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Abstract. Regarding the distribution characteristics of
ice thickness on transmission lines (TLs), the traditional
method has poor prediction effect in multi-dimensional
and high-noise data, low computational efficiency, and is
prone to local optimal solution problems. This paper
proposes an enhanced and more accurate analysis
method of ice thickness distribution characteristics of
transmission lines combined with the BWO-SVR

(Beluga Optimization-Support Vector Regression) model.

The collected TLs ice thickness data were processed to
remove noise data and extract features related to ice
thickness. The BWO algorithm was used to optimize the
hyperparameters of the SVR model, simulate the beluga
whale's predation behavior, achieve global optimal
search, and avoid the local optimal problem that may
occur in traditional optimization methods. The optimized
SVR model was used for multi-level regression analysis
to integrate data from different regions and periods to
improve the reliability of the prediction. The
cross-validation method was used to train the model, and
the SVR was adjusted based on the ice thickness
distribution characteristics in different areas, so that it
can maintain good adaptability in various scenarios. The
experimental results show that BWO-SVR has an
average MSE (Mean Square Error) of 0.13 mm in the
12-month forecast, with better prediction accuracy. The
average inference time under 10 different folds is 14.97
seconds, and the computational efficiency is superior.

Key words. Beluga Whale Optimization, Line Ice
Thickness, Support Vector Regression, Thickness
Distribution Characteristics, Transmission Lines

1. Introduction

Transmission line icing poses a major threat to the safety
of power systems. In cold climates, ice accumulation can
greatly increase the load on conductors, leading to line
breakage, equipment damage and other accidents [1,2].
Accurately predicting the distribution of TLs icing
thickness can help to take preventive measures promptly
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and reduce power outages and equipment failures caused
by icing [3,4]. Machine learning technology has been
developing rapidly in recent years, and the use of
data-driven prediction methods has become an effective
way to solve this problem.

Traditional TLs ice thickness prediction methods are
mainly some physical models, empirical formulas or
traditional machine learning methods. These methods
have many limitations when processing
high-dimensional and complex data. The prediction
method of physical models uses historical data to
determine extreme failure scenarios. The establishment
of the model requires a lot of calculations, which is
inefficient and lacks detailed descriptions [5,6]. Existing
empirical formulas are only applicable to specific regions
and specific conditions, lack strong generalization
capabilities [7,8], and ignore the impact of regional
differences and environmental changes on ice thickness,
resulting in low prediction accuracy [9,10]. Among
machine learning methods, algorithms such as support
vector machines and decision trees have certain
regression capabilities, but they perform poorly under
high-noise data and multi-dimensional features [11,12].
When faced with complex meteorological data, the
model is easily affected by data noise, and the volatility
of the prediction results is large [13,14]. Traditional
machine learning algorithms require manual feature
selection, feature extraction is not comprehensive, and it
is easy to miss key feature information, which limits the
prediction effect [15,16]. Traditional optimization
algorithms such as genetic algorithms and particle swarm
optimization can optimize the parameters of the model to
a certain extent, but it is not easy to jump out of the local
optimal solution and cannot achieve global optimization
[17,18]. These existing optimization methods have low
computational efficiency when processing larger data
sets and are unable to cope with complex ice prediction
challenges. Faced with the changing and complex ice
prediction requirements, existing methods are difficult to
find a balance between accuracy and efficiency, which
affects the credibility of the analysis of TLs ice thickness



distribution characteristics [19,20]. Given these problems,
improving the accuracy of current prediction technology,
speeding up calculations and enhancing its adaptability
have become key problems that need to be overcome.

This study combines the BWO algorithm with SVR and
proposes a new TLs ice thickness distribution prediction
method to solve the accuracy and efficiency problems of
traditional methods in complex data processing. BWO is
used to optimize the hyperparameters of SVR, simulate
the predation behavior of beluga whales, enhance the
global search ability of the model in high-dimensional
and complex data space, and avoid the traditional
optimization method from falling into the local optimal
solution. The core of the method is to use the
optimization process to improve the reliability of
prediction, and can effectively predict the ice thickness
distribution of TLs in different regions and under
different meteorological conditions. The study also
focused on data preprocessing and feature extraction. By
removing noise data and extracting key features related
to ice thickness, more accurate input information was
provided to the models. By integrating data from
different time periods and regions, the optimized SVR
model can better obtain the changing patterns of ice
thickness and has stronger adaptability. The model is
trained and verified using the cross-validation method,
which allows the model to have a certain degree of
adaptability in different scenarios, providing an efficient
and accurate solution for the prediction of ice thickness
in the power system, so as to better cope with the
challenges brought by climate change and extreme
weather and ensure the safe operation of TLs.

2. Related Work

Research on the distribution characteristics of TLs ice
thickness has made some progress, and many scholars
are committed to exploring different methods to improve
the accuracy of ice prediction. Some studies have
proposed ice thickness prediction methods based on
support vector machines [21,22], optimized kernel
function selection and parameter adjustment, and
improved the adaptability of the model to complex data
[23,24]. Huang L proposed a transmission line icing
prediction model based on the improved Harris Hawks
optimization algorithm and the hybrid kernel extreme
learning machine. The model has lower error, better
prediction effect than other models, and good practicality
[25]. Some studies have used multi-layer perceptron
neural networks for nonlinear prediction of ice thickness
and achieved good results, but due to the large amount of
data, they still face the problem of low computational
efficiency [26,27]. Some studies have combined
meteorological data with machine learning methods to
try to improve the accuracy of predictions by fusing
multi-source data [28,29]. These methods have achieved
certain results, but they rely on a large amount of
artificial feature engineering and fail to effectively deal
with data noise and local optimal solutions. At present,
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there is a certain amount of technical accumulation in the
prediction of TLs ice thickness, but there is still a lack of
an efficient and accurate solution. Further optimization is
needed in the processing of high-noise and
multi-dimensional data.

To solve the problems of traditional methods, some
researchers have tried to combine advanced optimization
algorithms with traditional machine learning methods to
improve the prediction ability of the model. As an
emerging intelligent optimization algorithm, the BWO
algorithm [30,31] has been applied to many fields and
achieved good results. For example, in simulating the
predation behavior of beluga whales, BWO can perform
global search in complex optimization space, avoiding
the dilemma of traditional optimization methods falling
into the local optimal solution, In simulating the
predation behavior of beluga whales, BWO can perform
global search in complex optimization space, avoiding
the dilemma of traditional optimization methods falling
into the local optimal solution. Wang Z proposed an
improved BWO algorithm for multi-objective capacity
optimization of the system, which can reduce the overall
cost of the system [32]; however, there are few studies
that apply BWO to machine learning of ice thickness
characteristics, which provides a new idea for this paper.
As a powerful regression analysis tool, SVR [33] has
shown excellent performance in many prediction
problems. Some studies have combined BWO with SVR
to successfully improve the accuracy and stability of
system predictions and solve the shortcomings of
traditional methods in high-dimensional data [34]. Chen
Y proposed an online prediction model for TLs icing
load driven by field data, which optimized the kernel
function and model parameters of the SVR algorithm and
improved the prediction accuracy and generalization.
The model performed better than the traditional
prediction model in the simulation analysis of actual
icing events and can effectively support the deicing and
maintenance decision-making of the transmission and
transformation system. BWO simulates the predation
behavior of beluga  whales, optimizes the
hyperparameters of the SVR model, and fully considers
the high dimensionality and complexity of ice thickness
data. Ice thickness data is affected by many factors, and
traditional methods are prone to fall into local optimal
solutions. BWO effectively avoids this problem through
global search, improving the accuracy and generalization
ability of the model in complex data. This optimization
process improves the accuracy of ice thickness prediction,
allowing the BWO-SVR model to better capture the
nonlinear relationship between ice thickness and
meteorological and line parameters, thereby enhancing
the reliability of the prediction. Existing studies lack
timeliness and cross-regional adaptability when dealing
with TLs ice cover data with time series characteristics.
This paper adopts a TLs ice cover thickness distribution
analysis method based on the BWO-SVR model to
improve the prediction accuracy and computational
efficiency of the model.



3. Methods
A. Data Processing and Feature Extraction

Before model training, the collected TLs ice thickness
data is processed to remove noise data and extract
features related to ice thickness.

1) Data Denoising

The transmission line ice thickness data used in the study
comes from the actual transmission line monitoring
system. The data is collected from a high-voltage
transmission line located in the Siberia region of Russia.
The different areas covered by this line experience ice
coverage throughout the year, so it was selected as the
research object. The ice thickness data is measured by
high-precision meteorological monitoring equipment and
lidar systems, and the monitoring range covers multiple

tower bases and key locations along the transmission line.

The lidar system can accurately measure the ice
thickness on the surface of the transmission line, and
further correct the accuracy of the data by combining
meteorological parameters such as temperature and
humidity; the ice type is mainly rime ice, which is
common in high humidity and low temperature
environments and has strong condensation and adhesion.
The measurement data is collected regularly on a
monthly basis, covering the years 2022-2024, to ensure

the comprehensiveness and representativeness of the data.

The high precision and timeliness of these data provide a
reliable basis for this study and ensure the effectiveness
and scientificity of the analysis results.

In the processing of TLs ice thickness data, removing the
noise data is a necessary step to improve the accuracy.
Noise data mainly comes from sensor errors, external
environmental interference, etc. If not processed, it may
lead to inaccurate predictions during model training.
Here, a noise detection and removal method based on
statistical analysis is used.

The mean, variance and distribution characteristics of the
data can be analyzed, and the Z-Score method can be
used to identify and remove outliers. For each data point,
the Z value is calculated:
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x, is the i th data point, u is the mean of the data,

and o is the standard deviation; The Z-value threshold
is set to 3. When the absolute value of the Z-value of a
data point is greater than 3, it is considered an outlier and
removed. The selection of this threshold is based on the
characteristics of normal distribution, that is, about
99.7% of the data points are within the range of plus or
minus 3 standard deviations of the mean, so the data
points with an absolute value of Z-value greater than 3
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are considered extreme outliers; this method can
effectively remove abnormal noise that deviates from
most data points and improve the quality of the data.

Wavelet transform is used to filter the noise, wavelet
decomposition is performed on the original data, signal
components of different frequencies are obtained, a
suitable threshold is selected, the high-frequency part is
soft-thresholded, the effective signal of the
low-frequency part is retained, and the data is
reconstructed. The formula is:

J(0)=2 v, ) @

f(t) is the denoised signal, «; is the coefficient of

wavelet transform, and v, (t) is the wavelet basis

function; this step can significantly reduce the impact of
noise and improve the stability and signal-to-noise ratio
of the data.

The sliding window method is used to smooth the data,
and the sliding window method performs local averaging
on the data to remove small fluctuations and reduce the
interference of high-frequency noise. The number of
windows represents the window size used in the moving
average method, that is, the number of data points
considered each time the average is calculated. The
choice of window size depends on the actual situation of
the data. Selecting an appropriate window length allows
the smoothed data to maintain the original trend while
removing noise.

2) Feature Extraction

Feature extraction is the core step in analyzing the
distribution characteristics of TLs ice thickness.
Extracting features related to ice thickness can
effectively help the model capture the potential laws in
the data. This process mainly includes the extraction and
fusion of meteorological data and line parameters.

Extract key features such as temperature, humidity, and
wind speed from meteorological data. These
meteorological factors have an important impact on the
formation and development of ice cover. Temperature is
an important factor affecting ice cover. Its fluctuation
directly determines the thickness of ice cover. The trend
of temperature change can be extracted through
differential calculation:

AT=T,-T,, (3)

AT s the temperature difference, 7, and are the

temperatures at time ¢ and #—1 respectively. This
feature helps to obtain the impact of temperature
fluctuations on ice thickness changes. The combined use
of wind speed and humidity can reflect the effect of

I,
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external climate conditions on ice thickness; the study
also introduced the sliding mean and standard deviation
of meteorological data to improve the model's
expressiveness as a dynamic feature input model.

The extraction of line parameters involves the geometric
characteristics and electrical parameters of the line. The
height, span, conductor material information and ice
accumulation of the line depend on the distribution
density. The thermal conductivity of the conductor
material affects the heat exchange rate and indirectly
affects the thickness of the ice. Reasonable modeling of
these physical parameters can provide more accurate
feature input for the model.

For the numerical processing of line parameters, the
standardization method is used to normalize parameters
of different scales to avoid the influence of features of
different dimensions on the weight distribution during
model training. This processing method ensures the
weight balance of different features.

The extraction and fusion of meteorological data and line
parameters generated a feature set containing
information of multiple dimensions. These features
provide reliable input for the subsequent SVR model,
helping the model to obtain the nonlinear relationship
between different variables, and adopt appropriate
feature selection and fusion in multidimensional data to
avoid the problem of feature redundancy.

The combined method of data denoising and feature
extraction effectively improves data quality and provides
a solid foundation for the optimization and prediction of
the BWO-SVR model.

B.  BWO Algorithm Optimizes SVR Model

1) Simulation of Beluga Whale Predation Behavior
and Global Optimal Search

The hyperparameters of the SVR model are optimized
and the beluga whale predation behavior is simulated to
achieve global optimal search. The beluga whale
predation strategies include hunting, chasing and
blocking. The behavior simulates the search for the
optimal solution in the search space. The BWO
algorithm uses the interaction between individuals and
groups to guide the search process based on these natural
behaviors.

Individuals adjust their position using a series of update
formulas as follows:

X=X+ 4-|cxT-x!| (4

X" represents the updated position of the i th

candidate solution in the #+1 generation, X, Iis its
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position information in the current generation, A is the

step factor, C is a constant, and X~ is the position of
the current global optimal solution. By controlling the
changes in the step factor and the constant, the algorithm
can perform local refinement and global exploration in
the search space, avoiding the local optimal problem that
may occur in traditional optimization algorithms. This
method allows the BWO algorithm to effectively guide
the search process on a global scale and use the
containment strategy to ensure the efficiency of the
search.

The algorithm adopts the "cooperative work" mechanism
in the beluga whale hunting process, and the accelerated
search of multiple candidate solutions can cooperate with
each other when close to the optimal solution, which can
accelerate the convergence of the optimal solution; the
mechanism of the algorithm is realized through the
individual distance adjustment and collaborative update
formula:

W =X+ B (X - X)) (9)

B

adjacent to the individual i position. This collaborative
adjustment mechanism allows multiple solutions to
converge to the global optimal solution together,
improving search efficiency.

is the adjustment factor, and X' is the solution

2) SVR Hyperparameter Optimization and Prediction
Performance Improvement

In the stage of the BWO algorithm optimizing the SVR
model, the optimization of hyperparameters plays a key
role; using the BWO algorithm can effectively improve
the prediction accuracy. The algorithm initializes each
hyperparameter and updates according to the search
mechanism of the algorithm in each iteration period. The
hyperparameters in SVR use the following objective
function to measure the model performance:

EIEE WIS TS ARG

v, is the actual value, p, is the predicted value, A is

the regularization factor. The objective function
comprehensively considers the prediction error and
complexity, adjusts C and gamma, and the algorithm
secks the optimal solution that can minimize the
objective function in each iteration. In SVR, C controls
the error tolerance, and gamma affects the complexity of
nonlinear mapping. Correctly optimizing these
hyperparameters plays a significant role in improving
prediction accuracy.

The BWO algorithm allows the model to globally search
for appropriate hyperparameter values, avoiding the local
optimality problem that may be encountered in



traditional grid search and random search methods. The
BWO algorithm continuously optimizes parameters
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Figure 1. The model structure using the BWO.

Figure 1 illustrates the optimization of the model
structure using the BWO. The BWO algorithm is
responsible for optimizing the hyperparameters of the
SVR model, including penalty factors and kernel
function parameters. It can stimulate beluga predation
behavior for global search to avoid the local problems of
traditional optimization methods. The training data is
input into the SVR model, including features related to
ice thickness, meteorological data and line parameters;
these data are subjected to regression analysis by SVR to
ultimately generate predicted ice thickness; the
optimized SVR model outputs the prediction results after
optimizing hyperparameters to improve accuracy and
reliability. MSE and R? can quantitatively evaluate the
performance of the model, and it can show high
generalization ability in different regions and time
periods. This process reflects the close integration of data
processing, feature extraction and optimization process,
making the model have efficient prediction and accuracy.

C. Multi-level Regression Analysis and Fusion

The optimized SVR model is used for multi-level
regression analysis to integrate data from different
regions and different time periods to improve the
accuracy and reliability of predictions.

1)  Multi-Level Regression Analysis of Data From
Different Regions

Data from different regions are processed to make
accurate predictions in different prediction scenarios.
The data from each region were analyzed to extract
potential feature differences between regions. Using the
optimized SVR, the ice thickness data in each region is
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modeled independently, and the model in each region is
trained and optimized on the local dataset, in a way that
can adapt to the specific data distribution within the
region.

The regression results of different regions are combined,
and the prediction results of each region model are
combined by using the weighted average method. The
prediction value after the fusion can be expressed as
follows:

~ N A
yfu.\'ed = Z,-ZIM/[ "q; (7)

S

coefficient of the i

is the number of regions, w, is the weighting

region, and ¢, is the predicted
value of the i region. The weighting coefficient is
dynamically adjusted according to the prediction
accuracy of each region, using the verified error as the
basis for the weight. Regions with smaller errors have
larger weights.

The data heterogeneity between regions also needs to be
considered during fusion. The climate conditions,
geographical environment and other factors in different
regions may lead to significant differences in the
distribution of ice thickness. The regression models for
different regional characteristics need to be optimized
through SVR. The impact of regional differences on the
final prediction results should also be considered in the
fusion stage. By adjusting the weighting coefficients, the
algorithm can reduce the prediction bias caused by
regional differences to a certain extent and improve the
accuracy and reliability of the final prediction.



2)  Multi-Level Regression Analysis of Data From
Different Time Periods

In addition to regional differences, time is also an
important factor affecting the thickness of TLs ice cover.
In addition to multi-level regression analysis of data
from different regions, it is also necessary to consider the
fusion of data from different time periods, model the TLs
ice cover thickness data in different time periods, obtain
the change rules in the time dimension.

In actual operation, the data in the time period needs to
be divided according to the time series so that the data in
each time period has similar time characteristics. When
performing regression analysis, the time factor can be
used as an important feature in the model and introduced
into the optimized SVR model for training. Let the data

D:{(xl7y1)’('x27y2)’”"('xn’yn)} > Xn
represents the input feature. The data is grouped
according to different time periods. Assume that the data
of the kth time period is independently input into the
SVR model for modeling during the training process.
The objective function of each model is as follows:

set be

fk (x) = z;:l(|yik _yAik|+ /12:11 |W/k |) ®)

n, is the amount of data in the & th time period, and

m, is the feature dimension of the £ th time period.

When fusing data from multiple time periods, a strategy
similar to regional data fusion is adopted, and the
prediction results of the models in each time period are
combined using the weighted average method. The
determination of the weight coefficient is also based on
the error value in the verification. Smaller errors
correspond to larger weights, giving these time periods
higher trust in the prediction. The final prediction result
after fusion is:

R M .
Viused = Zk:] w v (9)

M is the number of time periods, w, is the weighting
coefficient of the & is the

predicted value of the %k time period. After the fusion
of time period data, the ice thickness can be accurately
predicted at different time scales.

time period, and J,

In addition to the weighted average method, principal
component analysis can also be used to reduce the
dimension of time period data in data fusion, reduce the
computational complexity, and improve the prediction
speed. In the feature extraction of time period data,
different feature combinations are required for the
different characteristics of the data in each time period.
Introducing these feature combinations in the SVR
model can better reflect the impact of time factors on ice
thickness and improve the fitting ability of the model.
Table 1 shows the ice thickness data of TLs in different
regions.

Table 1. Transmission lines ice thickness data of different regions.

Region ID Number of | Mean Ice | Temperature Wind Speed Regional Description
& samples (items) Thickness (mm) | Range (°C) Range (m/s) & P

1 150 50.2 20t0-10 251052 High-latitude mountainous  arca,
cold climate, strong winds.

2 200 38.7 12t0-8 1.8103.0 Low mountainous area, —lower
temperatures, moderate winds.

3 180 294 S5t0-2 1.0t02.8 Mountam edge, mild climate, lower
wind speed.

4 220 416 8t0-4 201t03.8 Lowland area, higher wind speed,
colder temperatures.

D. Model Training and Optimization Adjustment

This paper uses the cross-validation method for training
and adjusts the SVR based on the ice thickness
distribution characteristics in different regions. In model
training and optimization, this paper uses the
cross-validation method. This method can maximize the
use of the data set in each round of training, evaluate the
performance on unseen data, and reduce the accidental
impact of data division. MSE was used as the evaluation
index for each round of validation, with the formula:

1 .
MSE=—%"(v=3,) (10)
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Calculate the error of each round, evaluate the
performance of the model on different training sets and
validation  sets, and determine the optimal
hyperparameter combination; cross-validation allows
each part of the data in the training process to have the
opportunity to be used as a validation set.

The ice thickness data characteristics of different regions
can be personalized and optimized. Geographical and
climatic conditions in different regions may cause
differences in the distribution of ice thickness, which
directly affects the prediction effect. A single global
model may not be able to adapt to the specific needs of
all regions, and the model must be adjusted
independently according to the characteristics of each



region. The weight of the features can be adjusted
according to factors such as meteorological data and
geographical parameters in the region; the temperature in
cold regions has a greater impact on the ice thickness,
and warm regions need to consider the impact of
temperature fluctuations and humidity changes more.

MSE, = NLZNI w,(y=9) (b

r

This regional adjustment enhances the model's
adaptability to regional data distribution and improves its
predictive ability in practical applications. Each region
can be trained and optimized independently, combined
with the cross-validation method to ensure the
generalization ability of the model in different regions.
The optimization adjustment of regional differences also
helps to avoid overfitting problems caused by overfitting
of data in a certain region.

4. Method Effect Evaluation

A. Impact of Different Window Sizes on Data
Smoothing  and  Sensitivity  Analysis  of

Hyperparameters

Figure 2 shows the effect of using the sliding average
method to smooth time series data with high-intensity
noise under different window sizes. The black curve
represents the original noise data, and the smoothing
effect under different window sizes is compared.
Window 3 shows strong fluctuations, fails to effectively
remove noise, and has the worst smoothing effect.
Window 5 is improved compared to Window 3, but the
noise is still not completely removed, and the data
fluctuation is still large. Window 7 shows the best
smoothing effect. The noise is effectively removed, and
the data shows a relatively stable trend, which can better
reflect the changes in ice thickness. Window 10 removes
the noise, but because the window is too large,
over-smoothing causes unnatural data fluctuations, which
weakens the trend changes and shows a large difference.
Window 7 is the best choice, which can effectively
remove noise and maintain the stability of data changes.

Figure 3 shows the sensitivity analysis of
hyperparameters C and Gamma. Different combinations
of C and Gamma show obvious changes in the model
error. The error is the smallest in a smaller range of C
and Gamma values. This shows that the hyperparameter
combination corresponding to this area can significantly
improve the predictive performance of the model. When
the hyperparameter value is too high, the error increases
and the model performance is not ideal. The data
intuitively reflects the sensitivity of the model to the C
and Gamma hyperparameters, providing a clear direction
for subsequent optimization. This analysis can identify
the hyperparameter combinations that have a greater
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impact on model performance and optimize the model's
prediction capabilities.

Noisy Data
Window Size = 3
Window Size = 5
7
1

~——— Window Size =
Window Size =

3

Ice Thickness (cm)

Time (Hours)

Figure 2. Effect of different window sizes on data smoothing.

Mean Squared Error (MSE)

=
05 s 8§

Gamma (Kernel Parameter) 0 0 C (Penalty Parameter)

Figure 3. Hyperparameter sensitivity analysis.

B. Distribution Feature Analysis and Prediction
Effect Evaluation

Table 2 is the setting table of the experimental
parameters. Table 3 shows the distribution characteristics
of TLs ice thickness in different regions, including
maximum value, minimum value, standard deviation,
kurtosis and skewness. The maximum ice thickness in
region 3 is 76.4 mm, which is significantly higher than
that in other regions. The ice in this region is more
serious and the standard deviation is larger, indicating
that the ice thickness fluctuates greatly. The minimum
value in area 3 is 23.1 mm, and the standard deviation is
low, indicating that the ice cover in this area is light and
relatively stable; the skewness value reflects the
distribution pattern of ice thickness in each area, and the
ice thickness in each area is significantly different,
providing key data support for subsequent modeling and
analysis.



Table 2. Table of experimental parameters settings.

Parameter Value Description

Dataset Split 10-fold Cross Validation The dataset }s_randomly _d1V1.ded into 10 subsets for 10
rounds of training and validation

SVR Kernel Function RBF Kernel Th_e kernel funct_lon used to _construct the SVR model,
suitable for non-linear data fitting

epsilon (SVR) 01 The tolerance of the SVR model, setting the permissible
error range for support vectors

. . The population size in the Beluga Whale Optimization

BWO Population Size 30 algorithm, affecting the breadth of the search process

BWO Tterations 200 The ‘maximum n.umber of iterations  in the BWO
algorithm, controlling the search precision

XGBoost Max Depth 6 The maximum de}')th of tregs in the XGBoost model,
affecting the model's complexity

Learning Rate (XGBoost) 0.05 The _ lea_rnmg rate in XGBoost, controlling the
contribution size of each tree

SVR Penalty Parameter (C) 1 The pepalty parameter in SVR, balancing model
complexity and error tolerance

BWO Mutation Rate 04 The mutation rate in the BWO algorithm, determining the
randomness of the search process

BWO Convergence Threshold 1.00E-06 The convergence thresh_old in the BWO algorithm,
determining when to stop iterations

XGBoost Subsample Ratio 08 The stllbsample ratio in XGBoost, used to reduce
overfitting

XGBoost Training Rounds 100 The maximum number qf training roqnds in XGBoost,
controlling the number of iterations during training

Table 3. Results of ice thickness distribution feature analysis.

Region ID | Max Ice Thickness (mm) Min Ice Thickness (mm) Ice Thickness Std Dev (mm) | Kurtosis SSkewnes
1 76.4 7.3 33.1 -0.45 0.15
2 55.6 4.4 29.5 -0.33 0.2
3 42.4 33 23.1 -0.1 0.3
4 68.8 6.0 329 -0.25 0.12
e Figure 4 shows the contrast between the predicted and
- true values of the SVR model. Each scattered point
a0 % PR i f': represents a data sample, and the red dotted line is the
e j'ﬂ‘*{;‘/"E’:‘rﬁ'::nge LR 4 ideal prediction line, that is, the predicted value is
70 - (53 2‘ * completely equal to the true value; The green dotted line

- o [=2]
o o o

Predicted Ice Thickness(mm)

w
o

20 -

20 30 40 50 60 70 80
True Ice Thickness(mm)

Figure 4. Model prediction and true value.
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is the 10% error line. Most of the data points are within
the 10% error line, which means that the model's
prediction results are close to the true value and the
overall prediction is accurate. However, there are still
some points that deviate from the ideal line and show a
certain error, indicating that the model's prediction
accuracy is slightly reduced in some samples. These
errors may be related to the noise in the data, the
complexity of specific areas, or the hyperparameter
selection of the model. The distribution trend of the
points shows that the SVR model can better capture the
changing pattern of ice thickness, but there is still room
for improvement, especially when dealing with specific
areas or extreme values. The model may need to be
further  optimized. Introducing more efficient



hyperparameter optimization strategies such as genetic
algorithms or particle swarm optimization, enhancing
data preprocessing and outlier detection, and adopting
multi-model fusion and regional adaptive adjustment can
better improve local prediction accuracy and enhance
overall robustness.

The prediction accuracy uses MSE as an evaluation
indicator to quantify the difference between the
prediction result and the actual value. MSE is a
commonly used evaluation standard that can effectively
reflect the error distribution. SVR can effectively handle
complex nonlinear relationships through nonlinear
mapping, and XGBoost uses ensemble learning and tree
structure models to improve prediction accuracy through
multiple iterations. These methods still have challenges
in hyperparameter optimization and are easily affected
by local optimality. In contrast, this paper combines the
SVR optimized by the BWO algorithm to optimize
hyperparameters by simulating the predation behavior of
white whales in nature, avoiding the local optimality
problem of traditional methods, and improving the
prediction accuracy and computational efficiency of the
model, showing a strong advantage. In the evaluation,
BWO-SVR is compared with traditional SVR and
XGBoost (Extreme Gradient Boosting) to ensure the
reliability of the evaluation results. All data are divided
by month to verify the adaptability in different time
periods. For each month, three methods are used for
training and prediction, and the MSE value of each
month is calculated. These MSE values are compared to
judge the prediction accuracy of BWO-SVR in each time
period, and the performance is differentiated with other
algorithms to verify its superiority in different
environments.
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Figure 5. Comparison of MSE of different models.

Figure 5 compares the prediction accuracy of the three
models of BWO-SVR, SVR and XGBoost in 12 months,
using MSE as the evaluation indicator. The MSE value
of BWO-SVR is low in most months, showing strong
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prediction ability, with an average MSE of 0.13 mm. The
MSE of BWO-SVR is significantly lower than that of the
other two models, indicating that it fits the data more
accurately in these months and can effectively reduce
errors. The MSE of the SVR model is generally high,
especially in June and July, indicating that it has poor
adaptability to the data in these months, which may be
due to large noise interference and insufficient parameter
optimization; the MSE value of the XGBoost model is at
a medium level in most months and is relatively stable.
Its performance is close to that of BWO-SVR, but
slightly inferior overall. The data reflects the difference
in prediction effects of different models in different
months. BWO-SVR, with its lower error value, shows
superiority and strong adaptability under
multi-dimensional data.

C. Computational Efficiency Comparison

The computational efficiency comparison uses the
ten-fold cross-validation method to evaluate the
inference time of each model at different folds. The data
set is randomly divided into ten subsets, one of which is
selected as the validation set each time, and the rest are
used as the training set. The training and validation are
repeated ten times to ensure the extensiveness and
reliability of the evaluation results.

In each fold validation, the inference time of the
BWO-SVR model, the traditional SVR model, and the
XGBoost algorithm are recorded respectively, focusing
on the time consumption of each model in the data
processing, feature selection, and prediction process. The
inference time is calculated. The evaluation focuses on
comparing the execution efficiency of different models
under the same data set and analyzing the advantages of
BWO-SVR when processing the data set. This
comparison can comprehensively evaluate the
improvement of BWO-SVR in computing efficiency and
directly compare it with other algorithms to ensure its
high efficiency in practical applications.
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Figure 6. Comparison of inference time of different models.



Figure 6 shows the comparison of inference time of three
models under 10 different folds. The inference time of
BWO-SVR fluctuates between different folds, with the
lowest being 13.2 seconds and the highest being 16.5
seconds. The average inference time is 14.97 seconds,
which shows the adaptability of the model on different
data subsets; The inference time of the SVR model is
generally longer at fold 6, indicating that its
computational overhead 1is large when processing
complex data; the inference time of XGBoost is between
BWO-SVR and SVR, showing a relatively balanced
inference efficiency, and performs well at most folds, but
does not surpass BWO-SVR. BWO-SVR has a shorter
reasoning time in most cases, showing strong stability
and efficiency. The data changes reveal the advantages
and disadvantages of different models in reasoning speed,
suggesting that the performance in different data
scenarios should be considered when selecting a model.

D. 4Goodness of Fit Evaluation

The goodness of fit evaluation uses R? to measure the
fitting effect of the BWO-SVR model algorithm on the
training set and the validation set. R? is an important
indicator for evaluating the predictive performance of the
regression model, which can reflect the model's ability to
explain data variation and its fitting accuracy.
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Figure 7. Determination coefficient of BWO-SVR in training
and validation.

Figure 7 shows the R? comparison of the training set and
validation set of the BWO-SVR model on 10 folds. The
determination coefficient of the training set is generally
high, ranging from 0.91 to 0.94, indicating that the model
has a strong fitting ability on the training data. The
coefficient of determination of the validation set is low,
between 0.85 and 0.89, showing a certain degree of
overfitting, but the fitting effect of the validation set is
still good, indicating that the model has strong
generalization ability and can adapt to different data sets
well. In all folds, the fitting effect of the BWO-SVR
model remains stable, verifying the robustness and
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accuracy of the model. The BWO-SVR model can
provide relatively consistent prediction performance
when processing data with different folds.

5. Conclusions

This paper proposes an enhanced and more accurate
analysis method of ice thickness distribution
characteristics of transmission lines combined with the
BWO-SVR model. The BWO algorithm was used to
optimize the hyperparameters of the support vector
regression model, successfully avoiding the local optimal
trap that traditional optimization methods are prone to
fall into, and improving the prediction accuracy.
Combined with multi-level regression analysis and data
fusion technology, the reliability of the prediction results
is enhanced. When processing comprehensive data from
different regions and different time periods, the
adaptability of the model is particularly prominent. After
comparative evaluation with traditional models, the
experiment found that the BWO-SVR model showed
significant advantages in prediction accuracy, calculation
speed and fitting degree. Using the ten-fold cross
validation and R? evaluation methods, the experiment
further ensured the efficient operation of the model in a
complex data environment. Regarding predicting the
distribution characteristics of TLs ice thickness, the
model performed well, showing obvious advantages in
calculation speed and model adaptability, providing
strong technical support for TLs ice monitoring and
disaster prevention and mitigation work. In the future,
the paper can try to further expand the scope of
application of this method and explore how to combine
more diverse data sources to further optimize model
performance.
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