropower distribution network simulation model based
on digital twin technology, the IMM index of each node
is calculated in real-time. The voltage stability of the
power grid is precisely evaluated, and potential
overvoltage risks are identified. Then, GNN (graph
neural network) is used to model the power grid topology,
extract the relationship between power grid nodes, and
identify key nodes and their reactive power demand.
Based on traditional power grid analysis, this paper
applies a new data-driven method, which makes full use
of the topological structure and operation data of the
power grid to realize precise identification of reactive
power demand nodes. Then, the reactive power
optimization problem is modeled as a multi-dimensional
decision-making problem through the PPO (Proximal
Policy Optimization) algorithm, and the optimal reactive
power compensation strategy is explored under the
complex operating conditions of the power grid. By
dynamically adjusting the layout and operation of
reactive equipment, the power grid can be adjusted in
real-time under different load conditions to meet the
voltage stability requirements. Through the combination
of these technologies, the method proposed in this paper
effectively avoids the steady-state overvoltage
phenomenon under complex power grid conditions, and
also improves the adaptive ability and stability of the
power grid. The method adopted in this paper
successfully controls the overvoltage amplitude under
multiple operating conditions and significantly improves
the voltage stability margin of the power grid, providing
a new solution for the reactive power optimization of
hydropower distribution networks.

2. Reactive Power Optimization Methods

A.  Construction of Hydropower Distribution Network
Simulation Model

The hydropower distribution network simulation model
is based on digital twin technology and realizes
high-precision simulation of the grid operation status
through a comprehensive construction process. The
construction of the model is centered on the topological
structure of the grid. First, it is necessary to obtain
complete distribution network operation data, which
includes key parameters such as node voltage state,
impedance characteristics, and power distribution. Then,
these data are used to generate a node-edge topology
graph, where nodes represent substations or load centers
in the grid and edges represent electrical connections
between nodes. By analyzing the topological relationship
and electrical parameters, a mathematical model



reflecting the actual characteristics of the grid is
constructed.

The simulation model is based on the node admittance
matrix Y to describe the impedance characteristics
between nodes. The clements of the node admittance
matrix are defined by Formula (1):

In formula (1), Y,

i is the admittance value between

nodes i and j . The precise construction of the
admittance matrix ensures that the model precisely
describes the impedance characteristics of the grid. The
simulation model needs to dynamically simulate the
operation state of the power grid. Its core is to calculate
the voltage and power distribution of the node through

the power balance equation:
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In formula (2) and (3), P and Q, are the active power

and reactive power of node i respectively; V, and V;

are the node voltage amplitudes; G; and B; are the

.
real and imaginary parts of the admittance; 6; is the

phase difference between nodes.

To further enhance the adaptability of the simulation
model, this paper applies a load dynamic characteristic
model to describe the change law of the load under
different voltage conditions. The model adopts the

following forms:
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In formula (4) and (5), F, and Q, arerated loads; V|

is rated voltage; a and b are load indexes, which
reflect the sensitivity of voltage to active and reactive
loads respectively.

B. Calculation of IMM Index

The IMM index is a key indicator for measuring the

voltage stability of each node in the power grid. Its core
lies in calculating the ratio of node impedance to critical
impedance. This ratio reflects the ability of each node in
the power grid to withstand voltage fluctuations without
instability. The higher the IMM value, the more stable
the node voltage; conversely, there is a higher risk of
voltage instability. The dynamic update of the IMM
combines the changes in node state variables and the
admittance matrix Y under different operating conditions
to ensure an accurate assessment of the real-time voltage
stability of the power grid. The calculation of IMM index
is based on the grid state parameters generated by the
simulation model and is used to evaluate the voltage
stability of each node. The core of the IMM index is to
calculate the ratio between the impedance modulus of the
node and its critical value. Assuming that the equivalent
impedance of node i is Z,, the equivalent impedance

of the node is calculated by the inverse matrix Z =Y
of the node admittance matrix Y. The self-impedance Z,
of node 1 is:
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If there is an electrical connection between node i and
other node j , its equivalent impedance needs to

comprehensively consider the connection relationship
and is calculated by the following equation:

Z,,(0=Z,0+Y. T, Z;&) (7
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In formula (6) and (7), Z; is the coupling impedance
between nodes i and j. T;(¢) is the topology change

matrix, which reflects the dynamic adjustment of the
connection status between nodes after a fault occurs.

The critical impedance is determined by the voltage
stability margin of the node and reflects the maximum
impedance value that the node can withstand before
instability. For a given node i, the critical impedance

V4 is calculated as follows:
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V. is the nominal voltage of the node, and S, is the

i

apparent power of the node.

The IMM index is defined as the ratio of the equivalent
impedance modulus value of the node to the critical
impedance modulus value, and the equation is:
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IMI, is the IMM of node 1i.

To ensure the dynamic adaptability of the index, the
IMM needs to be calculated in combination with
different operating conditions. When the load changes or
the topology is adjusted, the voltage and power state of
the node changes, thereby affecting the equivalent
impedance value and the critical impedance value. The
IMM index is dynamically updated by real-time
monitoring of the node state variables V, and S, and

the admittance matrix Y:
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The calculation result of the IMM can intuitively reflect
the voltage margin of the node and provide an important

reference for identifying key nodes in the power grid.

C. GNN Modeling
Characteristics

of Power Grid Topology

GNN modeling of power grid topology characteristics
aims to construct adjacency matrix and node feature
matrix based on the topological structure and node
characteristics of the power grid, and to describe the
operation status of the power grid in mathematical form.
Through GNN layer-by-layer information aggregation,
the correlation characteristics between nodes and
neighboring nodes are extracted to achieve accurate
prediction of node wvoltage stability requirements,
providing precise support for IMM analysis and reactive
power compensation optimization configuration. The
construction and training process of the GNN model is
illustrated in Figure 1.
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Figure 1. Model construction and training.

In the process of model construction, the digital twin
simulation model is first used to generate power grid
topology data, including the adjacency matrix 4 and the
node feature matrix X. A represents the power grid
topology structure, and its element A; is the indicator

value of whether nodes i.and j are connected. The

node feature matrix X is:
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The construction of GNN follows the idea of information

aggregation to capture the electrical characteristics and
topological influences between nodes. Its core is to
update the feature representation H of the node layer
by layer, and gradually refine the implicit relationship of
power grid voltage stability by integrating the
information of neighboring nodes. In the Ith layer,
thepdate equation of node features is:

AHPWO b | (12)
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N (i) is the set of neighbor nodes of node i; d, is the

degree of node i; W and b" are trainable weights
and biases.



The final output of the network is the voltage stability
demand prediction value of the node. This paper uses a
multi-layer perceptron (MLP) to map implicit features to
specific requirements:

Y, = Softmax(W, H" +b,,) (13)

W, and b, are output layer parameters, and H "~

out
is the node implicit feature extracted from the Lth layer.
The predicted value Y, is used to describe the reactive
power demand of the node under different operating
conditions.

To ensure the efficiency and accuracy of the model
training and testing phases, this paper uses the historical
data output by the digital twin simulation model to train
the GNN. The objective function uses the cross entropy
loss:
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In formula (14), C
number, and y,.

is the predicted classification
and y, ~ represent the actual

category label and predicted probability of node i,
respectively. Through the back propagation algorithm,

b, W,

out 2

parameters such as W and b, are

optimized. After model training, in actual deployment,
the GNN model is used to quickly predict the voltage
stability requirements of each node in the power grid
through real-time updates of power grid operation data,
thereby providing efficient support for IMM index
calculation and reactive equipment optimization.

D. Reactive Compensation Equipment Optimization

The reactive compensation equipment optimization is
based on the calculation results of the IMM index and
the node reactive demand, combined with the grid
characteristics predicted by the GNN model and the
strategy search of the reinforcement learning algorithm,
aiming to achieve the optimal reactive compensation
layout and operation mode, and ensure the stability and
safety of the grid operation. The IMM index reflects the
stability margin of the node voltage, and the reactive
demand reflects the distribution characteristics of the
electrical load of each node. The two serve as the core
information sources of the optimization process. The
optimization process of the reactive compensation
equipment revolves around the IMM analysis and the
node reactive demand prediction. The strategy
optimization and layout adjustment are completed
through algorithm iteration, and finally, a compensation
scheme that meets the grid operation requirements is
generated. Figure 2 describes the complete optimization
process.
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Figure 2. Reactive power compensation equipment optimization process.

The reactive power compensation optimization problem
aims to maximize voltage stability and reactive power
demand satisfaction. The optimization direction is

characterized by applying a weighted comprehensive
objective function. The optimization process defines the
objective function as follows:
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In formula (15), P
and w,

is the layout parameter, and w;,
are weights that measure the relative

importance of IMM and reactive power demand. The
optimization problem is subject to multiple constraints,
among which the total capacity of the reactive power
compensation equipment, the node voltage range, and the
power transmission capacity of the power grid are as
follows:
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Q,; is the reactive power compensation equipment
output at the node; Q
limit; P,

i

is the total equipment capacity

max

and Q; are the active and reactive power on

the line, respectively; S,

ij

is the line power capacity;

N and £ are the node set and edge set, respectively.

The PPO algorithm is applied in the optimization process,
combined with the reinforcement learning method to
search for the optimal reactive power compensation
layout and operation strategy. This method takes the
IMM, voltage state, and reactive power distribution as
state inputs, and optimizes the adjustment of layout
parameters as action outputs. The strategy iteration
process achieves the system optimization direction by
maximizing the cumulative reward. The reward function
is defined as the increment of the objective function:

R=AF - j“1C'act - /IZonlt (19)

In formula (19), R is the modified reward value, AF
represents the increment of the objective function, C,_,
is the

penalty introduced by voltage exceeding the limit, and
A and A, are weight coefficients used to balance the

is the cost incurred by equipment activation, P

volt

relative importance of the optimization objective and the
penalty term.

By calculating the change of the reward value, the
reinforcement learning agent is guided to adjust the
equipment layout parameters in the dynamic power grid
condition, so that the overall system is more inclined to
the optimal voltage stability and reactive power demand
satisfaction effect. The PPO algorithm ensures the
stability of optimization by limiting the amplitude of the
strategy update. Its update target is:

max E, [min(rt(H)At,clip(rt @).,1— 1+ )At)] (20)

In formula (20), € is the strategy parameter; 1, (6) is
the probability ratio of the current strategy to the old

strategy; A, is the advantage function; ¢ is the shear

boundary. This process gradually adjusts the reactive
compensation equipment layout and output strategy
under the constraints, so as to ensure that the final layout
can meet the needs of different operating conditions.

In the process of implementing GNN model training and
PPO algorithm optimization, the computational cost is
mainly reflected in the feature extraction of large-scale
topological data and the policy iterative search in the
high-dimensional state space. The GNN model encodes
the complex relationship between power grid nodes
through multi-layer information aggregation, and this
process requires multiple matrix operations on the
adjacency matrix and the node feature matrix. As the
scale of the power grid increases, the dimension and
sparsity of the matrix have an increasingly significant
impact on the computing time. Especially in the digital
twin environment with high-frequency dynamic feature
updates, the time complexity of model training shows a
nonlinear growth. The PPO algorithm needs to perform
multiple rounds of iterations in the policy space to guide
the policy update through the convergence objective
function, and each round of optimization involves a large
number of sample evaluations and gradient calculations.
In order to ensure the convergence speed and model
stability, PPO adopts policy clipping and discounted
reward mechanisms to further improve the computational
intensity. In response to the above problems, the
experiment deployed high-performance hardware
resources, and by adjusting the model hyperparameters
and optimization step size, the computational overhead
was effectively reduced while improving the algorithm
effect. When dealing with larger-scale power grid
topologies or complex fault scenarios, existing
computing resources will become a key factor limiting
its real-time and universality. How to reduce the
computational cost while ensuring the optimization
performance is an important direction for future research.

3. Experimental Design and Implementation
A. Experimental Dataset and Scenario Design

The experimental data set is derived from the historical
operation records of the regional power grid of a
hydropower development company, covering real-time
monitoring data from 2020 to 2023. The scale of the
power grid involved in the data set is 120 nodes,
covering industrial, commercial, residential and
transmission nodes, of which industrial nodes account
for 29.2%, commercial nodes account for 20.8%,
residential nodes account for 33.3%, and transmission
nodes account for 16.7%. The penetration rate of
renewable energy reaches 48%, mainly including



hydropower and wind power, reflecting the energy
structure characteristics of the current regional power
grid. The load fluctuation range is between +15% and
+35%, showing dynamic changes under different time
periods and load conditions. Fault frequency statistics
show that the average annual fault rate is 2.1%, among
which single-line faults and high-voltage equipment
faults are the most common, accounting for 56% and
31% of the total faults, respectively.

The verification of the digital twin model ensures the
accuracy and reliability of the model under different
working conditions by comparing the simulation results
with the actual power grid operation data. The model's
ability to describe the dynamic characteristics of the
power grid is verified by matching the simulation results
of node voltage, reactive power distribution, and power
grid topology changes with actual monitoring data. In
terms of error analysis, the root mean square error
(RMSE) is used to evaluate the difference between the
simulation data and the actual power grid data. The
experimental results show that the RMSE of the node
voltage is 0.024 pu and the RMSE of the reactive power
distribution is 1.8 MVAr, indicating that the digital twin
model has high accuracy in simulating the steady-state
and dynamic characteristics of the power grid. Through
the above verification and error analysis, the
effectiveness of the proposed method and the credibility
of the results are ensured.

The experimental data is strictly cleaned and
preprocessed before use to ensure the accuracy and
reliability of the experimental results. The data cleaning
process deals with missing values, outliers, and
redundant information in the original data. For missing

Table 1. Node type and characteristic statistics.

values, combined with the time series characteristics of
the data, interpolation and historical data regression
prediction methods are used to supplement them to
ensure the integrity of the data. Regarding outlier
detection, the triple standard deviation rule based on
statistical methods and the isolation forest algorithm
based on machine learning are used to identify outliers in
the data, and the voltage, load, and impedance parameter
values that exceed the reasonable range are marked and
eliminated. For redundant information, feature selection
technology is used to remove data features that do not
contribute to the experimental analysis or have low
relevance to reduce data complexity and computing
resource consumption. The preprocessing process is
carried out on the basis of the cleaned data, mainly
including normalization and feature conversion.
Normalization processing uniformly scales the voltage,
load, and impedance parameters of the power grid
operation data to the same numerical range. Feature
transformation extracts the main features of the data
through principal component analysis (PCA) and factor
analysis, compresses the data dimension, enhances the
sensitivity of the model to key parameters, and avoids
the interference of redundant features on the model
performance. Data time alignment is also a key step in
preprocessing. All operating data are synchronized
according to a unified timestamp to ensure that the status
information of different equipment can be accurately
analyzed under the same time reference.

To analyze the impact of different types of nodes on the
steady-state overvoltage of the power grid and their
characteristics, industrial, commercial, residential, and
transmission nodes are classified and summarized based
on experimental data, and key statistical parameters are
extracted, as described in Table 1.

Node Tvpe Node  Average Node Average Active Average Reactive Average Steady-State Overvoltage
yp Count  Voltage (kV) Power (MW) Power (MVAr) Voltage Margin  Occurrence (%)

Industrial

Nodes 35 11.5 6.2 2 0.94 3.8

Commercial 10.7 5.8 1.9 0.91 45

Nodes

Residential 4 1.1 45 1.6 0.92 4

Nodes

Transmission

Nodes 20 12 -- -- 0.95 2.7

Table 1 shows the main power characteristics and
steady-state overvoltage related indicators of different
types of nodes. By statistically analyzing the voltage,
power, reactive power demand, and voltage margin of
industrial, commercial, residential, and transmission
nodes, the performance of various types of nodes in the
steady-state operation of the power grid is understood,
providing crucial basic data support for the subsequent
reactive power optimization analysis and voltage
stability assessment. The voltage margin value is
obtained by calculating the ratio of the impedance
modulus of each node to its critical value. It is
specifically based on the grid state parameters generated

by the digital twin simulation model and is updated in
real time under different load changes and topology
adjustment conditions to reflect the voltage stability of
the node.

The simulation model is expanded according to the
operating characteristics of the real power grid,
supplemented with a variety of operating conditions and
equipment configurations, covering different states such
as normal operation, load fluctuation, and fault
occurrence to simulate the complex situations in the
actual scenario. The design of the experimental scenario
builds a dynamic simulation environment based on



digital twin technology to ensure that the dynamic
characteristics of the power grid under various operating
conditions can be reflected in real-time. In the scenario
design, the typical operating conditions of the
hydropower distribution network are selected as the test
basis, and a variety of load change curves are set to
evaluate the impact of load fluctuations on the stability
of the power grid. In the experiment, line disconnection,
equipment maintenance, and other situations are also set
to simulate the steady-state characteristics of the power
grid under different topological conditions. The study of
the steady-state overvoltage problem needs to focus on
the situation where the node voltage deviates from the
rated value. Therefore, different reactive power demand
distribution modes are designed in the simulation
environment to analyze the impact of reactive power
distribution on voltage stability. The experimental data
and scenarios are based on the premise of supporting
multiple repeated experiments to ensure the
standardization of data input and the verifiability of
experimental results under different configuration
conditions. In this way, the experimental data and

Table 2. Experimental environment configuration table.

scenario design lay a solid foundation for subsequent
reactive power optimization analysis and method
verification.

B. Experimental Parameter
Model Implementation

Configuration and

To ensure the accuracy and repeatability of simulation
results, this paper builds a high-performance hardware
and software environment, including computing
resources and simulation and deep learning frameworks
to meet the computing requirements of digital twin
simulation and model training. Table 2 lists the hardware
and software configurations used in this experiment.

This paper sets initial parameters for the GNN model and
PPO algorithm respectively, and adjusts them during the
experiment to obtain a better reactive compensation
configuration effect. Table 3 shows the initial values,
adjustment ranges, and final optimization results of each
key parameter in the experiment.

Category Name Model/Version Quantity
CPU Intel Core i5-13600K 1

Hardware GPU NVIDIA RTX 4060 1
Memory 8GB DDR4 4
Storage Equipment 4TB SSD 4
Operating System Windows 10 1
Simulation Platform MATLAB/Simulink R2021a 1

Software Deep Learning Framework TensorFlow 2.8.0 1
Reinforcement Learning Framework Stable-Baselines3 1.5.0 1
Programming Language & Tools Python 3.9 1

Table 3. Experimental parameter setting table.

Parameter Name Initial Value Adjustment Range Optimized Value

Impedance Margin Step 0.01 pu 0.005-0.02 0.008 pu

GNN Layers 3 2-5 4

GNN Hidden Layer Dimension 128 64-256 192

GNN Learning Rate 0.001 0.0005-0.01 0.0008

PPO Discount Factor 0.99 0.9-1.0 0.97

PPO Learning Rate 0.0003 0.0001-0.001 0.00025

PPO Training Episodes 10000 5000-20000 15000

PPO Batch Size 64 32-128 96

Reinforcement Learning Steps 100000 50000-200000 150000

Digital Twin Simulation Step Is 0.5s-2s 1.2s

Voltage Stability Margin Threshold 0.35 0.3-0.5 0.38

Overvoltage Control Limit 1.1pu 1.05-1.2 pu 1.08 pu

The hyperparameters involved in the PPO algorithm
have a direct impact on training stability and
convergence characteristics. The learning rate determines
the amplitude of parameter updates and affects the
convergence speed and stability. A higher learning rate
speeds up convergence but causes policy oscillations,
while a lower learning rate enhances stability but
increases training time. The discount factor affects the
importance of future rewards in the decision-making

process. A larger discount factor helps optimize
long-term returns, while a smaller discount factor
enhances adaptability to short-term changes. The batch
size affects the statistical reliability of gradient
estimation. A larger batch size reduces the gradient
variance and improves the stability of policy updates, but
increases computational overhead. A smaller batch size
increases the frequency of policy updates and introduces
higher volatility. These hyperparameters determine how



the PPO algorithm explores and utilizes the search space
during the optimization process, affecting the balance
between computational cost and optimization effect.

4. Results

A. Relationship between IMM Index and Voltage
Stability

This paper experimentally constructs a simulation
platform  based on digital twin technology,
comprehensively simulates the dynamic behavior of
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hydropower distribution network under various operating
conditions, and uses IMM index to quantify voltage
stability characteristics. The experiment aims to provide
a scientific basis for optimizing reactive power
configuration by precisely evaluating the impedance
distribution characteristics under different load levels and
operating conditions. According to the calculation results
of IMM, the experiment further analyzes its influence on
the steady-state overvoltage of the power grid in
combination with various load levels and operating
conditions, and summarizes its changing characteristics
under different scenarios. The outcomes are displayed in
Figure 3.
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Figure 3. Relationship between IMM and power grid operating characteristics. (a) Analysis of IMM indicators and different grid
loads; (b) Analysis of different operating conditions.

The data points in Figure 3 represent the distribution of
the IMM index of each node in the power grid under
different load levels and operating conditions. Under
light load and medium-low load conditions, the IMM is
mainly distributed in the range of 0.20-0.30, showing a
stable characteristic. As the load gradually increases, the
IMM shifts to a higher range. Among them, under heavy
load conditions, the proportion of the 0.30-0.40 interval
increases significantly, indicating that as the load
increases, the system voltage stability gradually weakens.
Combined with the reactive power demand
characteristics of the power grid, the increase in reactive
power demand under higher load conditions leads to a
decrease in voltage margin, which in turn causes the risk
of voltage instability. The analysis results of operating
conditions further reveal the impact of different
operating conditions on the distribution of IMM. Under
normal operating conditions, the IMM is mainly
distributed in the 0.20-0.30 interval. Under abnormal
conditions such as single line faults and high-voltage
equipment failures, the distribution of IMM is obviously
biased towards the high interval, and some nodes are
concentrated in the 0.30-0.40 interval or even higher.
This distribution change indicates that abnormal
conditions significantly weaken the voltage stability of
the system, which is related to the change in power grid
topology and the decrease in reactive compensation
capacity under fault conditions. These data show that

different operating conditions have a profound impact on
the distribution characteristics of IMM, and
strengthening the reactive power optimization strategy
under operating conditions is a key measure to ensure
voltage stability.

The IMM index reflects the ratio of the node impedance
modulus to its critical value, and directly indicates the
stability margin of the node voltage. A higher IMM value
means that the node is closer to an unstable state and the
voltage stability decreases. When the load increases, the
equivalent impedance of the node increases, resulting in
an increase in the IMM value, a decrease in the voltage
margin, and a greater tendency for the system to
experience voltage instability. Under different operating
conditions, changes in the grid topology and reactive
power distribution will change the electrical coupling
relationship between nodes, thereby affecting the ratio of
equivalent impedance to critical impedance, leading to
fluctuations in the IMM index. When operating
conditions are abnormal, situations such as single-line
faults and equipment failures will significantly increase
the IMM values of some nodes, causing local
voltage instability. This mechanism shows that the
voltage stability of the power grid is highly dependent on
the dynamic balance between the impedance
characteristics of the node and the load level, and the
IMM index provides a reliable basis for identifying key



nodes and optimizing reactive power configuration.

B. Impact of Reactive Power Compensation Strategy
on Overvoltage Control

Five typical scenarios are set up in the experiment.
Conditions 1 to 5 are light load, medium-light load,
medium load, medium-heavy load, and heavy load,
respectively, to simulate the operating status of the real
power grid and its potential challenges. Under light load
conditions, the overall load of the power grid is low, and
the voltage level is relatively stable. In medium-light
load conditions, load fluctuations are applied to examine
the adaptability of reactive power optimization to
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dynamic load changes. In medium load conditions, the
maintenance conditions of key reactive power
compensation equipment are simulated to test the effect
of the optimization strategy when the equipment is out of
service. Medium-heavy load conditions apply complex
scenarios of line disconnection to evaluate the
steady-state characteristics under topology changes.
Heavy load conditions combine high load operation with
equipment failure. The performance of the PPO
algorithm-based method is compared with the reactive
power dispatching method based on traditional optimal
power flow (OPF) and the improved PSO (Particle
Swarm Optimization) algorithm. The experiment takes
the steady-state overvoltage amplitude and IMM as the
core indicators. The outcomes are displayed in Figure 4.
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Figure 4. Comparison of reactive power optimization methods under different operating conditions. (a) Steady-state overvoltage
amplitude comparison; (b) IMM comparison.

The data points in Figure 4 represent the steady-state
overvoltage amplitude and average IMM index of
different optimization methods under different load
conditions. In heavy load conditions, the PPO algorithm
controls the overvoltage amplitude at 1.13 times the rated
voltage, while the OPF and the improved PSO algorithm
reach 1.19 times and 1.20 times, respectively, showing
that the latter two methods are insufficient in coping with
high loads and complex topologies. In terms of IMM, the
PPO algorithm reaches 0.37 under medium-light load
conditions and maintains at 0.33 under heavy load
conditions, while the OPF is 0.33 and 0.31, respectively,
reflecting the trend that its optimization effect gradually
weakens with the increase of load. This result shows that
the PPO algorithm is more effective in dynamically
adjusting the reactive compensation strategy and has
higher adaptability and stability to complex operating
conditions. The strategy optimization of the PPO
algorithm relies on the node features extracted by GNN.
Key nodes are preferentially identified by their high
impedance modulus margin and reactive power demand,
and compensation equipment configuration prioritizes
these nodes to maximize the voltage stability of the
power grid and reduce the risk of overvoltage.
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C. Influence of Grid Topology on Reactive
Configuration Effect

In reactive configuration optimization, the characteristics
of different grid topologies directly affect the
performance of voltage stability margin and overvoltage
amplitude. The radial topology is prone to voltage
fluctuations at key nodes due to its single power
transmission path. The ring topology has good power
dispersion capabilities, but the reactive power demand
between nodes is easily affected by the loop flow. The
grid topology can improve system redundancy and
stability due to its multi-path power transmission
mechanism. The star topology has a greater risk of
voltage fluctuations under the structure of centralized
power supply. Although the tree topology has the
advantage of hierarchical distribution, the voltage
stability of its edge nodes is poor when the load changes
greatly. Based on these characteristics, an experiment is
constructed to compare the specific effects of different
power grid topologies in reactive power configuration
optimization, and analyze their effects on voltage
stability margin and steady-state overvoltage amplitude.
Figure 5 summarizes the above experimental results.
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Figure 5. Effects of different power grid topologies on reactive power configuration optimization. (a) Effect of different grid
topologies on voltage stability margin; (b) Effect of different grid topologies on overvoltage amplitude.

The data points in Figure 5 represent the voltage stability
margin and steady-state overvoltage amplitude under
different grid topologies, revealing the impact of
topology on reactive power optimization effect. The
highest voltage stability margin of 0.38 in the experiment.
This is mainly attributed to its multi-path power
transmission characteristics, which effectively reduces
the voltage fluctuations at key nodes and improves the
reactive power distribution efficiency of the system. The
voltage stability margin of the ring topology reaches 0.35,
and its closed-loop design enhances the stability of the
system while reducing reactive power transmission
losses. The voltage stability margins of the radial and star
topologies are 0.32 and 0.31, respectively. Due to their
centralized structures, some nodes become voltage weak
points, limiting the stability performance of the system.
The voltage stability margin of the tree topology is the
lowest, at 0.30, mainly because the hierarchical
distribution leads to a significant decrease in the
efficiency of reactive power distribution from the central
node to the edge node. In terms of steady-state
overvoltage amplitude, the grid and ring topologies are
1.08 times the rated voltage and 1.10 times the rated
voltage, respectively, showing excellent overvoltage
control capabilities. The overvoltage amplitudes of the
radial and star topologies are 1.12 times the rated voltage
and 1.13 times the rated voltage, respectively, which are
higher than the grid and ring topologies. The overvoltage
amplitude of the tree topology is the highest, reaching
1.14 times the rated voltage, which is mainly due to the
limitations of the tree topology on the power
transmission path, resulting in serious voltage
accumulation at some nodes. Although grid and ring
topologies are excellent in improving voltage stability,
their construction and maintenance costs are significantly
higher than radial and star topologies. Due to their
simple structure and low cost, radial and star topologies
still have high economic feasibility in practical
applications and are suitable for cost-constrained grid
transformation projects. The overall analysis shows that
a reasonable design of the power grid topology can
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significantly improve the optimization effect of reactive
configuration.

The power grid topology determines the electrical
coupling relationship between the power transmission
path and the nodes, thus affecting the voltage stability.
The radial structure has a single power transmission path,
and some key nodes are prone to become bottlenecks.
When the load increases or a fault occurs, the local
voltage support capacity drops rapidly. The central node
of the star structure undertakes the main power
distribution task. Load fluctuations or equipment
adjustments directly affect the voltage distribution of the
entire system, and the voltage regulation ability of the
peripheral nodes is poor. The hierarchical distribution of
the tree structure causes the lower nodes to rely on the
upper voltage support. Long-distance power transmission
causes a large voltage drop, and the end nodes have a
higher demand for reactive power compensation. The
power transmission path of the ring structure is relatively
balanced, but the circulation effect affects the reasonable
distribution of reactive power. Voltage deviations occur
at specific nodes due to insufficient reactive power
compensation. The electrical characteristics of different
topologies determine the voltage regulation and fault
recovery capabilities of the power grid. Structural
limitations directly affect the strength of voltage stability.

D. Performance of  Reinforcement Learning
Algorithm in the Optimization Process
In the process of reactive power compensation

optimization of power grid, the change of model
convergence performance directly affects the stability
and optimization effect of the system. To deeply explore
the performance of PPO algorithm in reactive power
compensation configuration, this experiment records the
changes of voltage stability margin and convergence rate
under different training rounds, and analyzes the
convergence trend of the algorithm in multiple iterations



and its impact on power grid stability. This process not
only reflects how the PPO algorithm gradually adjusts
the configuration of reactive power compensation
equipment, but also reveals the stability improvement in
the optimization process. On this basis, Figure 6 depicts
the convergence analysis of PPO algorithm in reactive
power compensation optimization process.
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Figure 6. Performance of PPO algorithm in reactive power
compensation optimization.

The data points in Figure 6 show the changes in voltage
stability margin and convergence rate of the PPO
algorithm under different numbers of training rounds,
reflecting the trend of the algorithm gradually improving
system stability during the optimization process. With
the increase of training rounds, the voltage stability
margin gradually stabilizes, and the initial growth is
relatively rapid. In the 50th round, the voltage stability
margin has increased from 0.05 to 0.32, showing the
significant optimization effect of the algorithm in the
early stage. From the 100th round, the voltage stability
margin gradually stabilizes, and the increase gradually
slows down and finally tends to 0.396. This stable value
reflects the convergence state of the optimization process.
The change in convergence rate reflects the gradual
stabilization of the algorithm. Starting from the initial
0.080, as the number of training rounds increases, the
convergence rate continues to decline, approaching 0.002
at 200 rounds, indicating that after completing a certain
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number of optimizations, the adjustment speed of the
PPO algorithm slows down significantly and enters the
convergence stage. These changes show that as the
optimization proceeds, the PPO algorithm can stably
enhance the voltage stability margin of the power grid
and reduce fluctuations during the convergence process,
proving that the application of this method in the
hydropower distribution network has good stability and
effectiveness.

E. Optimization Effect of the Method on Steady-State
Overvoltage Control of the Power Grid

In the optimization process of steady-state overvoltage
control of the power grid, different operating scenarios
have different degrees of impact on the stability of the
power grid. The load change scenario mainly simulates
the challenge of power grid load fluctuations to voltage
stability. Load increases and decreases directly affect the
voltage stability margin of the power grid. The line fault
scenario simulates the situation of a power grid failure,
examines the steady-state overvoltage response of the
power grid when a fault occurs, and detects its recovery
ability. The multi-equipment collaborative operating
scenario focuses on analyzing the impact of multiple
reactive compensation equipment on the stability of the
power grid under simultaneous action, aiming to verify
the synergy between different equipment. The high load
and low load switching scenarios evaluate the
adaptability and voltage stability of the power grid in
load fluctuations by simulating the voltage changes
during load switching. The complex topology scenario
analyzes the impact of the topology on the optimization
of the reactive configuration of the power grid by
comparing the performance of the voltage stability
margin under different power grid topologies. Through
the design of these experimental scenarios, this
experiment aims to evaluate the application effect of the
optimization method under various actual power grid
conditions, and further analyze the improvement effect of
the optimization method on the steady-state overvoltage
control of the power grid. Figure 7 illustrates the changes
in the voltage stability margin and the steady-state
overvoltage amplitude before and after optimization in
different scenarios.
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Figure 7. Comparison of voltage stability margin and overvoltage amplitude in different scenarios. (a) Voltage stability margin
comparison; (b) Overvoltage amplitude comparison.
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The data points in Figure 7 represent the changes in the
voltage stability margin and steady-state overvoltage
amplitude before and after optimization under different
working conditions, respectively, which proves the
applicability and optimization effect of the proposed
method in various complex environments. In all
experimental scenarios, the voltage stability margin of
the optimized power grid is significantly improved,
while the steady-state overvoltage amplitude is reduced.
In the load change scenario, the optimized voltage
stability margin is increased from 0.18 to 0.28, and the
steady-state overvoltage amplitude is reduced from 1.15
times to 1.05 times, indicating that load fluctuations have
a greater impact on the voltage stability of the power grid,
and the optimization method can effectively improve the
stability of the power grid under load change conditions.
In the line fault scenario, the optimization method
increases the voltage stability margin from 0.22 to 0.30,
and the overvoltage amplitude is reduced from 1.20
times to 1.08 times, indicating that when a fault occurs,
the optimization method helps the power grid to recover
to a stable state faster. The optimization effect in the
multi-equipment collaborative operating scenario and the

complex topology scenario is also significant. The
change range of the voltage stability margin and the
overvoltage amplitude reflects the universal applicability
of the optimization method under different topologies
and equipment configurations. The optimized power grid
shows good adaptability during the switching process
between high load and low load. The voltage stability
margin increases from 0.20 to 0.32, and the overvoltage
amplitude decreases from 1.22 times to 1.06 times. These
data show that the optimization method based on IMM
can effectively improve voltage stability and reduce the
risk of steady-state overvoltage under different power
grid conditions.

F. Comparative Analysis of IMM and Traditional
Voltage Stability Indicators and Effectiveness of
GNN Modeling

IMM and VSM are important indicators for voltage
stability evaluation, and their performance under
different load conditions is significantly different. Table
4 intuitively shows the evaluation results of the two.

Table 4. Comparative analysis of IMM and VSM under different load conditions.

Load Condition IMM Stability Index VSM Stability Index Sensitivity Improvement Rate
Light Load 0.22 0.25 12%

Light-Medium Load 0.28 0.3 7%

Medium Load 0.31 0.32 3%

Medium-Heavy Load 0.36 0.32 13%

Heavy Load 0.39 0.33 18%

The results in Table 4 show that IMM shows high
sensitivity under different load conditions, especially in
medium and heavy load and heavy load scenarios, where
its index value is significantly higher than VSM. This
shows that IMM is more suitable for evaluating the
voltage stability changes of power grids in complex load
scenarios. In addition, the sensitivity improvement rate
data also reflects that IMM responds more significantly
to load changes.

The modeling method of power grid topology has a
direct impact on the accuracy and stability of system
analysis. Common modeling methods include those
based on graph theory, convolutional neural network
(CNN) and recurrent neural network (RNN), which have
their own characteristics in different application

scenarios. Graph-based methods are suitable for static
topological structure analysis, but it is difficult to handle
complex dynamic interactions. CNN can extract features
using local receptive fields, but its applicability is limited
in scenarios with irregular topology. RNN is suitable for
time-dependent analysis tasks, but has certain
shortcomings in  processing global topological
information. GNN, because it directly acts on graph
structure data, shows strong advantages in capturing
nonlinear relationships between nodes and global
information propagation. To further verify the
performance of different methods in power grid topology
modeling, the experiment compared the differences
between these methods in terms of modeling complexity,
node prediction error, and nonlinear interaction capture
ability. The results are shown in Table 5.

Table 5. Performance comparison of GNN and other topology modeling methods.

Modeling Nonlinear Interaction - o Adaptability to
Model Type Complexity Capture Capability Node Prediction Error (%) Topological Changes
Graph Theory  Low Weak 21.5 Poor
CNN Medium Moderate 17.3 Weak
RNN High Moderate 16.8 Moderate
GNN Medium Strong 11.2 Excellent
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According to the results in Table 5, GNN is superior to
other methods in terms of nonlinear interaction capture
ability and prediction accuracy. Compared with
traditional methods based on graph theory, GNN can use
multi-layer information transmission mechanism to
model complex associations between nodes more
accurately. Compared with CNN and RNN, GNN
performs better in topological adaptability, avoiding the
problem of CNN being limited by fixed neighborhood
structure and RNN losing information when processing
topological structure. The comparison results of
prediction error further verify this advantage. GNN has
the lowest error value, indicating that it is more stable
and accurate in power grid data modeling tasks.

5. Conclusions

This paper adopts a steady-state overvoltage reactive
configuration method for hydropower distribution
networks based on the IMM index, and relies on a digital
twin simulation model to evaluate voltage stability in
real-time. The grid topology and node relationship are
extracted through GNN, and the layout and operation
strategy of reactive compensation equipment are
optimized in combination with the PPO algorithm. In the
experiment, this method controls the steady-state
overvoltage amplitude at 1.13 times the rated voltage
under heavy load conditions, which is significantly lower
than the traditional method; under medium and light load
conditions, the voltage stability margin is increased to
0.37, and it is still maintained at 0.33 under heavy load
conditions; the voltage stability margin of the optimized
grid topology reaches 0.38, showing excellent
overvoltage control capability. The computational
complexity of this method is mainly reflected in three
aspects: the digital twin simulation process involves
dynamic load and topology adjustment, and the
computational complexity is about O(N?), where N is the
number of network nodes; GNN needs to perform
multi-layer information aggregation when processing the
power grid topology structure, and the computational
complexity of each layer is about O(N?d), where d is the
feature dimension, and the overall complexity is affected
by the number of layers L to reach O(LN?d); the PPO
algorithm involves policy updates and state space
searches in the reinforcement learning optimization
process, and the single-step training complexity is O(BC),
where B is the batch size, C is the number of policy
updates per round of calculation, and the overall
complexity is affected by the number of training rounds
T to reach O(TBC). In order to reduce the computational
complexity, the optimization directions include using
sparse matrices to accelerate GNN calculations,
parallelizing digital twin simulations to reduce the
computational burden, using reinforcement learning
strategies based on experience replay to reduce invalid
training rounds, and combining dynamic programming
methods to reduce the search space of PPO in large-scale
scenarios. In the future, the algorithm's computational
efficiency can be further optimized and its adaptability to
larger-scale power grids can be expanded to better cope
with diverse power grid operating conditions and
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enhance the versatility and practicality of the method.
Future work will focus on improving grid security,
coordinated optimization control of electric vehicles and
grids, and deep integration of renewable energy in
distributed power generation systems. The focus will be
on studying the impact of electric vehicle charging and
discharging strategies on voltage stability, exploring
reactive power optimization methods in high-penetration
renewable energy environments, and combining
advanced control algorithms to improve the stability and
reliability of complex grid operations.
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