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Abstract. In the TLs' ice thickness prediction, the
position update of the traditional QPSO algorithm is
easily affected by the average optimal position of the
local attraction point particles, and the global search
ability is poor, resulting in large ice thickness prediction
errors, and the prediction of ice thickness of TLs and risk
assessment cannot be combined. This paper used
weighted coefficients, differential evolution operators
and GA to improve the QPSO algorithm, used IQPSO to
optimize the SVM parameters, and applied it to the
prediction of ice thickness of TLs, combined with LSTM
for risk assessment. The study used the grey correlation
method to explore the influence of temperature, humidity,
etc., on the TLs' ice thickness. Then, the differential
evolution operator is used to improve the local attraction
points, the weighted coefficient is introduced to improve
the global optimal solution, and the crossover and
mutation operator operations of GA are applied to QPSO
to increase the diversity of solutions. Finally, the paper
applied IQPSO to the SVM's kernel fuction width, output
the optimal solution and the prediction rusult and
evaluated the TLs' icing risk combined with LSTM. The
results show that the IQPSO-SVM in this paper has the
highest ice prediction accuracy, with a MAPE of
1.49%, which is 1.35% lower than that of QPSO-SVM,
and the accuracy of the LSTM risk assessment model is
as high as 0.97. The study shows that the IQPSO-SVM
in this paper can achieve high-precision ice thickness
prediction and combine it with LSTM to achieve
accurate risk assessment performance.
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1. Introduction

TLs (Transmission lines) are often affected by ice and
snow in winter, and icing occurs frequently. Especially in
cold regions, icing on TLs can seriously threaten the
safety of power facilities [1-3]. The thickness and

distribution of icing directly affect the stability and
carrying capacity of TLs, thus affecting the reliability of
power supply [4-5]. Existing icing prediction methods
such as QPSO-SVM (Quantum Particle Swarm
Optimization-Support Vector Machine) face problems
such as low prediction accuracy, poor model
generalization ability, and risk assessment not combined
with prediction. More advanced algorithms are urgently
needed for optimization. To reduce power accidents
caused by icing, accurately predicting the thickness of
icing and conducting corresponding risk assessments
have become important topics in power system research.

The study found that the LSTM model can to process
time series data when conducting risk assessment and
has been widely used in various prediction tasks.
However, integrating LSTM into the risk assessment of
TL ice thickness prediction still faces multiple challenges.
The LSTM model has high requirements for the quality
of input data, especially in long time series prediction,
where noise and incomplete data will affect its
performance. LSTM can process time series data, but it
requires more computing resources and tuning when
faced with complex nonlinear relationships and
high-dimensional data. It is an important challenge to
achieve accurate risk assessment in combining LSTM
output with the actual risk assessment and transforming
them into actionable decision suport effectively.
Therefore, optimizing the LSTM model and improve its
accuracy and usability in risk assessment has become
one of the important goals of this study.

This paper aims to solve the limitations of the traditional
QPSO algorithm in the prediction of ice thickness on
TLs, especially its insufficiency in global search
capability. This paper adopts an improved QPSO
algorithm and optimizes the search strategy of the QPSO
algorithm by introducing differential evolution operator,
weighted coefficient and genetic algorithm (GA). The
differential evolution operator is used to improve the
local optimal solution, and the weighted coefficient and
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GA crossover mutation operator enhance the diversity of
solutions, further improving the global search capability.
The experiment applies the IQPSO (Improved Quantum
Particle Swarm Optimization) algorithm to the parameter
optimization of SVM (Support Vector Machine), and
combines the grey correlation method to analyze the
influence of environmental factors such as temperature
and humidity on ice thickness, so as to achieve
high-precision prediction of ice thickness of TLs. The
LSTM (Long Short-Term Memory) model is used to
conduct risk assessment on the prediction results,
achieving higher accuracy and prediction performance.
This paper organically combines ice thickness prediction
with risk assessment, and combines a new optimization
algorithm to achieve relatively ideal prediction accuracy
and risk assessment results.

Article Contribution:

(1) This paper innovatively introduces differential
evolution operators, weighted coefficients and GA into
the QPSO algorithm to improve the global search
capability and solution diversity, effectively solve the
local optimal problem of the traditional QPSO algorithm
in ice thickness prediction, and improve the prediction
accuracy significantly.

(2) The study applies IQPSO to SVM parameter
optimization to improve the performance of SVM in ice
thickness prediction, so that the model can more
accurately predict the ice thickness of TLs and achieve
significant performance improvement compared with
traditional methods.

(3) This paper organically combines ice thickness
prediction with risk assessment, uses LSTM for risk
assessment, achieves high accuracy, and provides more
accurate decision support for ice risk management of
TLs.

2. Related Work

In TL ice thickness prediction, many scholars have used
different prediction methods to conduct research. Hao et
al. used flash infrared thermal imaging and BP
(backpropagation) neural networks to predict ice
thickness with an error of less than 0.1 [6]. Wang et al.
used a combination of CNN (Convolutional Neural
Networks) and BiGRU (Bidirectional Gated Recurrent
Unit) models to predict the ice thickness of TLs,
reducing the prediction error [7]. Ice detection based on
infrared thermal imaging and equivalent ice thickness
detection methods for overhead lines based on axial
tension measurement have been applied, and it was
found that the ice thickness detected by the method is
consistent with the results caused by meteorological
factors [8,9]. Ke, Yang and other scholars used the
Transformer model and ACO-BPNN (Ant Colony
Optimization-Back Propagation Neural Network) to
predict the ice thickness of TLs and improve the
accuracy of prediction [10,11]. Li et al. combined CNN

and data mining technology to study the prediction of
icing on power TLs, and also improved the prediction
performance [12]. Wang et al. used an integrated model
based on AI (Artificial Intelligence) to predict the
thickness of icing on power TLs, with an error of less
than 3 mm [13]. The above scholars used BP,
Transformer, etc., to predict the thickness of ice, which
reduced the prediction error to a certain extent, but the
prediction error was not ideal.

Artificial intelligence technology has a good application
in the risk assessment of TLs. Many scholars have
applied artificial intelligence technology to risk
assessment and achieved a lot of research results. Yang et
al. used a TL dance reconstruction method based on
dictionary learning to warn of geological disaster damage
to TLs and improve the accuracy of warning level
classification [14]. STAE-YOLO (Swin Transformer
attention efficient algorithm-you only look once) and
SVM-MLP (Support Vector Machine-Multilayer
Perceptron) are widely used in TL risk management to
improve the accuracy of risk assessment [15,16]. Shakiba
et al. explored the application of machine learning
methods in TL fault detection and risk assessment,
revealing the importance of LSTM models in risk
assessment accuracy [17]. Scholars applied artificial
intelligence technology to the risk assessment of TLs and
achieved good risk classification performance, but there
is a large research gap in the risk assessment of ice
thickness.

In recent years, methods combining optimization
algorithms such as PSO (Particle Swarm Optimization)
and SVM have been used and gradually applied to the
prediction of ice thickness on TLs to improve the
prediction accuracy. IAOA (Improved Arithmetic
Optimization Algorithm) and IDBO (improved dung
beetle optimizer) are widely used in LSSVM (least
square support vector machine) parameter optimization
and are applied to the prediction of ice thickness on TLs,
greatly improving the prediction accuracy [18,19]. Song
Yu and other scholars applied IPSO (improved Particle
Swarm Optimization) to BP neural network optimization
and improved the prediction accuracy of ice thickness
[20]. Guo Kaichun and other scholars used PSO to
optimize the performance of LSSVM in ice thickness
prediction of TLs based on grey correlation weights and
improved the prediction performance [21]. The study
found that QPSO can better optimize the parameters of
ARVM (adaptive relevance vector machine) and improve
the fault probability prediction performance, but its
search ability is poor [22]. The above scholars used PSO,
IDBO, etc., to optimize the parameters of LSSVM,
which improved the prediction accuracy of ice thickness
on TLs. However, the global search ability was poor,
which need optimization further.

LSTM and hybrid optimization algorithms have also
achieved good application results in other studies. Shen
Y et al. used a steady-state power quality risk warning
method based on VMD-LSTM and fuzzy model to
further improve the fault prediction accuracy of the
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power system [23]. Yousaf M Z et al. used Bayesian
optimization to optimize the LSTM-DWT model and
achieved efficient fault detection in the MMC-based
HVDC system [24]. Xu W et al. used the continuous
PSO-GA algorithm to locate the fault of the distribution
system and optimized the fault location accuracy of the
system [25]. Guven A F et al. conducted a comparative
study on the performance of the hybrid GA-PSO
algorithm optimizing independent hybrid energy systems
and provided new optimization ideas [26]. Scholars
applied LSTM and hybrid optimization algorithms to
other transmission line prediction and evaluation and
achieved good results, which provided a solid research
foundation for this article.

The improved IQPSO-SVM model used in this paper has
significant differences and connections with existing
studies. Compared with the BPNN used by Hao et al., the
CNN and BiGRU model combined by Wang et al., and
the ACO-BPNN used by Ke and Yang et al., the
IQPSO-SVM model has made innovations in the
optimization algorithm. They used differential evolution
operators and weighted coefficients, and combines GA to
enhance local and global search capabilities, thereby
improving the prediction accuracy of the model.
Compared with other studies using traditional PSO
optimization, such as the use of IPSO to optimize BPNN
by Song Yu et al., the IQPSO-SVM model has made
breakthroughs in improving global search capabilities
and avoiding falling into local optimal solutions. The
improved algorithm in this paper effectively reduces the
computational cost when processing large-scale data.
Compared with the research using algorithms such as
IDBO to optimize LSSVM, it can improve the
computational efficiency of the model while ensuring
high prediction accuracy. The improved model in this
paper has a significant improvement in the optimization
strategy and computational efficiency of the algorithm
compared with existing methods. At the same time, it is
consistent with the current research in the idea of
combining machine learning and optimization algorithms,
but it is innovative in the specific optimization scheme.

3. Ice Thickness Prediction Model for TLs

A. Construction of SVM Model

The regression equation output by SVM using nonlinear
functions is shown in formula (1) [27,28].

    , ,g x z     (1)

 represents the weight vector and  represents the
bias.

In SVM, the objective function of the optimization
problem is shown in formula (2).

  2

1
min 0.5 n

i ii
   


  (2)

 represents the penalty coefficient and i represents
the slack variable.

Based on the objective function of formula (2), the
constraint condition is expressed as shown in formula
(3).

 
 

i i

i i

z

z

    

    

    


    

ζ

ζ
(3)

ζ represents the error, and  ,i iz  represents the
sample size.

This paper introduces the sum kernel function and
Lagrange multiplier, and formula (1) is transformed into
formula (4).

     1 1
, ,1

, , , ,n
i i i i ii

g z A z z    


  (4)

 , iA z z represents the kernel function.

B. QPSO Algorithm

QPSO uses the principles of quantum mechanics to
optimize the search behavior of particles [29-31]. In
traditional PSO, particles update their positions based on
their current positions and historical optimal positions,
but QPSO introduces the concept of quantum bits, and
implements the particle update mechanism through
quantum superposition and quantum measurement,
thereby enhancing the global search capability of
particles. QPSO uses the probability distribution of
quantum bits to determine the next position of particles,
so that the algorithm can avoid falling into the local
optimal solution and has stronger global exploration
capabilities.

In the QPSO algorithm, it consists of multiple particles
and multi-dimensional space. The position’s particle is
expressed as shown in formula (5).

 1 2, , ,i i i iBZ Z Z Z  (5)

B represents the dimension of space.

In quantum space, the position of particles is random. In
practice, when the particles converge to their local
attraction points, the algorithm converges. The
expression of the local attraction point is shown in
formula (6).
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   1 1 2 2

1 1 2 2

ib jb
ib

Q t Q t
L

   
   





(6)

 and  represent random numbers. iQ represents
the optimal position of the particle, and jQ represents
the optimal position of the particle in the world.

The particle update expression is shown in formulas (7)
and (8).

      1mb1 ib bi ib t L t InX t L


    





ò (7)

 represents a random number and ò represents an
innovation parameter.

     2 mbi ibL t t L t  ò (8)

The calculation of  mb t is shown in formula (9).

   1

1mb N
ibi

t Q t
N 

  (9)

C. IQPSO Algorithm

1) Differential Evolution Operator

The traditional QPSO algorithm has the problem of
insufficient global search ability and easy to fall into the
local optimal solution in the prediction of ice thickness
of transmission lines, resulting in low prediction
accuracy. To improve the accuracy of prediction, this
paper improves the QPSO algorithm by introducing
differential evolution operator, weighted coefficient and
GA. These improvements in this paper enhance the
diversity and global search ability of particles, effectively
avoid the trap of local optimal solution, and improve the
optimization effect of the model. The IQPSO algorithm
can more accurately optimize the SVM's parameters and
achieve higher accuracy ice thickness prediction and risk
assessment through using experimental method.

This paper introduces the differential evolution operator
[32,33], weighted coefficient, and GA algorithm to
improve the two parameters of ibL and  mb t ,
enhance the global search capability.

Differential evolution is a population-based stochastic
optimization algorithm that seeks the optimal solution to
a problem by simulating the mutation process in natural
selection and genetics [34,35]. In differential evolution,
the algorithm generates new solutions by performing
differential operations on individuals, corresponding to
linear combinations of the differences between three

random individuals in the selected population and the
current solution of a target individual to generate new
candidate solutions.

In the QPSO algorithm, if jQ falls into iQ , the
diversity of the particle swarm can be reduced. In the
particle swarm, two different particles are randomly
selected. For particles 1o and 2o , it is necessary to
ensure that 1o , 2o and i are not equal. The position
difference calculation formula between particles is
shown in formula (10).

     
1 2ib io iot z t z t   (10)

 ib t represents position difference.

After the differential evolution operator is optimized, the
calculation of the particle evolution expression is shown
in formula (11).

        1mb1ib ib ibZ t It t nZ t


    


 


ò (11)

2) Weighted Coefficient

In the QPSO algorithm, each particle of  mb t is
equally divided, which is difficult to meet the actual
situation. This paper sorts the particles according to their
fitness and assigns weighted coefficients [36]. The
calculation formula of the weighted coefficient is shown
in formula (12).

   1
1

mb N ib
i

Q t
t

N




 
  

 
 (12)

 represents the weight coefficient.

After introducing the weight coefficient optimization, the
calculation of particle evolution expression is shown in
formula (13).

       11 1mbib ib ibZ t It t nZ t


    


 


ò (13)

In formula (13), after introducing  , this paper ensures
that the particles are close to the optimal solution to a
certain extent.

The calculation formula for updating the particle position
is shown in formulas (14) and (15).
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3) GAAlgorithm

This paper introduces the GA algorithm [37,38] into the
QPSO algorithm after weighted coefficient and
differential evolution operator optimization to further
enhance the global search capability and accelerate the
convergence speed of particles. GA optimizes the particle
swarm by simulating the natural selection, crossover and
mutation processes of organisms, helping them overcome
local optimal solutions and explore the entire solution
space more effectively.

This paper first initializes the particle swarm, where each
particle contains a set of positions and velocities.

Each generation of particles is selected according to the
fitness value, and particles with high fitness have a
greater probability of being selected to generate the next
generation of particles. The selection of fitness function
is shown in formula (16).

1
1i

i

F
R




(16)

iR represents the particle prediction error, and iF
represents the selection of the fitness function.

In the selection process of GA, this paper adopts the
roulette selection method to select excellent individuals
to participate in the reproduction of the next generation
according to the fitness value of the individual. The
probability function of roulette selection is shown in
formula (17).

1

i
i M

ii

F
P

F





(17)

iP represents the probability of an individual being
selected, and M represents the size of the population.

The selected particles generate new particles using the
crossover operation, where the crossover operation
generates new solutions by exchanging some positions or
parameters between particles. The expression of particles
is shown in formulas (18) and (19).

 1 1 1,O x z (18)

 2 2 2,O x z (19)

The crossover operation is expressed as shown in
formulas (20) and (21).

1 2 1 2
1 ,

2 2c
x x z z

P
    

 
(20)

1 2 1 2
2 ,

2 2c
x x z z

P
    

 
(21)

After the crossover operation, the mutation operation
further increases the diversity of solutions by slightly
adjusting the genetic parameters of the particles. The
formula for the mutation operation is shown in formula
(22).

m orP P   (22)

 represents the random perturbation amount.

The study uses the selection, crossover and mutation
operations of GA to generate a new particle population
and use it as the next generation particle population of
QPSO. The partical population is continuously optimized
to improve the global search capability through iteration.

D. Construction Process of IQPSO-SVM

The process of IQPSO-SVM is shown in Figure 1.
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Figure 1. IQPSO-SVM process

In Figure 1, the process of IQPSO-SVM after the
weighted coefficient, differential evolution operator, and
GA algorithm are coordinated and optimized is as
follows:

(1) Input the historical data of line ice coverage, perform
sample segmentation, outlier and missing value
processing, and normalization operations.

(2) Initialize the model parameters and calculate the
particle fitness value.

(3) Use the differential evolution operator to enhance the
global search capability, introduce the weighted
coefficient to adjust the position distribution of particles
through fitness, and use GA crossover mutation and other
operations to further enhance the global exploration
capability of the particle swarm to ensure the search for
the global optimal solution.

(4) Calculate the average optimal position of the particles,
and update the particle position after iteration, and output
the solution of the penalty coefficient and kernel function
width.

(5) Compare the fitness values and update the individual
optimal position of the particle and the global optimal
position of the particle.

(6) Refer to the termination condition to determine

whether the termination requirements are met. If they are
met, output the final solution of the penalty coefficient
and kernel function width, otherwise continue to iterate.

4. Construction of LSTM Risk Assessment Model

In LSTM [39], the input layer of the model accepts the
predicted ice thickness value optimized by IQPSO and
some external environmental factors such as temperature
and humidity as feature variables. The output layer is the
risk assessment result, indicating the risk level
corresponding to different ice thicknesses.

The forget gate is shown in formula (23).

  1,t t tU h      (23)

U  and  represent the weight matrix and bias term
of the forget gate, respectively.

The input gate is shown in formula (24).

  1,t t tU h   ñ (24)

The candidate memory unit is shown in formula (25).
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  1tan ,t D t t DD U h    (25)

The memory unit update is shown in formula (26).

1t t t t tD D D     ñ (26)

The output gate is shown in formula (27).

  1,t t tU h   ς ςς (27)

The hidden state is shown in formula (28).

 tant t th h D ς (28)

To map the LSTM output to a specific risk level, this
paper uses a fully connected layer to further process the
LSTM output and applies the softmax activation function
to generate the probability distribution of risk assessment.
The calculation of the probability distribution is shown
in formula (29).

 soft maxt y t yy U h    (29)

In model training,the loss function is expressed as shown
in formula (30).

 , ,1
Loss logN

t i p ii
y y


  (30)

The LSTM risk assessment model is shown in Figure 2.

In Figure 2, the ice thickness of the TL predicted by
IQPSO-SVM and the environmental information are sent
to LSTM for risk assessment, and the risk level of ice
coverage of the TL is output.

This paper uses the Adam optimizer for parameter
optimization and uses the dropout regularization
technology for optimization.

The hyperparameter settings are shown in Table 1.

Figure 2. LSTM risk assessment model

Table 1. Hyperparameters

IQPSO-GA parameters Value LSTM parameters Value
Maximum number of iterations 80 Number of input features 4
Population size 320 Number of LSTM units 64
Particle dimension 3 Number of time steps 10
Crossover percentage 0.7 Activation function Tanh
Mutation percentage 0.5 Optimizer Adam
Mutation rate 0.1 Learning rate 0.001
Selection pressure 8 Batch size 32
Gamma 0.2 Dropout ratio 0.2
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In Table 1, the selection of the "mutation percentage"
parameter is one of the key factors affecting performance
improvement. The mutation operation can increase the
diversity of solutions and prevent the algorithm from
falling into the local optimal solution. By adjusting the
mutation percentage, this paper can better explore the
solution space and find a more optimized solution,
making IQPSO more advantageous in global search and
effectively improving the accuracy of the prediction
model. The mutation operation plays a vital role in
optimizing the performance of the model, especially in
complex optimization problems.

5. Experimental Prediction and Risk Assessment of
Ice Thickness of TLs

A. Experimental Data

The experimental data in this paper comes from the data

of the monitoring department and meteorological
department in Harbin, including historical data of ice
thickness of TLs, temperature, humidity, wind speed,
rainfall, air pressure, etc. The data collection time is from
September to December 2023, and a total of 4225 sets of
data are collected. To ensure the richness of the data, the
experiment collected data from local monitoring
departments and meteorological departments in
Shenyang, Changchun, Urumqi, Tibet, Qinghai, Hohhot,
and Baotou, and a total of 30,281 sets of data were
collected. The experimental data of some ice thickness
are shown in Table 2.

In Table 2, the ice thickness in Harbin during the day is
mainly between 10-20 mm, which is in the medium ice
zone, while at night the ice thickness reaches the heavy
ice zone, corresponding to more than 20 mm.

The ice-covered image is shown in Figure 3.

Table 2. Experimental data of some ice thickness

Time Ice thickness (mm) Time Ice thickness (mm)
8:00 8.23 14:30 18.45
8:30 8.78 15:00 19.02
9:00 9.15 15:30 19.85
9:30 9.5 16:00 20.3
10:00 10.02 16:30 21.1
10:30 10.48 17:00 21.75
11:00 11.12 17:30 22.5
11:30 11.8 18:00 23.1
12:00 12.55 18:30 23.8
12:30 13.1 19:00 24.25
13:00 13.5 19:30 24.95
13:30 14 20:00 25.5
14:00 14.6 -

Figure 3. Ice-covered image

In Figure 3 the ice-covered state in Harbin's ice-covered
area is very obvious and representative, which meets the
actual needs of this article.

The visualization data of temperature, rainfall, humidity,
and wind speed are shown in Figure 4.

In Figure 4, the rainfall is generally stable from 8:00 to
20:00 in a day, the temperature is relatively low in the
morning and evening, and there is a certain fluctuation at
noon, but it is always below 0 degrees. For wind speed, it
is relatively stable overall. As humidity changes from
morning to night, it is at its lowest value at about 16:00.
The humidity percentage generally decreases first and
then increases.
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Figure 4. Visualization of data. Figure 4 (a) Visualization of temperature and rainfall; Figure 4 (b) Visualization of humidity and wind
speed

B. Data Preprocessing

In the actual data collection process, some data may be
missing due to sensor failure, data transmission
interruption, etc. This paper uses linear interpolation to
fill in the missing values. For outliers, this paper
calculates the Z-Score of each data point. If the Z-Score
is greater than 3 or less than -3, the data point is
considered an outlier and replaced with the mean of the
feature.

In the experiment, the dimensions and value ranges of
multiple features vary greatly. This paper uses
minimum-maximum normalization to scale the value of
each feature to the interval  0,1 for normalization.

C. Evaluation Indicators

MAPE (Mean Absolute Percentage Error):

1

ˆ1 100n i i
i

i

MAPE
n

 



   (31)

RMSE (Root Mean Square Error):

 2

1

1 ˆn
i ii

RMSE
n

 


  (32)

6. Prediction Results of Ice Thickness of TLs

A. Grey Correlation Analysis

This paper uses grey correlation analysis to analyze the
data of the monitoring department and meteorological
department in Harbin, and the results are shown in
Figure 5.

Grey correlation analysis helps identify which factors
have a more significant impact on ice thickness by
quantifying the correlation between environmental
factors and ice thickness. The core role of this process is
to provide a quantitative way to accurately quantify the
relationship between multiple environmental variables
and ice thickness, and provide more accurate input for
the subsequent prediction model IQPSO-SVM. In this
paper, grey correlation analysis can effectively improve
the performance of the prediction model in this way,
especially when considering the sensitivity of
environmental factors to ice thickness prediction. Grey
correlation analysis can also provide theoretical support
for model selection, ensuring that the model can capture
the most influential factors and further optimize the
prediction accuracy.

Figure 5. Correlation results

In Figure 5, temperature, wind speed, rainfall, humidity
and ice thickness show strong correlation, while air
pressure shows weak correlation. The correlations of
temperature, wind speed, rainfall and humidity are 0.78,
0.73, 0.69 and 0.63 respectively, while the correlation of
air pressure is only 0.43. It can be seen that the
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correlation between temperature and ice thickness is the
greatest.

B. Ice Thickness Prediction Performance of
Different Models

The ice thickness prediction performance results of
different models are shown in Figure 6. In Figure 6, the
comparison models include SVM, PSO-SVM,
QPSO-SVM, IQPSO (differential evolution
operator)-SVM, IQPSO (differential evolution operator +
weighted coefficient)-SVM, IQPSO (differential
evolution operator + weighted coefficient + GA)-SVM.

Figure 6. Ice thickness prediction performance of different
models

In Figure 6, the MAPE of QPSO-SVM reaches 2.84%
and the RMSE reaches 0.16mm. On the basis of
QPSO-SVM, the differential evolution operator is
introduced, reaching 2.18%, which is 0.66% lower than
that of QPSO-SVM. The RMSE is only 0.14mm,
which is 0.02mm lower than that of QPSO-SVM. This
paper introduces the differential evolution operator and
the weighted coefficient to optimize QPSO-SVM, and
the MAPE reaches 1.77% and the RMSE reaches
0.11mm.

This paper introduces the differential evolution operator,
weithted coefficient and GA algorithm and the MAPE
reaches 1.49% based on QPSO-SVM, which is 1.35%
lower than QPSO-SVM; the RMSE is only 0.07mm,
which is 0.09mm lower than QPSO-SVM. In summary,
the IQPSO (differential evolution operator + weighted
coefficient + GA)-SVM ice thickness prediction model is
the best, which is more suitable for ice thickness
prediction of TLs.

C. Comprehensiveness Verification of the Model

To explore the comprehensiveness of the model, this
paper takes the IQPSO (differential evolution operator +
weighted coefficient + GA)-SVM ice thickness
prediction model as the object, conducts experiments,
and applies it to the ice thickness prediction in Shenyang,
Changchun, Urumqi, Tibet, Qinghai, Hurhot, and Baotou.
The results are shown in Table 3.

Table 3. Comprehensiveness verification results of the model

Region MAPE (%) RMSE (mm) Region MAPE (%) RMSE (mm)
Harbin region 1.49 0.07 Tibet region 2.73 0.12
Shenyang region 1.89 0.09 Qinghai region 3.12 0.14
Changchun region 1.75 0.08 Hohhot region 2.1 0.1
Urumqi region 2.32 0.11 Baotou region 1.65 0.07

In Table 3, for MAPE , it is found that the MAPE in
Shenyang, Changchun and Baotou is relatively low,
ranging from 1.65% to 1.89%, and the prediction error of
ice thickness is small. In Tibet, the MAPE reaches
2.73%, Qinghai reaches 3.12% and Urumqi reaches
2.32%, and the MAPE value is relatively high. It is
precisely because the climatic conditions in these regions
are more complex, the temperature difference is large,
and the thickness of ice and snow in some areas is
unevenly distributed, which affects the prediction
accuracy of the model in these areas.
For RMSE , the Baotou area is smaller, and the model
can effectively capture the changes in the actual ice
thickness. The model reaches 0.12 mm in Tibet and 0.14
mm in Qinghai, and the RMSE is larger. The
geographical environment in Tibet and Qinghai is
complex, the altitude is high, and the climate fluctuates

greatly, resulting in large differences in the distribution
and thickness of ice and snow, affecting the prediction
ability of the model. In summary, the model in this paper
has differences in different regions, but the prediction
error of ice thickness is low, which proves the
comprehensiveness of the model.

D. Fitting Curve Analysis

The fitting curve is shown in Figure 7. In Figure 7, the
horizontal axis is the number of iterations, and the
vertical axis is the fitness value. The fitting curve
includes QPSO, IQPSO (differential evolution operator),
IQPSO (differential evolution operator + weighted
coefficient), and IQPSO (differential evolution operator
+ weighted coefficient + GA).
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Figure 7. Fitting curve

In Figure 7, the QPSO algorithm tends to be stable after
20 and 60 iterations, and finds the global optimal
solution, with fitness values of 0.025 and 0.023

respectively. IQPSO (differential evolution operator)
continues to be stable after 44 and 56 iterations, and
jumps out of the local optimal solution, with fitness
values reaching 0.021 and 0.018 respectively. IQPSO
(differential evolution operator + weighted coefficient) is
relatively stable at iterations 36 and 48, and finds the
global optimal solution, with fitness values of 0.019 and
0.014 respectively. IQPSO (differential evolution
operator + weighted coefficient + GA) tends to be stable
at iterations 28 and 40, with the best global convergence,
and fitness values of 0.014 and 0.009 respectively.

E. Comparison Results with Other Hybrid
Optimization Models

The comparison results with other hybrid optimization
models are shown in Table 4. In Table 4, the compared
optimization models include GA, ACO (Ant Colony
Optimization), WOA (Whale Optimization Algorithm),
SA (Simulated Annealing), ABC (Artificial Bee Colony),
AOA (Arithmetic Optimization Algorithm), FOA (Fruit
Fly Optimization Algorithm).

Table 4. Comparison results with other hybrid optimization models

Model MAPE (%) RMSE (mm) Model MAPE (%) RMSE (mm)
IQPSO (differential evolution operator +
weighted coefficient + GA)-SVM 1.49 0.07 SA-SVM 2.1 0.12

GA-SVM 2.35 0.15 ABC-SVM 2.2 0.13
ACO-SVM 2.5 0.17 AOA-SVM 2.6 0.18
WOA-SVM 2.15 0.11 FOA-SVM 2.3 0.14

In Table 4, the MAPE and RMSE values of the
IQPSO-SVM model are 1.49% and 0.07 mm,
respectively, which is the best performance, indicating
that its prediction accuracy and precision are the highest.
The MAPE and RMSE values of the GA-SVM,
ACO-SVM, WOA-SVM and other models are relatively
high, indicating that they are limited by their respective
optimization strategies in the solution process, among
which GA is more dependent on the initial population,
and ACO has the problem of premature convergence in
complex problems. AOA-SVM and FOA-SVM have the
worst performance, with MAPE of 2.6% and 2.3%,
and RMSE of 0.18 mm and 0.14 mm, respectively.
Overall, the IQPSO-SVM model has an advantage in
accuracy, while other algorithms are limited by different
search mechanisms and convergence speeds, resulting in
large prediction errors.

7. TL Icing Risk Assessment Results

A. Confusion Matrix

In the test set, there are 21 very low risk samples, 63 low
risk samples, 106 medium risk samples, 148 high risk
samples, and 85 very high risk samples. The confusion
matrix is shown in Figure 8.

Figure 8. Confusion Matrix

In Figure 8, 20 samples of the extremely low risk type
were correctly identified, and 1 sample was misidentified
as low risk. 60 samples of the low risk type were
correctly identified, 103 samples of the medium risk type
were correctly identified, and 141 samples of the high
risk type were correctly identified. Among the very high
risk type samples, 81 were correctly identified, and 4
were misidentified as high risk. Overall, the risk
assessment performance of the LSTM model is good.
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B. TL Icing Risk Assessment Performance

The TL icing risk assessment results are shown in Figure
9. In Figure 9, the comparison models include GRU
(Gate Recurrent Unit), XGBoost (Extreme Gradient
Boosting), RF (Random Forest), and SVM.

Figure 9. TL icing risk assessment results

In Figure 9, the LSTM model has the highest accuracy,
reaching 0.97, and the F1 value reaches 0.96, indicating
that LSTM can correctly classify most samples,
especially the very low risk and very high risk categories.
The SVM model has an accuracy of only 0.85, the worst
performance. The accuracy of the GRU and XGBoost
models are 0.91 and 0.93 respectively, the accuracy of
RF is 0.89, and the F1 is 0.88.

Regarding precision and recall, LSTM has a clear
advantage with precision and recall reaching 0.95 and
0.98 respectively. The precision of the SVM model is
0.82 and the recall is 0.87. The precision of GRU and
XGBoost models are 0.9 and 0.92 respectively, and the
recall rates are 0.93 and 0.94 respectively. In summary,
LSTM achieves the best performance in the risk
assessment of icing on TLs, which meets the actual
needs.

8. Further Discussion

The LSTM model performs well in both TL icing risk
assessment and icing thickness prediction. Its advantages
mainly lie in its deep learning architecture and powerful
modeling capabilities for time series data. In icing
thickness prediction, LSTM can better capture the
changing trend of icing by learning the long-term and
short-term dependencies of time series, thus significantly
improving the prediction accuracy. Based on the use of
IQPSO to optimize the SVM model, this paper
introduces differential evolution operators, weighted
coefficients and GA to improve the stability and global
convergence of the prediction results, making the IQPSO
(differential evolution operator + weighted coefficient +
GA)-SVM model the best in predicting ice thickness.
The introduction of the optimization algorithm

significantly improves the model's ability to learn
complex patterns and further improves the prediction
accuracy.

The IQPSO algorithm significantly enhances the global
search capability and convergence speed by introducing
differential evolution operators, weighted coefficients
and GA to optimize the QPSO algorithm. Compared with
the standard QPSO, IQPSO has higher computational
complexity. The IQPSO needs to perform more operation
to update particles's position and fitness after introducing
differential evolution operatiors and genetic algorithms.
The introduction of differential evolution and GA
requires operations such as crossover and mutation in
each iteration, which increases the computational burden
of each particle. The computational complexity of
IQPSO is higher than that of QPSO and PSO, especially
when the particle swarm is large, its computing resources
and time consumption increase significantly.

The scalability of IQPSO is better than that of the
standard PSO and QPSO models. In IQPSO, the
combined optimization of weighted coefficients,
differential evolution operators and genetic algorithms
improves the global search capability, enhances the
diversity of solutions, effectively avoids falling into the
local optimal solution, and makes IQPSO more adaptable
when dealing with larger and more complex problems.
Compared with standard PSO and QPSO, IQPSO can
maintain better performance in a larger dimensional
search space and is suitable for high-dimensional,
complex constraints and multi-modal optimization
problems. IOPSO can improce the solutions diversity
and enhance scalability and robustness in different
optimization tasks by introducing GA's crossover and
mutation operations.

The results of this study have important practical
significance and theoretical value in many aspects. This
paper introduces LSTM and its optimization algorithm,
which can efficiently process TL data with complex time
series dependencies and multi-dimensional features,
greatly improving the accuracy of ice thickness
prediction. This is crucial for power companies and
relevant regulatory authorities to timely grasp the health
status of TLs and formulate reasonable operation and
maintenance strategies. The various optimization
algorithms used in this paper can provide better solutions
when dealing with complex nonlinear problems, and
provide new ideas and methods for the application of
machine learning and optimization algorithms in
practical engineering. The performance of various
models in ice thickness prediction and risk assessment
tasks is compared, which provides reference and
reference for future research on similar problems.

The model used in this paper performed well in the
experiment, but there are still the following limitations
and future improvement directions.

(1) The data in this paper only come from the monitoring
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and meteorological departments in Harbin, and the
sample size is 4225 groups. Geographical regions are
particular, and the icing conditions of TLs in other
regions may be different. Future research can expand the
data source, including data from more different regions
and under different climate conditions.

(2) The IQPSO (differential evolution operator +
weighted coefficient + GA)-SVM model showed good
performance in this study, but its optimization algorithm
can still be further improved. When processing
large-scale data sets, existing algorithms can face
problems with computing time and resource
consumption. In the future, this paper can explore more
efficient optimization algorithms or combine deep
learning and reinforcement learning methods.

(3) This study mainly considers the impact of
meteorological factors on ice thickness, but in actual
situations, other factors such as power grid operation
status and equipment aging can also affect ice thickness.

(4)The IQPSO model performs well in current
experiments, but its computational cost remains a
challenge in large-scale data processing and real-time
prediction applications. The computational complexity of
the IQPSO algorithm is high, especially in
multidimensional data space, which will lead to a
significant increase in computing time and resources.
Future research will explore the following strategies: on
the one hand, the computational efficiency can be
improved through algorithm parallelization, distributed
computing or GPU acceleration; on the other hand, the
dimension of input data can be reduced as much as
possible through feature selection and dimensionality
reduction technology to reduce the computational
burden.

9. Conclusions

This paper adopts a TL ice thickness prediction method
based on IQPSO-SVM, using differential evolution
operator, weighted coefficient and GA improved QPSO
algorithm to improve the global search capability and
optimize the parameters of the SVM model. The study
uses the grey correlation method to analyze the impact of
environmental factors such as temperature and humidity
on ice thickness, and combines the LSTM model for risk
assessment. The test results show that the IQPSO-SVM
model greatly improves the prediction accuracy, and the
LSTM model achieves good risk assessment accuracy.
This paper has made some achievements, but there are
some shortcomings. The experimental data only comes
from the monitoring and meteorological departments in
Harbin, the data diversity is limited, and the convergence
performance needs to be further optimized. In the future,
other improved advanced algorithms can be combined
with the risk assessment model, and data from multiple
regions can be collected to conduct experiments to
further improve prediction accuracy and generalization.
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