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Abstract. Traditional power system stabilizer design
usually adopts a centralized tuning method, which
ignores the coupling effect between different regions,
resulting in over-adjustment of local stabilizers or
insufficient global response. This paper applied a new
online tuning method based on D-segmentation method
to achieve precise and efficient stabilizer adjustment
through local and global coordination. The
D-segmentation method divides the system into multiple
subsystems, each of which is equipped with an
independent stabilizer, and minimizes the mutual
influence between subsystems through modularity
optimization in graph theory. For each subsystem, LQR
(Linear Quadratic Regulator) and fuzzy control are used
to adjust the stabilizer gain. Global coordination ensures
global consistency through distributed optimization
algorithms and multi-agent systems (MASs). Based on
the power system's real-time data, the stablizer
parameters are adjusted through regression. The
real-time optimization algorithm, GA (genetic algorithm)
are used to adjust dynamically adjust the stabilizer
parameters of each subsystem using real-time monitoring
frequency, load, and wvoltage data to cope with
emergencies during system operation. Experiments show
that the recovery rate after load fluctuations and
equipment failures is above 80%, and the disturbance
recovery time is kept within 5.0 seconds, which greatly
improves the power system’s overall stability.

Keywords. Power System Stabilizer, Online Tuning
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1. Introduction

With the increase in global energy demand and the
continuous expansion of power system scale, the stability
of power system has gradually become a key challenge
in system operation. The stability of power system is not
only related to the security of power grid, but also affects
the reliability and economy of power supply. Power
system stabilizer (PSS) is widely used to improve the
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system’s dynamic response, especially in the case of
disturbances such as frequency fluctuation and voltage
fluctuation, effectively adjust the excitation current of
generator, and thus improve the system’s stability [1-3].
Traditional power system stabilizer design adopts a
centralized control strategy, or at least adopts a
non-uniform centralized control strategy by analyzing
the overall characteristics of the entire system. However,
as the scale of the power system expands, this approach
faces some difficulties in actual implementation.
Especially in large-scale power systems, the specific
characteristics of the system are complex and changeable,
and there is a complex coupling effect between the
control and the local stabilizer and the response of the
entire system [4-6]. Traditional centralized control
strategies often ignore the joint effects between these
areas, resulting in excessive control of local stabilizers or
insufficient response of the entire system, and cannot
effectively control system interference factors, thereby
affecting the safety and stability of the entire power
system [7-9]. Therefore, the critical problem is to
establish local and global control to improve the stablity
and response speed in the power system.

The design and optimization of power system stabilizers
have attracted the attention of many scholars. Many
studies have tried to improve the control accuracy of the
stabilizer and the responsiveness of the system through
different methods. Scholar Zanjani S M A [10] used a
meta-heuristic optimization algorithm to adjust the
power system stabilizer to improve the power system’s
stability. Shokoohi M et al. [11] used multi-agent
reinforcement learning for dynamic distributed constraint
optimization to solve the uncertainty of future events
when the current time is allocated. Some scholars have
applied stabilizer design methods based on local control
to optimize the stability of local areas. Fuzzy logic
controller (FLC) is widely used in the design of local
stabilizers for power systems, effectively dealing with
nonlinear and uncertainty problems and improving the
robustness of the system [12-14]. In addition, PID
(Proportional-Integral-Derivative) control is also used in
the adjustment of local stabilizers, and the stability of the



system is improved through precise parameter setting
[15,16]. However, most of these methods focus on the
regulation of local systems and pay less attention to the
coupling effects between different regions. Besides,
some studies have applied optimization methods based
on global control, using distributed control and adaptive
control algorithm LQR (Linear Quadratic Regulator) to
coordinate the stabilizer parameters in different regions
to cope with global changes in the system [17,18].
However, these existing methods have the problem of
insufficient coordination between local regulation and
global regulation. When facing the dynamic changes of
large-scale power systems, it may lead to over-regulation
of local stabilizers or insufficient response of the global
system [19-21]. Therefore, how to better solve the
coordination problem between local and global control
has become a bottleneck that needs to be broken through
in current research.

To address the problem of coordination between local
and global control, some researchers have applied
stabilizer design methods based on system partitioning,
such as partitioned control. This method simplifies the
control process and improves the system’s stability by
dividing the power system into several smaller
subsystems so that each subsystem can be controlled and
optimized independently [22-24]. D-segmentation is a
relatively effective segmentation method that divides the
power system into a number of independent regions in
order to minimize the interactions between the regions,
coordinate the global response of the system, and ensure
local stability. Existing studies have suggested that
modular optimization algorithms effectively separate the
regions of the power system, ensure minimal coupling
between subsystems, and enable precise control based on
the characteristics of each subsystem [25,26].
Furthermore, the application of distributed gradient
descent model and multi-agent system (MAS) allows
global control to share and coordinate information
among different subsystems, thus effectively improving
the entire system’s stability. Although these methods
have made effective explorations in local control and
global coordination, they still have shortcomings such as
insufficient ability to respond to real-time changes in the
system and insufficient adaptability of parameter
adjustment, and cannot provide fast and -effective
adjustments to sudden disturbances [27-29]. On this
basis, this paper proposes an online parameter setting
method for power system stabilizers based on the
D-segmentation method, combining real-time data with
intelligent optimization algorithms to solve the problems
of insufficient adaptability and insufficiency of existing
methods.

The study aims to apply a new online parameter tuning
method for power system stabilizers based on the
D-segmentation method to solve the coordination
problem between local and global control in large-scale
power systems. Firstly, this paper divides the power
system into multiple relatively independent subsystems
through the D-segmentation method, and uses the
modularity optimization algorithm to divide the system
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into regions to ensure that the mutual influence between
the subsystems is minimized [30,31]. Secondly, in each
subsystem, this paper uses LQR and fuzzy logic control
to optimize the stabilizer gain in real-time to adapt to the
system’s dynamic changes. In terms of global
coordination, this paper applies distributed gradient
descent and MAS models to ensure global stability and
avoid conflicts between local regulation and global
control [32,33]. To improve the real-time response
capability, this paper also combines regression analysis
and genetic algorithm (GA) to dynamically adjust the
stabilizer parameters based on the real-time monitoring
data of the power system to cope with sudden
disturbances. Through the effective combination of these
methods, this paper improves the power system’s overall
stability, and improves the system’s response speed to
real-time changes, providing new ideas and effective
solutions for the online setting of the power system
stabilizer.

2. D-segmentation and Stabilizer Setting
A. Basic Idea of D-segmentation

D-segmentation effectively solves the complexity and
computational burden in large-scale power system
control by dividing the power system into multiple
smaller subsystems. In practical applications, the core of
D-segmentation is to divide the power system into
multiple regions or subsystems based on power flow and
control requirements, so that each subsystem can be
independently controlled and optimized. In this way,
local control problems within the system become more
manageable, and precise stability control can be achieved
through local regulation. Especially in power systems,
factors such as the system topology, load distribution,
and the operating status of generators determine the
necessity of regional division, and traditional centralized
methods are difficult to adapt to such complex local
characteristics. Through the D-segmentation method,
these regions coordinate the operation of the global
system while ensuring local stability, avoiding the
contradiction between local regulation and global
response.

In this study, the D-segmentation method first divides the
entire power system into multiple relatively independent
sub-regions through topological analysis of the power
system. Each sub-region contains several generators,
substations, and loads, and is divided according to the
characteristics of power flow and the dynamic
characteristics of the region. In the process of
partitioning, the modularity optimization algorithm in
graph theory is used to determine the optimal structure of
the partitioning to ensure that the mutual influence
between different regions is minimized. This process
ensures that the stabilizer of the local area operates
independently according to the real-time needs of the
area by optimizing the stability of each area and reducing
the computational complexity. Modularity is used to
measure the quality of network partitioning, as shown in



Formula 1:
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In the formula (1), Q,

measures the degree of optimization of the partition. 4,

is the modularity, which

is the connection matrix element between node i and

node j . k; and k; are the degrees (number of

connections) of node i and node j respectively. m

is the total number of all edges in the graph. o6 (c[,cj)
is the indicator function, which is 1 when ¢, =c; ,
indicating that node i and node ; belong to the same

subsystem. The subsystem stability is quantified by its
response time and transition process. The stability
function of the subsystem is set as Formula 2:
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In the formula (2), S,

,(¢) is the response of subsystem i

is the stability index of
subsystem i .

(frequency, power, oscillation amplitude, etc.). o is the
attenuation factor, which indicates the sensitivity of the
system to disturbance. 7  is the evaluation time
window.

B.  Subsystem Division

The division of subsystems depends on the topology and
dynamic characteristics of the power system. Regarding
topology, the power system consists of multiple
generators, substations, and loads, each of which is
connected by transmission lines to form a complex
power flow network. To effectively divide the
subsystems, it is necessary to combine the actual
structure of the system, including the distribution of
generators and loads, the availability of lines, and their
load-bearing capacity. By analyzing the transmission
paths of power flows, regions where power flows are
more concentrated or dispersed can be identified. These
regions usually have relatively independent control

Original Power System Topology

characteristics, and dividing them into subsystems helps
to reduce the coupling effects within the system.

Apart from the topology, the system characteristics are
also essential factors to be considered when dividing the
subsystems. Power systems exhibit different fluctuation
patterns under different operating conditions, especially
due to load variations and uneven power flows, which
can lead to system instability. By analyzing these unique
characteristics, regions of the system with greater
volatility or control problems can be identified. These
areas should usually be separated into independent
subsystems for targeted control optimization. Therefore,
the reliability analysis of the system ensures that each
subsystem truly controls its inherent stability problems
by combining static geography and dynamic behavior.

To achieve precise division of the power system, this
paper adopts the modularity optimization algorithm in
graph theory to divide the power system into multiple
subsystems with small coupling. The modularity
optimization algorithm divides the nodes (generators,
loads, substations, etc.) in the system to maximize the
modularity value between subsystems and ensure that the
mutual influence of each subsystem is minimized [34,35].
Modularity is an indicator to measure the quality of
graph division and is wusually used to judge the
compactness of the system within the sub-region after
division. Through this algorithm, the originally complex
power system is effectively divided into multiple
relatively independent subsystems.

When applying this algorithm, the system’s topological
structure is first abstracted into a graph, and each power
equipment and its connection relationship constitute the
nodes and edges in the graph. Then, the modularity
optimization algorithm is used to divide the nodes in the
graph to ensure that the connection relationship within
each subsystem is relatively close, while the connection
between subsystems is relatively loose. This algorithm
improves the division accuracy, and effectively reduces
the control conflict and stability problems caused by
excessive coupling. For each subsystem, the division
obtained by this method ensures the independence of
local control while avoiding the computational
complexity brought by global control in traditional
methods.

Power System After Community Detection

Figure 1. Original power system topology and subsystem division. (a). Original power system topology; (b). Subsystem division.
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The original image of Figure 1 shows 30 nodes and their
connections, representing power equipment and their
connection relationships. After community detection, the
nodes are divided into 4 subsystems. The four divided
communities are represented by different colors in Figure
1, where the nodes in each subsystem are closely
connected, helping to reduce the global control
complexity. Modularity is used to evaluate the quality of
the division. A higher modularity means that the
subsystem has tighter internal connections and fewer
external connections. The modularity in the image is
calculated to be greater than 0.3, indicating that the
division effect is good.

After completing the system partitioning, the reliability
of each subsystem should be further subdivided to
identify the key areas that may affect the dynamic
stability of the system. Specifically, the reliability
analysis of the system relies on reproducing and
determining the specific response of each subsystem to
evaluate the system’s response to load changes under
different operating conditions. Specifically, some areas
may have more serious unsafe risks due to load changes,
generator output differences, unbalanced power
transmission, etc.

We can determine which areas are more vulnerable to
security by continuously checking the key parameters
such as each system's rate, power, and voltage. For
example, some areas with large load changes or
unbalanced power transmission may cause more violent
system movements, thereby affecting the stable operation
of the entire power system. Therefore, after completing
the subsystem partitioning, the key areas of each areca
should be fully subdivided. Their dynamic response
characteristics should be evaluated, and comparative
control measures should be taken. By identifying and
decomposing these key areas, data support and control
are added to the final stabilizer boundary setting.

In large-scale power systems, although the
D-segmentation method divides the system into multiple
subsystems, there is still a certain coupling effect
between the subsystems. Especially when the system
load fluctuates and the power flow is more complex, this
coupling effect may cause the local stabilizer to control
excessively or the global response to be insufficient,
affecting the overall reliability of the system. Therefore,
when performing subsystem division and analysis,
special attention should be paid to reducing the coupling
effect between these areas.

To further verify the effectiveness and applicability of
the online parameter setting method of the power system
stabilizer based on the D-segment method, this paper
applies it to a typical SMIB system. In this system, a
single generator is connected to an idealized infinite bus
system through a transmission line. Although the SMIB
system is relatively simple, it is still an important model
for studying the dynamic behavior and stability of the
power system. This paper introduces disturbances such
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as load fluctuations and equipment failures in the
simulation, and applies the method proposed in this
paper to adjust the stabilizer parameters in real time. The
experimental results show that in the SMIB system, this
method can significantly shorten the frequency recovery
time and reduce the voltage deviation. In the case of a
sudden load increase, the frequency recovery time of the
system is reduced from the original 5 seconds to less
than 3 seconds, and the maximum frequency deviation is
also reduced from 0.4 Hz to less than 0.2 Hz. This proves
the effectiveness of the method in dealing with complex
multi-bus  systems, and demonstrates its superior
performance in simplified models, thereby verifying its
wide applicability.

C. Local Stabilizer Parameter Adjustment

In the online adjustment method of power system
stabilizer parameters based on the D-segmentation
method, the adjustment of local stabilizer parameters is a
key step to ensure the system’s security and
responsiveness. Each subsystem is equipped with an
independent power system stabilizer, whose parameters
must be adjusted progressively according to the current
state of the subsystem. This process is mainly based on
continuous monitoring data (such as frequency, power,
voltage, etc.) and is combined with advanced control
algorithms to improve the stabilizer gain and other
control parameters [36]. Through these operations, each
subsystem can freely and effectively maintain its security
while avoiding interference with other subsystems, thus
ensuring the system’s overall stability and coordination.

To achieve precise adjustment of the subsystem stabilizer
parameters, flexible control algorithms must be applied
first. Flexible control is a method of adjusting control
parameters based on current data feedback, which can
effectively improve the gain value of the system
regulator and adapt to various working conditions and
system changes. This paper uses the LQR method to
improve the gain of each subsystem stabilizer. LQR
limits the system performance indicators on the basis of
ensuring system safety.

The core of the LQR method is to change the control
gain of the system by improving the cost capability. For
the drive system, the cost capability usually includes the
state error of the system and the square value of the
control input. By solving a direct quadratic optimal
control problem, the LQR algorithm determines a set of
optimal gain functions for each subsystem stabilizer so
that the subsystem returns to a stable state in the shortest
time and limits energy consumption or other key
performance indicators. The advantage of the LQR
method is its flexibility to system elements. Gains are
changed through continuous feedback to improve the
responsiveness of the subsystem under various
disturbances. The goal of the LQR method is to change
the control gain by improving the cost capability. The
LQR method determines the control gain by solving the
cost capability improvement problem. The gain matrix



K is obtained by the following Algebraic Riccati
Equation (ARE), as shown in Formula 3:

A"P+PA-PBR'B'P+Q0=0 (3)
Then, the optimal control gain matrix K is:
K=R'B'P (4)

In Formulas 3 and 4: A is the state matrix in the
system state space model. B is the input matrix, which
represents the impact of the control input on the system
state. P is the matrix obtained by solving the ARE.

R is the inverse matrix of the control input matrix R,
which represents the penalty for the control input. K is
the optimal gain matrix, which represents how to adjust
the control input according to the system state. The cost
function is usually expressed as Formula 5:

J=[(x () ox(0)+u (@) Ru () (5)

is the state vector of the
AO(t)
Aw(t)

In the Formula (5), x(t)

system, expressed as x() :{ :l , where AQ(1) is

the rotor angle deviation and Aw(t) is the rotor

frequency deviation. u(r) is the control input, usually
the gain signal of the stabilizer. 0 and R are weight
matrices, where Q weighs the deviation of the system

state and R  weighs the energy consumption of the
control input. @ is a matrix that penalizes state errors

(such as angle and frequency deviations).

The LQR algorithm effectively calculates the optimal
control gain based on the periodic changes and voltage
changes of the subsystems by monitoring the system
status step by step. This method can effectively adapt to
the stability issues caused by system faults, load
variations, etc., and maintains the system’s stability by
adjusting the regulator gains. Especially in high-power
systems, LQR provides precise incremental adjustment,
reducing the problem of over-adjustment or
under-response caused by improper gain determination in
conventional systems.

Apart from the LQR algorithm, FLC and PID control are
two key algorithms that are commonly used to adjust the
regulator function. Fuzzy control handles fragility and
ambiguity in a system, especially when the system is
functionally decentralized or there are complex nonlinear
relationships. Fuzzy control adjusts the function of the
regulator step by step according to the observation
principle. PID control is a traditional control method
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based on three factors: proportional (P), integral (1), and
derivative (D), which has high efficiency and can be
adapted to various types of system conditions.

In the local stabilizer parameter adjustment section, the
LQR control gain matrix K = [0.5,0.2] is added, which

is used to adjust the control input according to the system
state. At the same time, the PID controller parameters are
also added, the proportional coefficient K, =0.6, the
K, =0.05 , and the differential

coefficient K, =0.1. These parameters quickly adjust

integral coefficient

the system state by continuously monitoring the error,
improving the dynamic response capability of the system.
Finally, in the online real-time tuning mechanism section,
this paper shows the stabilizer gain G, =0.85 after

genetic algorithm optimization. This optimization result
significantly improves the system's adaptability to
disturbances.

In this paper, the control range of the subsystem
stabilizers is adjusted using a combination of fuzzy and
PID control in order to further investigate the flexibility
of the system and its responsiveness to the effects of
dynamic disturbances. Specifically, in the control process
of the subsystem, a fuzzy logic controller is first used to
evaluate the initial response of the system step by step,
and the control rules are formulated according to the
magnitude of the system error and the pattern of change
to determine the change direction of the system gain and
range. Fuzzy control handles nonlinear and complex
variables in the power system. Especially when the load
fluctuation is large or the power flow is unbalanced,
fuzzy control provides a more flexible adjustment
method.

PID control based on fuzzy control further optimizes the
adjustment process of the stabilizer. The PID regulator
quickly adjusts the system when an error occurs by
continuously monitoring the error, combining the
comprehensive effects of related terms, basic terms, and
differential terms. The related terms directly adjust the
increment of the current error; the basic terms solve the
continuous state deviation of the system caused by
long-term errors; the differential terms effectively predict
future error changes and provide pre-compensation.
Therefore, PID control improves the system’s ability to
respond to crises.

In practice, fuzzy control is combined with PID control
to more easily adapt to the various load patterns in the
system and ultimately adjust the thresholds of the local
stabilizers based on continuous feedback. This approach
is particularly suitable for power systems with high
vulnerability and complex unique behaviors, allowing
each subsystem to respond quickly under different
operating conditions and avoiding overloading or
underloading of local stabilizers.



System Response under Different Control Methods
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Figure 2. Effect of different control methods on system response

Figure 2 illustrates the effect of different control methods
on system response. The black dotted line represents the
disturbance signal, which varies from -1 to 1.2,
indicating load fluctuation. PID control responds slowly
and fluctuates greatly, while fuzzy control is relatively
stable but still has certain oscillations. The PID + FLC
combination control performs best in system response,
quickly suppresses disturbances and maintains stability,
and can reduce fluctuations compared to PID control.
Especially when the disturbance is large, the PID + FLC
method quickly adjusts the control gain, showing better
stability and robustness, and is suitable for dynamic
disturbances in power systems.

To ensure the local controller’s performance, this paper
combines the above control algorithms for
comprehensive optimization. The stabilizer parameters of
each subsystem need to be adjusted according to the
system’s real-time data. Therefore, the optimization
algorithm is crucial for the adjustment of controller
parameters. According to the specific needs of different
subsystems, the stabilizer gain of each subsystem is

Table 1. Comprehensive evaluation data of control costs and effects

optimized under global coordination by combining
adaptive control, fuzzy control, and PID control.

By real-time monitoring of the power system’s state
parameters and using genetic algorithms, the parameters
of the local stabilizer are dynamically adjusted. These
optimization algorithms find the control parameters that
optimize the system stability and performance indicators
through simulation and calculation, and further improve
the system’s response speed and stability.

Figure 2 shows the effect comparison between fuzzy
control plus PID and pure PID control. Although the
performance of fuzzy control plus PID is better than PID
control in terms of control effect, in practical
applications, we still need to consider the control cost.
The advantage of PID control is that its computational
complexity is low and the hardware implementation is
simpler. Therefore, in some low-cost applications, PID
control may be more cost-effective. For this reason, we
list the comprehensive evaluation data of control cost
and effect in Table 1.

Control Response | Steady-State Overshoot Computational | Implementation | Hardware Comprehensive
Algorithm Time Error Complexity Difficulty Requirements | Evaluation
PID Control 1.5 0.05% 10% Low Low Low Good
seconds
Fuzzy Control | 1.2 o o . . . .
+PID seconds 0.02% 3% Medium Medium Medium Superior
D. Global System Coordination and Optimization switching between different subsystems through

In large-scale power systems, it is necessary to program
the stabilizer switching of multiple subsystems to avoid
conflicts between local stabilizer switching and ensure
the stability of the global system. With this in mind, this
study adopts a global system coordination method based
on continuous monitoring, simplifies the stabilizer
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distributed optimization and distributed control systems,
and enables the entire system to maintain reliable
stability under specific switching.

To effectively configure the stabilizer switching of each
subsystem, this study applies a distributed optimization
algorithm, especially a distributed gradient descent



method. The algorithm performs processing tasks in the
global system, reduces the computational burden of
centralized control, and achieves global optimization
through the exchange of local information. Each
subsystem performs local calculations based on
continuous monitoring data, shares key state information
with other subsystems, and continuously improves its
stabilizer switching through algorithms. The distributed
gradient descent method avoids the local optimal
problem caused by the inability of a single improvement
algorithm to cover global data. Specifically, each
subsystem in the system updates its boundaries according
to its local control objectives, and gradually moves closer
to the global optimal solution by exchanging preference
data with adjacent subsystems.

This method ensures that the balancer switching between
subsystems can reduce the instability of the global
system while satisfying local stability, thereby achieving
collaborative improvement. To further ensure the
coordination and consistency of the global system,
organized control methods, especially consensus

Network Structure of Multi-Agent System

algorithms and MAS models, are used during system
operation. These methods simulate the cooperation and
data sharing between processors, so that each subsystem
can cooperate with other subsystems to improve the
overall control process. In a multi-processor system, each
subsystem is regarded as a processor and makes
decisions individually based on its observed state and
data from neighboring processors.

The core idea of the consensus algorithm is to make all
agents reach a consensus on certain global parameters by
adjusting the information exchange between agents. In
the power system, this means that the stabilizer
parameter adjustment of each subsystem must not only
ensure its own stability independently, but also be
consistent ~ with  other  subsystems to  avoid
over-adjustment or invalid adjustment. By setting
appropriate weight matrices and adjacency matrices,
agents choose the frequency and method of information
transmission according to their relative importance and
actual conditions to maximize the information sharing
efficiency.

State Synchronization of Mult-Agent System

State Value

20 25 0 s 40 5 50
Time Steps

Figure 3. Network structure and agent state changes of multi-agent system. (a) Network structure of multi-agent system; (b) Agent
state change.

The Figure 3(a) shows the network structure of the
multi-agent system, where nodes represent agents and
the weights on the edges reflect the intensity of
cooperation between agents. Weight values close to 0.50
indicate weaker cooperation, and those close to 1.00
indicate stronger cooperation. The Figure 3(b) shows the
change of agent states over time. The initial states are
quite different, and after iterations, the states of the
agents gradually become consistent, reflecting that the
system has achieved global synchronization through the
consistency algorithm and enhanced the system stability.

Based on the framework of multi-agent system, this
study designs a highly adaptable control strategy so that
each sub-area of the system can respond quickly in
different operating environments and communicate
effectively with other subsystems. Through centralized
control and coordination mechanisms, these agents
collaborate to optimize stabilizer parameters in a
dynamic environment while ensuring the overall
system’s stability. Especially in the face of dynamic
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disturbances in large-scale power systems, this model
can effectively prevent the parameter adjustment of a
single subsystem from causing global system imbalance,
thereby greatly improving the system’ robustness and
flexibility.

In the proposed online parameter setting method for
power system stabilizers, LQR, fuzzy control, PID
control, genetic algorithm and multi-agent system work
together. LQR optimizes the gain of each subsystem,
fuzzy control handles nonlinear variables, PID control
accurately adjusts errors, and GA performs global
parameter optimization. The multi-agent system uses
distributed gradient descent and consensus algorithms to
enable each subsystem to independently calculate and
share information, reducing computational complexity
and ensuring global consistency. Specifically, the
distributed gradient descent method allows local
optimization and approaches the global optimum through
data exchange, and the consensus algorithm ensures that
all agents reach a consensus on global parameters.



E. Online Real-time Tuning Mechanism

In large power systems, the initial response of the system
is often affected by various factors, such as load

fluctuations, hardware failures, and external disturbances.

To ensure the stability of the power system and rapid
response during operation, the parameters of the voltage
regulator must be gradually adjusted according to the
continuous system status. This study applies a real-time
online monitoring tool that combines real-time power
system data and advanced development algorithms to
obtain precise changes in voltage regulator parameters.
Due to this feature, the system can respond to various
disturbance factors and quickly return to a stable state.

To perform online adjustment of voltage regulator
parameters, it is first necessary to obtain various key data
of power system operation in real-time, including
frequency, power, voltage, and load. These data provide
a precise basis for adjusting the parameters of the voltage
regulator. By collecting and analyzing real-time
monitoring data, the powerful functions and potential
safety issues of the system can be identified. Therefore,
the regression analysis method is used to predict and
adjust the stabilizer boundary based on real data and
continuous feedback. Regression analysis provides ideal
changes in the stabilizer boundary by establishing a
numerical model between the unique properties of the
system and the stabilizer gain, ensuring the continuous
operation of each subsystem.

Regression analysis predicts future stabilizer parameter
requirements based on the current system state by fitting
different input-output relationships. Through online
learning of the model, the system continuously optimizes
the prediction results and improves the ability to respond
to emergencies in the power system. For example, when
the power load changes drastically, the regression model
adjusts the stabilizer parameters in time based on
historical data and real-time monitoring to adapt to load
changes and maintain the system’s stable operation.

Although regression analysis provides reasonable
predictions for the adjustment of stabilizer parameters,
traditional regression methods may not be able to obtain
the global optimal solution when faced with complex and
nonlinear disturbances. Therefore, this study further
applies real-time optimization algorithms, especially
genetic algorithms (GAs), to dynamically adjust each
subsystem’s stabilizer parameters. Genetic algorithms are
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an optimization method that simulates natural selection
and genetic mechanisms, effectively searching for
optimal solutions in large-scale systems and adapting to
the needs of systems in dynamic changes.

Genetic algorithms construct fitness functions by
encoding the stabilizer’s parameters, and generate new
parameter combinations through operations such as
selection, crossover, and mutation. This process is
iterated continuously to find a set of optimal stabilizer
parameters. Compared with traditional optimization
methods, genetic algorithms do not require a precise
mathematical model of the system, and can handle
multi-objective and multi-constraint problems, making
them very suitable for complex, nonlinear dynamic
systems such as power systems.

In this study, genetic algorithms are used in combination
with regression analysis. First, the regression model is
used to make preliminary parameter predictions, and
then the genetic algorithm is used to make precise
adjustments. In specific operations, the system first
makes preliminary adjustments based on real-time data
and the parameters predicted by the regression model,
and then uses the genetic algorithm to optimize these
preliminary parameters to ensure that the parameter
adjustment not only meets the requirements of local
stability, but also improves the system’s overall stability.
Through this dual optimization mechanism, when faced
with drastic fluctuations in power load, equipment
failures, etc., adjustments can be made quickly to ensure
the system’s smooth operation.

In order to further improve the system's adaptability to
disturbances, this paper uses genetic algorithm (GA) to
dynamically adjust the stabilizer parameters. First, the

stabilizer gain is encoded into a chromosome
representation, for example, individual 1 in the initial
population: K, =0.6 , K, =005, K,=0.1, and

individual 2: K,=0.7, K,=0.04, K,=0.15. The

performance of each individual is evaluated by defining
a fitness function, and a new generation of population is
generated using selection, crossover, and mutation
operations. Finally, the optimized stabilizer gain

Gopr :[Kp = 07, Ki = 004’ Kd = 015:|
This optimization result significantly improves the

stability of the system, reduces fluctuations and
enhances the ability to respond to disturbances.

is obtained.
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Figure 4. Comparison of stabilizer gains after regression analysis and genetic algorithm optimization. (a). Regression analysis of
stabilizer gain; (b). Stabilizer gain after genetic algorithm optimization.

Figure 4 shows the comparison of stabilizer gains after
regression analysis and genetic algorithm optimization.
In the Figure 4(a), the regression analysis fits the
relationship between load and gain well, but there is an
error when the fluctuation is large. In the Figure 4(b), the
gain after genetic algorithm optimization follows the
actual gain more precisely. Especially when the load
fluctuates violently, the optimization effect is also more
significant. The genetic algorithm improves the system’s
adaptability to disturbances, reduces fluctuations, and
improves stability through dynamic adjustment.

The online real-time tuning mechanism improves the
power system’s ability to respond to emergencies
through adaptive control strategies. Traditional control
methods are slow to respond and easily lead to system
instability. This study combines regression analysis and
genetic algorithms, and uses real-time monitoring data to
dynamically adjust the stabilizer parameters to ensure

Start

Global Coordination

D-Segmentation

| Local Stabilizer Adjustment L\'

that the system quickly recovers stability when
disturbances such as frequency fluctuations occur. The
system minimizes unstable factors by evaluating the
current state and optimizing the control strategy. This
mechanism not only improves the system’s response
speed and robustness, but also enhances its adaptive
ability, effectively reduces the risks caused by load
fluctuations and equipment failures, and provides a new
solution for the power system’s efficient operation.

Although fuzzy logic and genetic algorithms improve the
responsiveness and stability of the system, they also
bring a high computational burden. To optimize
computational efficiency, this paper uses parallel
computing and simplified models, and accelerates the
convergence of genetic algorithms by reducing the
population size and the number of iterations. In addition,
hardware acceleration technology GPU is used to further
improve computing performance.

Divide System

| LQR & Fuzzy Control | | Modularity Optimization |

Online Tuning

| Distributed Gradient Descent & MAS

| | Real-Time Feedback | | Minimize Interaction |

| Regression Analysis I | Ensure Consistency |

Genetic Algorithm
Dynamic Response

Figure 5. System Flowchart
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Figure 5 shows the whole process from system
segmentation, local stabilizer adjustment, global
coordination to online real-time tuning. First, the system
is divided into multiple subsystems, then LQR and fuzzy
control are used for gain optimization, distributed
algorithms are used to ensure global consistency, and
finally regression analysis and genetic algorithms are
used to dynamically adjust parameters to achieve rapid
response and stability of the system.

3. Stabilizer Performance Evaluation

Before conducting the performance evaluation of the
power system stabilizer, the data used in this paper are
derived from real-time monitoring records of the actual
power system and a verified simulation model.
Specifically, the data is collected from multiple power
systems of different sizes and goes through a multi-step
verification process to ensure its reliability. First, all raw
data are obtained through high-precision sensors and
monitoring equipment, which are regularly calibrated to

ensure measurement accuracy. Second, encryption
technology is used during data transmission to prevent
data tampering or loss. In addition, historical data is used
for comparative analysis to verify the consistency and
rationality of current data. For the data generated by the
simulation model, we used MATLAB, a widely
recognized power system simulation software, and
verified the accuracy of the model by comparing it with
actual operating data.

In order to verify the effectiveness of the proposed online
parameter setting method for power system stabilizer
based on D-segment method, a multi-bus power system
with 30 nodes is used as a test platform. The system
includes 4 main power plants (G1: 500 MVA, G2: 300
MVA, G3: 400 MVA, G4: 200 MVA) and 26 load nodes
(typical load power ranges from 60 MW to 120 MW).
The length, resistance, reactance and susceptance
parameters of the transmission line are set according to
the actual power grid data.The single line diagram of the
test system is shown in Figure 6
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Figure 6. Single-line diagram of the test system

A. Frequency Response Evaluation

Frequency response evaluation is to analyze the recovery
speed by applying a known load disturbance and
monitoring the system frequency change. After the
disturbance occurs, the system frequency deviation is
collected and analyzed in real-time, and the time required
for the system frequency to recover to a steady state and

the maximum frequency deviation are calculated by
fixing the frequency change curve. The evaluation
criteria include recovery time, frequency deviation, and
steady-state error. The shorter the recovery time and the
smaller the frequency deviation, the better the frequency
response capability of the system, and the faster it can
return to the predetermined frequency range, ensuring
the stable operation of the system.

Table 2. Frequency response of the power system under different load disturbances

Disturbance Start . Maximum Frequenc Final Recove
Time (s) Recovery Time (s) Deviation (Hz) q y Steady-State Error (Hz) Frequency (Hz) Ty
20 33 0.4 0.1 50.05

40 3.5 0.3 0.05 50.02

60 2.6 0.5 0.2 50.03

80 3.0 0.35 0.08 50.01

Table 2 shows the frequency response of the power
system under different load disturbances. At the 20th
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second disturbance, the system has a maximum
frequency deviation of 0.4 Hz, a recovery time of 3.3




seconds, and a final deviation of 0.1 Hz, indicating that
the system returns to steady state relatively quickly. As
the disturbance time increases, the recovery time and
frequency deviation change, and the system still
maintains a certain stability under a larger disturbance.
Overall, the shorter recovery time and smaller frequency

Frequency

Response of the Power System Under
T T T T

deviation demonstrate that the system has a strong
recovery capability, ensuring the stable operation of the
power system.The load disturbances in Table 2 occur at
bus 5, bus 10, bus 15 and bus 20 respectively.

The frequency response curve is shown in Figure 7:
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Figure 7. Frequency response curve

B.  Evaluation of Oscillation Suppression Effect

The evaluation of oscillation suppression effect judges
the system stability by monitoring the attenuation
process of the system oscillation after the disturbance.

Oscillation Decay Curve and System Response
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After the disturbance is applied, the system oscillation
frequency, attenuation rate, and steady-state error are
analyzed. The findings show that fast attenuation and
small oscillation indicate that the system has good
oscillation suppression ability, which can effectively
eliminate system oscillations and return to a stable state.
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Figure 8. Oscillation attenuation process and spectrum characteristics of the system under disturbance. (a) System oscillation
attenuation process under disturbance; (b) Spectral characteristics.

Figure 8 illustrates the oscillation attenuation process and
spectrum characteristics of the system under disturbance.
The oscillation attenuation curve on the left displays that
the system recovers stability in about 4 seconds, and the
steady-state error is low, indicating that the system
quickly and effectively suppresses oscillations. The
spectrum diagram on the right displays that the main
oscillation frequency of the system is about 1.5 Hz,
which is consistent with the natural frequency, verifying
the system’s oscillation suppression ability. These data
show that the system has good stability and efficient
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oscillation suppression characteristics.
C. System Stability Time Evaluation

By collecting real-time data of frequency, voltage and
power changes caused by disturbances, the time from the
occurrence of disturbance to the system recovery to a
stable state can be analyzed in detail. Specifically, this
paper uses high-precision sensors and data acquisition
systems to monitor and record the changes of these key
parameters in real time. Frequency is an important



indicator of power system operation and is usually
maintained at 50 Hz (or 60 Hz). When the system is
disturbed, the frequency may deviate. This paper records
its maximum deviation value and the time required to
recover to the reference frequency; the voltage level
directly affects the power quality of users, so this paper
also records the maximum voltage fluctuation and its
recovery time; the change in power output reflects the
load capacity and regulation capacity of the system,

Frequency Change Over Time

Voltage Change Over Time

which is also recorded in detail. Through these data, this
paper can quantitatively evaluate the dynamic stability of
the system and determine the speed and efficiency of the
system's recovery from disturbances. The shorter the
stabilization time, the faster the system responds and the
faster it can quickly resume normal operation after the
disturbance occurs, which provides an important basis
for optimizing system planning and control strategies.
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Figure 9. Changes in the system including frequency, voltage, and power after the disturbance. (a) Frequency of the system after
interference; (b) Voltage of the system after interference; (c) Power change of the system after interference.

In Figure9, the frequency change diagram on the left
shows the oscillation of the system after the disturbance,
and the recovery time is about 3 seconds, indicating that
the system frequency returns to stability after about 3
seconds. The voltage change diagram in the middle
shows the voltage fluctuation after the disturbance, and
the recovery time is 4 seconds, reflecting the voltage
recovery speed. The power change diagram on the right
shows the power fluctuation after the disturbance, and
the recovery time is 3.5 seconds, indicating that the
system power returns to a steady state about 3.5 seconds
after the disturbance. Overall, these data show that the
system parameters can recover quickly and have good
dynamic stability, which meets the purpose of evaluating
the system operation stability time.

D. Load Recovery Capacity Evaluation

The load recovery capacity evaluation experiment tests

the recovery capacity of the power system by simulating
different disturbances (such as normal load fluctuations,
load surges, equipment failures, large-scale load changes,
etc.). In the experiment, the mathematical model of the
power system is first established and the initial load (500
MW) is set. Then, by introducing different types of load
disturbances (such as load fluctuations of £30 MW, load
surges of 100 MW, equipment failures causing a 70 MW
drop, etc.), the changes in system frequency and voltage
are monitored. Key parameters include recovery time
(the time it takes for the system frequency to recover
from the maximum deviation after the disturbance to a
stable state), maximum frequency deviation, steady-state
frequency and steady-state voltage, etc. By analyzing the
response of the system under different disturbances, the
recovery capacity of the system is evaluated. The shorter
the recovery time and the smaller the frequency
deviation, the stronger the load recovery capacity of the
system, indicating that the system has a stronger ability
to adapt to load changes and disturbances.

Table 3. Recovery capacity after load changes and equipment failures

Disturbance | Initial Load | Maximum Load | Recovery | Maximum Frequency | Steady-State Steady-State Voltage
Type MW) Change (MW) Rate (%) Deviation (Hz) Frequency (Hz) | Voltage (kV) | Fluctuation (kV)
Normal

Load 500 30 95 0.15 50.02 220 1.5
Fluctuation

Load Surge 500 100 90 0.25 50.01 219.5 2.3
Equipment | 5, 70 85 03 50 219.2 3
Failure

Large-Scale

Load 500 150 82 0.35 49.98 218.5 42
Change
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The data in Table 3 show the system's ability to recover
after load changes and equipment failures. The load
fluctuations, load surges, equipment failures and
large-scale load changes in Table 3 correspond to bus 8§,
bus 12, bus 18 and bus 25, respectively. During normal
load fluctuations, the recovery rate is 95%; the maximum
frequency deviation is 0.15 Hz; the system recovers
quickly. In the case of load surges and equipment failures,
the recovery rates are 90% and 85%, respectively; the
maximum frequency deviation increases to 0.25 Hz and
0.30 Hz; the recovery speed slows down. In the case of
large-scale load changes, the recovery rate drops to 82%;
the maximum frequency deviation increases to 0.35 Hz;
the recovery time is prolonged. This shows that higher
recovery rates and smaller frequency deviations reflect
the system’s stronger adaptability and stability.

Although the operation time of most relays is only a
fraction of a second, the recovery time of the system
after the disturbance covers the dynamic response
process of the entire system, including the adjustment of
frequency and voltage and oscillation suppression.
Experimental data show that after the disturbance, the
system frequency and voltage return to steady state
within 5 seconds, which is significantly better than the
traditional method. For example, Table 1 shows that the
maximum frequency deviation is 0.4Hz and the recovery
time is 3.3 seconds. This shows that the optimized
stabilizer parameters effectively shorten the system
recovery time and significantly improve the overall
stability.

To demonstrate the advantages of the proposed method
in reducing recovery time, this paper compares it with
the traditional LQR control method. In a typical load
surge scenario, the frequency recovery time of the
traditional LQR method is 5 seconds, and the maximum
frequency deviation is 0.4 Hz; while the online parameter
setting method based on the D-segment method proposed
in this paper shortens the frequency recovery time to 3
seconds, and the maximum frequency deviation is
reduced to 0.2 Hz. This shows that this method has
significant advantages in dynamic response speed and
stability, and can respond to system disturbances more
quickly and effectively.

4. Conclusions

This paper applies a new online tuning method for power
system  stabilizer = parameters based on the
D-segmentation method, aiming to solve the coupling
problem between local and global stabilizers in
large-scale power systems. By dividing the power system
into multiple subsystems, the community discovery
algorithm is used to divide the subsystems and analyze
their stability, and an independent stabilizer is designed
for each subsystem. Based on real-time monitoring data,
adaptive control algorithms (LQR), fuzzy control, and
other methods are used to dynamically adjust the
stabilizer parameters to ensure that each subsystem
operates efficiently and independently. The coordination
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of the global system ensures that the parameter
adjustments of the stabilizers between regions do not
conflict through distributed optimization algorithms and
multi-agent systems, thereby optimizing the system’s
overall stability. Experimental results show that this
method effectively improves the power system’s
frequency response, oscillation suppression capability,
system stability time, and load recovery capability.
Although the method has achieved remarkable results in
improving the power system’s stability, it still faces the
problems of real-time data processing delay and
computational complexity in large-scale systems. Future
research can consider further optimizing the real-time
performance of the algorithm and exploring more
efficient parameter adjustment mechanisms to cope with
more complex dynamic disturbances of the power system.
Although the stabilizer parameter solution method based
on the D-segment method significantly improves the
system stability, it still has some limitations. The
accurate partitioning of complex systems and the delay
of real-time data processing. In addition, the
effectiveness and robustness of the control strategy in the
face of extreme disturbances still need to be further
verified.
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